2,795 research outputs found

    An iterative method for solving Fredholm integral equations of the first kind

    Get PDF
    The purpose of this paper is to give a convergence analysis of the iterative scheme: \bee u_n^\dl=qu_{n-1}^\dl+(1-q)T_{a_n}^{-1}K^*f_\dl,\quad u_0^\dl=0,\eee where T:=Kβˆ—K,Ta:=T+aI,q∈(0,1),an:=Ξ±0qn,Ξ±0>0,T:=K^*K,\quad T_a:=T+aI,\quad q\in(0,1),\quad a_n:=\alpha_0q^n, \alpha_0>0, with finite-dimensional approximations of TT and Kβˆ—K^* for solving stably Fredholm integral equations of the first kind with noisy data.Comment: 29 page

    Hybrid functions approach to solve a class of Fredholm and Volterra integro-differential equations

    Full text link
    In this paper, we use a numerical method that involves hybrid and block-pulse functions to approximate solutions of systems of a class of Fredholm and Volterra integro-differential equations. The key point is to derive a new approximation for the derivatives of the solutions and then reduce the integro-differential equation to a system of algebraic equations that can be solved using classical methods. Some numerical examples are dedicated for showing efficiency and validity of the method that we introduce

    Dynamical Systems Method for solving ill-conditioned linear algebraic systems

    Full text link
    A new method, the Dynamical Systems Method (DSM), justified recently, is applied to solving ill-conditioned linear algebraic system (ICLAS). The DSM gives a new approach to solving a wide class of ill-posed problems. In this paper a new iterative scheme for solving ICLAS is proposed. This iterative scheme is based on the DSM solution. An a posteriori stopping rules for the proposed method is justified. This paper also gives an a posteriori stopping rule for a modified iterative scheme developed in A.G.Ramm, JMAA,330 (2007),1338-1346, and proves convergence of the solution obtained by the iterative scheme.Comment: 26 page
    • …
    corecore