169,003 research outputs found

    Tensor Network alternating linear scheme for MIMO Volterra system identification

    Full text link
    This article introduces two Tensor Network-based iterative algorithms for the identification of high-order discrete-time nonlinear multiple-input multiple-output (MIMO) Volterra systems. The system identification problem is rewritten in terms of a Volterra tensor, which is never explicitly constructed, thus avoiding the curse of dimensionality. It is shown how each iteration of the two identification algorithms involves solving a linear system of low computational complexity. The proposed algorithms are guaranteed to monotonically converge and numerical stability is ensured through the use of orthogonal matrix factorizations. The performance and accuracy of the two identification algorithms are illustrated by numerical experiments, where accurate degree-10 MIMO Volterra models are identified in about 1 second in Matlab on a standard desktop pc

    Control through operators for quantum chemistry

    Get PDF
    We consider the problem of operator identification in quantum control. The free Hamiltonian and the dipole moment are searched such that a given target state is reached at a given time. A local existence result is obtained. As a by-product, our works reveals necessary conditions on the laser field to make the identification feasible. In the last part of this work, some algorithms are proposed to compute effectively these operators

    Exact dimension estimation of interacting qubit systems assisted by a single quantum probe

    Full text link
    Estimating the dimension of an Hilbert space is an important component of quantum system identification. In quantum technologies, the dimension of a quantum system (or its corresponding accessible Hilbert space) is an important resource, as larger dimensions determine e.g. the performance of quantum computation protocols or the sensitivity of quantum sensors. Despite being a critical task in quantum system identification, estimating the Hilbert space dimension is experimentally challenging. While there have been proposals for various dimension witnesses capable of putting a lower bound on the dimension from measuring collective observables that encode correlations, in many practical scenarios, especially for multiqubit systems, the experimental control might not be able to engineer the required initialization, dynamics and observables. Here we propose a more practical strategy, that relies not on directly measuring an unknown multiqubit target system, but on the indirect interaction with a local quantum probe under the experimenter's control. Assuming only that the interaction model is given and the evolution correlates all the qubits with the probe, we combine a graph-theoretical approach and realization theory to demonstrate that the dimension of the Hilbert space can be exactly estimated from the model order of the system. We further analyze the robustness in the presence of background noise of the proposed estimation method based on realization theory, finding that despite stringent constrains on the allowed noise level, exact dimension estimation can still be achieved.Comment: v3: accepted version. We would like to offer our gratitudes to the editors and referees for their helpful and insightful opinions and feedback

    Maximum Entropy Vector Kernels for MIMO system identification

    Full text link
    Recent contributions have framed linear system identification as a nonparametric regularized inverse problem. Relying on â„“2\ell_2-type regularization which accounts for the stability and smoothness of the impulse response to be estimated, these approaches have been shown to be competitive w.r.t classical parametric methods. In this paper, adopting Maximum Entropy arguments, we derive a new â„“2\ell_2 penalty deriving from a vector-valued kernel; to do so we exploit the structure of the Hankel matrix, thus controlling at the same time complexity, measured by the McMillan degree, stability and smoothness of the identified models. As a special case we recover the nuclear norm penalty on the squared block Hankel matrix. In contrast with previous literature on reweighted nuclear norm penalties, our kernel is described by a small number of hyper-parameters, which are iteratively updated through marginal likelihood maximization; constraining the structure of the kernel acts as a (hyper)regularizer which helps controlling the effective degrees of freedom of our estimator. To optimize the marginal likelihood we adapt a Scaled Gradient Projection (SGP) algorithm which is proved to be significantly computationally cheaper than other first and second order off-the-shelf optimization methods. The paper also contains an extensive comparison with many state-of-the-art methods on several Monte-Carlo studies, which confirms the effectiveness of our procedure
    • …
    corecore