6,923 research outputs found

    Learning Generalized Reactive Policies using Deep Neural Networks

    Full text link
    We present a new approach to learning for planning, where knowledge acquired while solving a given set of planning problems is used to plan faster in related, but new problem instances. We show that a deep neural network can be used to learn and represent a \emph{generalized reactive policy} (GRP) that maps a problem instance and a state to an action, and that the learned GRPs efficiently solve large classes of challenging problem instances. In contrast to prior efforts in this direction, our approach significantly reduces the dependence of learning on handcrafted domain knowledge or feature selection. Instead, the GRP is trained from scratch using a set of successful execution traces. We show that our approach can also be used to automatically learn a heuristic function that can be used in directed search algorithms. We evaluate our approach using an extensive suite of experiments on two challenging planning problem domains and show that our approach facilitates learning complex decision making policies and powerful heuristic functions with minimal human input. Videos of our results are available at goo.gl/Hpy4e3

    Episodic Learning with Control Lyapunov Functions for Uncertain Robotic Systems

    Get PDF
    Many modern nonlinear control methods aim to endow systems with guaranteed properties, such as stability or safety, and have been successfully applied to the domain of robotics. However, model uncertainty remains a persistent challenge, weakening theoretical guarantees and causing implementation failures on physical systems. This paper develops a machine learning framework centered around Control Lyapunov Functions (CLFs) to adapt to parametric uncertainty and unmodeled dynamics in general robotic systems. Our proposed method proceeds by iteratively updating estimates of Lyapunov function derivatives and improving controllers, ultimately yielding a stabilizing quadratic program model-based controller. We validate our approach on a planar Segway simulation, demonstrating substantial performance improvements by iteratively refining on a base model-free controller

    An Empirical Comparison on Imitation Learning and Reinforcement Learning for Paraphrase Generation

    Full text link
    Generating paraphrases from given sentences involves decoding words step by step from a large vocabulary. To learn a decoder, supervised learning which maximizes the likelihood of tokens always suffers from the exposure bias. Although both reinforcement learning (RL) and imitation learning (IL) have been widely used to alleviate the bias, the lack of direct comparison leads to only a partial image on their benefits. In this work, we present an empirical study on how RL and IL can help boost the performance of generating paraphrases, with the pointer-generator as a base model. Experiments on the benchmark datasets show that (1) imitation learning is constantly better than reinforcement learning; and (2) the pointer-generator models with imitation learning outperform the state-of-the-art methods with a large margin.Comment: 9 pages, 2 figures, EMNLP201
    • …
    corecore