11,292 research outputs found

    EsPRESSo: Efficient Privacy-Preserving Evaluation of Sample Set Similarity

    Full text link
    Electronic information is increasingly often shared among entities without complete mutual trust. To address related security and privacy issues, a few cryptographic techniques have emerged that support privacy-preserving information sharing and retrieval. One interesting open problem in this context involves two parties that need to assess the similarity of their datasets, but are reluctant to disclose their actual content. This paper presents an efficient and provably-secure construction supporting the privacy-preserving evaluation of sample set similarity, where similarity is measured as the Jaccard index. We present two protocols: the first securely computes the (Jaccard) similarity of two sets, and the second approximates it, using MinHash techniques, with lower complexities. We show that our novel protocols are attractive in many compelling applications, including document/multimedia similarity, biometric authentication, and genetic tests. In the process, we demonstrate that our constructions are appreciably more efficient than prior work.Comment: A preliminary version of this paper was published in the Proceedings of the 7th ESORICS International Workshop on Digital Privacy Management (DPM 2012). This is the full version, appearing in the Journal of Computer Securit

    Ensemble decision making in real-time games

    Get PDF

    A Computationally Efficient Limited Memory CMA-ES for Large Scale Optimization

    Full text link
    We propose a computationally efficient limited memory Covariance Matrix Adaptation Evolution Strategy for large scale optimization, which we call the LM-CMA-ES. The LM-CMA-ES is a stochastic, derivative-free algorithm for numerical optimization of non-linear, non-convex optimization problems in continuous domain. Inspired by the limited memory BFGS method of Liu and Nocedal (1989), the LM-CMA-ES samples candidate solutions according to a covariance matrix reproduced from mm direction vectors selected during the optimization process. The decomposition of the covariance matrix into Cholesky factors allows to reduce the time and memory complexity of the sampling to O(mn)O(mn), where nn is the number of decision variables. When nn is large (e.g., nn > 1000), even relatively small values of mm (e.g., m=20,30m=20,30) are sufficient to efficiently solve fully non-separable problems and to reduce the overall run-time.Comment: Genetic and Evolutionary Computation Conference (GECCO'2014) (2014

    An Adaptive Mechanism for Accurate Query Answering under Differential Privacy

    Full text link
    We propose a novel mechanism for answering sets of count- ing queries under differential privacy. Given a workload of counting queries, the mechanism automatically selects a different set of "strategy" queries to answer privately, using those answers to derive answers to the workload. The main algorithm proposed in this paper approximates the optimal strategy for any workload of linear counting queries. With no cost to the privacy guarantee, the mechanism improves significantly on prior approaches and achieves near-optimal error for many workloads, when applied under (\epsilon, \delta)-differential privacy. The result is an adaptive mechanism which can help users achieve good utility without requiring that they reason carefully about the best formulation of their task.Comment: VLDB2012. arXiv admin note: substantial text overlap with arXiv:1103.136
    • …
    corecore