1,787 research outputs found

    Copolar Calibration of Multistatic Radar in the Presence of Multipath

    Get PDF
    This paper addresses the Polarimetrie calibration of the nodes of a multistatic radar system, by using a reference object with known scattering matrix, such as a metallic sphere. A calibration technique is proposed and its experimental validation performed in a realistic scenario, by accounting also for the multipath effect. The intensity of the signal scattered by a metallic sphere and received by the monostatic and bistatic nodes of the NetRAD system is measured, by varying the antenna height, the object range and the bistatic angle. The adopted calibration technique shows a quite good accuracy, as the calibrated values of the radar cross section of the reference object are close to the theoretical ones, after the compensation of the multipath effect

    Bistatic Experiment Using TerraSAR-X and DLR’s new F-SAR System

    Get PDF
    A bistatic X-band experiment was successfully performed early November 2007. TerraSAR-X was used as transmitter and DLR’s new airborne radar system F-SAR, which was programmed to acquire data in a quasi-continuous mode to avoid echo window synchronization issues, was used as bistatic receiver. Precise phase and time referencing between both systems, which is essential for obtaining high resolution SAR images, was derived during the bistatic processing. Hardware setup and performance analyses of the bistatic configuration are pre-sented together with first processing results that verify the predicted synchronization and imaging performance

    WiFi emission-based vs passive radar localization of human targets

    Get PDF
    In this paper two approaches are considered for human targets localization based on the WiFi signals: the device emission-based localization and the passive radar. Localization performance and characteristics of the two localization techniques are analyzed and compared, aiming at their joint exploitation inside sensor fusion systems. The former combines the Angle of Arrival (AoA) and the Time Difference of Arrival (TDoA) measures of the device transmissions to achieve the target position, while the latter exploits the AoA and the bistatic range measures of the target echoes. The results obtained on experimental data show that the WiFi emission-based strategy is always effective for the positioning of human targets holding a WiFi device, but it has a poor localization accuracy and the number of measured positions largely depends on the device activity. In contrast, the passive radar is only effective for moving targets and has limited spatial resolution but it provides better accuracy performance, thanks to the possibility to integrate a higher number of received signals. These results also demonstrate a significant complementarity of these techniques, through a suitable experimental test, which opens the way to the development of appropriate sensor fusion techniques

    SIGNAL: A Ka-band Digital Beam-Forming SAR System Concept to Monitor Topography Variations of Ice Caps and Glaciers

    Get PDF
    This paper discusses the implementation of an endto- end simulator for the BIOMASS mission. An overview of the system architecture is provided along with a functional description of the modules that comprise the simulator

    Phased-array laser radar: Concept and application

    Get PDF
    The design and construction of a coaxial transmitter-receiver combination was investigated. Major emphasis was placed on simple permanent optical alignment, transmitter-receiver field of view matching, use of a pulsed gas laser as a transmitter maximum optical efficiency, complete digital control of data acquisition, and optical mount pointing and tracking. Also a means of expanding the coaxial transmitter-receiver concept to allow phased-array lidar, par-lidar was described

    The Calibration of Bistatic Radar Cross Section Measurements

    Get PDF
    Recent advances in signal processing and remote sensing have highlighted the importance of bistatic radar systems for the purposes of environmental monitoring, surveillance, and tracking radar. The calibration of such systems has been problematic-much more so than similar monostatic systems, primarily as a result of the lack of reference objects suitable for calibrating at any given bistatic angle. This research deals with the problems of calibrating full-polarimetric laboratory-environment bistatic radar systems, including the lack of suitable calibration targets and procedures, and operational considerations such as alignment and mounting. Several popular bistatic calibration techniques are classified, evaluated, and comparisons are made between the relative merits of various calibration objects. The analysis addresses sensitivity to target alignment error, sensitivity to polarization impurity, and ease of implementation. Both theoretical concepts and practical considerations are discussed, based on measurements accomplished at the European Microwave Signature Laboratory (EMSL) of the Joint Research Center (JRC) in Ispra, Italy. Significant gains in co-polarized channel accuracy and cross-polarization purity are realized with calibrations that utilize the complete system distortion model and these conclusions are discussed in detail

    Analysis of the inversion monitoring capabilities of a monostatic acoustic radar in complex terrain

    Get PDF
    A qualitative interpretation of the records from a monostatic acoustic radar is presented. This is achieved with the aid of airplane, helicopter, and rawinsonde temperature soundings. The diurnal structure of a mountain valley circulation pattern is studied with the use of two acoustic radars, one located in the valley and one on the downwind ridge. The monostatic acoustic radar was found to be sufficiently accurate in locating the heights of the inversions and the mixed layer depth to warrant use by industry even in complex terrain

