527 research outputs found

    Finite iterative algorithms for solving generalized coupled Sylvester systems – Part I: One-sided and generalized coupled Sylvester matrix equations over generalized reflexive solutions

    Get PDF
    AbstractThe generalized coupled Sylvester systems play a fundamental role in wide applications in several areas, such as stability theory, control theory, perturbation analysis, and some other fields of pure and applied mathematics. The iterative method is an important way to solve the generalized coupled Sylvester systems. In this two-part article, finite iterative methods are proposed for solving one-sided (or two-sided) and generalized coupled Sylvester matrix equations and the corresponding optimal approximation problem over generalized reflexive solutions (or reflexive solutions). In part I, an iterative algorithm is constructed to solve one-sided and coupled Sylvester matrix equations (AY−ZB,CY−ZD)=(E,F) over generalized reflexive matrices Y and Z. When the matrix equations are consistent, for any initial generalized reflexive matrix pair [Y1,Z1], the generalized reflexive solutions can be obtained by the iterative algorithm within finite iterative steps in the absence of round-off errors, and the least Frobenius norm generalized reflexive solution pair can be obtained by choosing a special kind of initial matrix pair. The unique optimal approximation generalized reflexive solution pair [Y^,Z^] to a given matrix pair [Y0,Z0] in Frobenius norm can be derived by finding the least-norm generalized reflexive solution pair [Y∼∗,Z∼∗] of two new corresponding generalized coupled Sylvester matrix equations (AY∼-Z∼B,CY∼-Z∼D)=(E∼,F∼), where E∼=E-AY0+Z0B,F∼=F-CY0+Z0D. Several numerical examples are given to show the effectiveness of the presented iterative algorithm

    Least Squares Based Iterative Algorithm for the Coupled Sylvester Matrix Equations

    Get PDF
    By analyzing the eigenvalues of the related matrices, the convergence analysis of the least squares based iteration is given for solving the coupled Sylvester equations AX+YB=C and DX+YE=F in this paper. The analysis shows that the optimal convergence factor of this iterative algorithm is 1. In addition, the proposed iterative algorithm can solve the generalized Sylvester equation AXB+CXD=F. The analysis demonstrates that if the matrix equation has a unique solution then the least squares based iterative solution converges to the exact solution for any initial values. A numerical example illustrates the effectiveness of the proposed algorithm

    A sketch-and-project method for solving the matrix equation AXB = C

    Full text link
    In this paper, based on an optimization problem, a sketch-and-project method for solving the linear matrix equation AXB = C is proposed. We provide a thorough convergence analysis for the new method and derive a lower bound on the convergence rate and some convergence conditions including the case that the coefficient matrix is rank deficient. By varying three parameters in the new method and convergence theorems, the new method recovers an array of well-known algorithms and their convergence results. Meanwhile, with the use of Gaussian sampling, we can obtain the Gaussian global randomized Kaczmarz (GaussGRK) method which shows some advantages in solving the matrix equation AXB = C. Finally, numerical experiments are given to illustrate the effectiveness of recovered methods.Comment: arXiv admin note: text overlap with arXiv:1506.03296, arXiv:1612.06013, arXiv:2204.13920 by other author

    Stationary splitting iterative methods for the matrix equation AX B = C

    Get PDF
    Stationary splitting iterative methods for solving AXB = Care considered in this paper. The main tool to derive our new method is the induced splitting of a given nonsingular matrix A = M −N by a matrix H such that (I −H) invertible. Convergence properties of the proposed method are discussed and numerical experiments are presented to illustrate its computational efficiency and the effectiveness of some preconditioned variants. In particular, for certain surface fitting applications, our method is much more efficient than the progressive iterative approximation (PIA), a conventional iterative method often used in computer-aided geometric design (CAGD).The authors would like to thank the supports of the National Natural Science Foundation of China under Grant No. 11371075, the Hunan Key Laboratory of mathematical modeling and analysis in engineering, and the Portuguese Funds through FCT–Fundação para a Ciência e a Tecnologia, within the Project UID/MAT/00013/2013

    Positive Definite Solutions of the Nonlinear Matrix Equation X+AHXˉ−1A=IX+A^{\mathrm{H}}\bar{X}^{-1}A=I

    Get PDF
    This paper is concerned with the positive definite solutions to the matrix equation X+AHXˉ−1A=IX+A^{\mathrm{H}}\bar{X}^{-1}A=I where XX is the unknown and AA is a given complex matrix. By introducing and studying a matrix operator on complex matrices, it is shown that the existence of positive definite solutions of this class of nonlinear matrix equations is equivalent to the existence of positive definite solutions of the nonlinear matrix equation W+BTW−1B=IW+B^{\mathrm{T}}W^{-1}B=I which has been extensively studied in the literature, where BB is a real matrix and is uniquely determined by A.A. It is also shown that if the considered nonlinear matrix equation has a positive definite solution, then it has the maximal and minimal solutions. Bounds of the positive definite solutions are also established in terms of matrix AA. Finally some sufficient conditions and necessary conditions for the existence of positive definite solutions of the equations are also proposed
    • …
    corecore