    Retrieval of Soil Moisture and Roughness from the Polarimetric Radar Response

    Get PDF
    The main objective of this investigation was the characterization of soil moisture using imaging radars. In order to accomplish this task, a number of intermediate steps had to be undertaken. In this proposal, the theoretical, numerical, and experimental aspects of electromagnetic scattering from natural surfaces was considered with emphasis on remote sensing of soil moisture. In the general case, the microwave backscatter from natural surfaces is mainly influenced by three major factors: (1) the roughness statistics of the soil surface, (2) soil moisture content, and (3) soil surface cover. First the scattering problem from bare-soil surfaces was considered and a hybrid model that relates the radar backscattering coefficient to soil moisture and surface roughness was developed. This model is based on extensive experimental measurements of the radar polarimetric backscatter response of bare soil surfaces at microwave frequencies over a wide range of moisture conditions and roughness scales in conjunction with existing theoretical surface scattering models in limiting cases (small perturbation, physical optics, and geometrical optics models). Also a simple inversion algorithm capable of providing accurate estimates of soil moisture content and surface rms height from single-frequency multi-polarization radar observations was developed. The accuracy of the model and its inversion algorithm is demonstrated using independent data sets. Next the hybrid model for bare-soil surfaces is made fully polarimetric by incorporating the parameters of the co- and cross-polarized phase difference into the model. Experimental data in conjunction with numerical simulations are used to relate the soil moisture content and surface roughness to the phase difference statistics. For this purpose, a novel numerical scattering simulation for inhomogeneous dielectric random surfaces was developed. Finally the scattering problem of short vegetation cover above a rough soil surface was considered. A general scattering model for grass-blades of arbitrary cross section was developed and incorporated in a first order random media model. The vegetation model and the bare-soil model are combined and the accuracy of the combined model is evaluated against experimental observations from a wheat field over the entire growing season. A complete set of ground-truth data and polarimetric backscatter data were collected. Also an inversion algorithm for estimating soil moisture and surface roughness from multi-polarized multi-frequency observations of vegetation-covered ground is developed

    Stand-off measurement of industrial air pollutant emissions from unmanned aircraft

    Get PDF
    This paper investigates the stand-off measurement of atmospheric pollutant concentrations and air quality parameters around industrial complexes. The theoretical investigation considers a robust, accurate and inexpensive measurement system based on tuneable Light Detection and Ranging (LIDAR), calibrated reflectors and imaging systems. The equipment is deployed in two non-collocated components. The source component is installed on board an unmanned aircraft. The sensor component is constituted by a reflector calibrated for reflectance, a rail-mounted infrared camera calibrated for radiance and highly wavelength-selective optics. The system is conceived to perform Differential Absorption LIDAR (DIAL) measurements of selected molecular pollutants and a model-based estimation of aerosol pollutant concentrations by means of suitably developed inversion algorithm. The relevant opportunities and challenges, and the viability of the system in the intended operational environments are discussed. Numerical simulation results show promising performances in term of estimated error budget even in degraded meteorological conditions, which are comparable to the more complex and relatively costly monostatic LIDAR techniques currently available

    Synchronising coherent networked radar using low-cost GPS-disciplined oscillators

    Get PDF
    This text evaluates the feasibility of synchronising coherent, pulsed-Doppler, networked, radars with carrier frequencies of a few gigahertz and moderate bandwidths of tens of megahertz across short baselines of a few kilometres using low-cost quartz GPSDOs based on one-way GPS time transfer. It further assesses the use of line-of-sight (LOS) phase compensation, where the direct sidelobe breakthrough is used as the phase reference, to improve the GPS-disciplined oscillator (GPSDO) synchronised bistatic Doppler performance. Coherent bistatic, multistatic, and networked radars require accurate time, frequency, and phase synchronisation. Global positioning system (GPS) synchronisation is precise, low-cost, passive and covert, and appears well-suited to synchronise networked radar. However, very few published examples exist. An imperfectly synchronised bistatic transmitter-receiver is modelled. Measures and plots are developed enabling the rapid selection of appropriate synchronisation technologies. Three low-cost, open, versatile, and extensible, quartz-based GPSDOs are designed and calibrated at zero-baselines. These GPSDOs are uniquely capable of acquiring phase-lock four times faster than conventional phase-locked loops (PLLs) and a new time synchronisation mechanism enables low-jitter sub-10 ns oneway GPS time synchronisation. In collaboration with University College London, UK, the 2.4 GHz coherent pulsed-Doppler networked radar, called NetRAD, is synchronised using the University of Cape Town developed GPSDOs. This resulted in the first published example of pulsed-Doppler phase synchronisation using GPS. A tri-static experiment is set up in Simon’s Bay, South Africa, with a maximum baseline of 2.3 km. The Roman Rock lighthouse was used as a static target to simultaneously assess the range, frequency, phase, and Doppler performance of the monostatic, bistatic, and LOS phase corrected bistatic returns. The real-world results compare well to that predicted by the earlier developed bistatic model and zero-baseline calibrations. GPS timing limits the radar bandwidth to less than 37.5 MHz when it is required to synchronise to within the range resolution. Low-cost quartz GPSDOs offer adequate frequency synchronisation to ensure a target radial velocity accuracy of better than 1 km/h and frequency drift of less than the Doppler resolution over integration periods of one second or less. LOS phase compensation, when used in combination with low-cost GPSDOs, results in near monostatic pulsed-Doppler performance with a subclutter visibility improvement of about 30 dB
    • …
    corecore