11,256 research outputs found

    Open-ended evolution to discover analogue circuits for beyond conventional applications

    Get PDF
    This is the author's accepted manuscript. The final publication is available at Springer via http://dx.doi.org/10.1007/s10710-012-9163-8. Copyright @ Springer 2012.Analogue circuits synthesised by means of open-ended evolutionary algorithms often have unconventional designs. However, these circuits are typically highly compact, and the general nature of the evolutionary search methodology allows such designs to be used in many applications. Previous work on the evolutionary design of analogue circuits has focused on circuits that lie well within analogue application domain. In contrast, our paper considers the evolution of analogue circuits that are usually synthesised in digital logic. We have developed four computational circuits, two voltage distributor circuits and a time interval metre circuit. The approach, despite its simplicity, succeeds over the design tasks owing to the employment of substructure reuse and incremental evolution. Our findings expand the range of applications that are considered suitable for evolutionary electronics

    Genuine lab experiences for students in resource constrained environments: The RealLab with integrated intelligent assessment.

    Get PDF
    Laboratory activities are indispensable for developing engineering skills. Computer Aided Learning (CAL) tools can be used to enhance laboratory learning in various ways, the latest approach being the virtual laboratory technique that emulates traditional laboratory processes. This new approach makes it possible to give students complete and genuine laboratory experiences in situations constrained by limited resources in the provision of laboratory facilities and infrastructure and/or where there is need for laboratory education, for large classes, with only one laboratory stand. This may especially be the case in countries in transition. Most existing virtual laboratories are not available for purchase. Where they are, they may not be cost friendly for resource constrained environments. Also, most do not integrate any form of assessment structure. In this paper, we present a very cost friendly virtual laboratory solution for genuine laboratory experiences in resource constrained environments, with integrated intelligent assessment

    An Intelligent Auxiliary Vacuum Brake System

    Get PDF
    The purpose of this paper focuses on designing an intelligent, compact, reliable, and robust auxiliary vacuum brake system (VBS) with Kalman filter and self-diagnosis scheme. All of the circuit elements in the designed system are integrated into one programmable system-on-chip (PSoC) with entire computational algorithms implemented by software. In this system, three main goals are achieved: (a) Kalman filter and hysteresis controller algorithms are employed within PSoC chip by software to surpass the noises and disturbances from hostile surrounding in a vehicle. (b) Self-diagnosis scheme is employed to identify any breakdown element of the auxiliary vacuum brake system. (c) Power MOSFET is utilized to implement PWM pump control and compared with relay control. More accurate vacuum pressure control has been accomplished as well as power energy saving. In the end, a prototype has been built and tested to confirm all of the performances claimed above

    Demand Response Strategy Based on Reinforcement Learning and Fuzzy Reasoning for Home Energy Management

    Get PDF
    As energy demand continues to increase, demand response (DR) programs in the electricity distribution grid are gaining momentum and their adoption is set to grow gradually over the years ahead. Demand response schemes seek to incentivise consumers to use green energy and reduce their electricity usage during peak periods which helps support grid balancing of supply-demand and generate revenue by selling surplus of energy back to the grid. This paper proposes an effective energy management system for residential demand response using Reinforcement Learning (RL) and Fuzzy Reasoning (FR). RL is considered as a model-free control strategy which learns from the interaction with its environment by performing actions and evaluating the results. The proposed algorithm considers human preference by directly integrating user feedback into its control logic using fuzzy reasoning as reward functions. Q-learning, a RL strategy based on a reward mechanism, is used to make optimal decisions to schedule the operation of smart home appliances by shifting controllable appliances from peak periods, when electricity prices are high, to off-peak hours, when electricity prices are lower without affecting the customer’s preferences. The proposed approach works with a single agent to control 14 household appliances and uses a reduced number of state-action pairs and fuzzy logic for rewards functions to evaluate an action taken for a certain state. The simulation results show that the proposed appliances scheduling approach can smooth the power consumption profile and minimise the electricity cost while considering user’s preferences, user’s feedbacks on each action taken and his/her preference settings. A user-interface is developed in MATLAB/Simulink for the Home Energy Management System (HEMS) to demonstrate the proposed DR scheme. The simulation tool includes features such as smart appliances, electricity pricing signals, smart meters, solar photovoltaic generation, battery energy storage, electric vehicle and grid supply.Peer reviewe

    The integration of on-line monitoring and reconfiguration functions using IEEE1149.4 into a safety critical automotive electronic control unit.

    Get PDF
    This paper presents an innovative application of IEEE 1149.4 and the integrated diagnostic reconfiguration (IDR) as tools for the implementation of an embedded test solution for an automotive electronic control unit, implemented as a fully integrated mixed signal system. The paper describes how the test architecture can be used for fault avoidance with results from a hardware prototype presented. The paper concludes that fault avoidance can be integrated into mixed signal electronic systems to handle key failure modes

    Challenging the evolutionary strategy for synthesis of analogue computational circuits

    Get PDF
    There are very few reports in the past on applications of Evolutionary Strategy (ES) towards the synthesis of analogue circuits. Moreover, even fewer reports are on the synthesis of computational circuits. Last fact is mainly due to the dif-ficulty in designing of the complex nonlinear functions that these circuits perform. In this paper, the evolving power of the ES is challenged to design four computational circuits: cube root, cubing, square root and squaring functions. The synthesis succeeded due to the usage of oscillating length genotype strategy and the substructure reuse. The approach is characterized by its simplicity and represents one of the first attempts of application of ES towards the synthesis of “QR” circuits. The obtained experimental results significantly exceed the results published before in terms of the circuit quality, economy in components and computing resources utilized, revealing the great potential of the technique pro-posed to design large scale analog circuits

    Unconstrained evolution of close-to-ideal "LCR" low-pass filter

    Get PDF
    The unconstrained evolution has already been applied in the past towards design of digital circuits, and extraordinary results have been obtained, including generation of more compact circuits with smaller number of electronic components. In this paper the unconstrained evolution method is developed for analogue circuits. At first, the method is probed on the design of analogue low-pass filter with standard transition band. The algorithm produced the best results in terms of quality of the circuits evolved and evolutionary resources required. Then, the new methodology is applied towards more sophisticated task, the close-to-ideal low-pass filter. The new methodology developed differs from previous ones by its simplicity and represents one of the first attempts to apply evolutionary strategy towards the analogue circuit design. The obtained results are compared in details with low-pass filters previously designed
    • 

    corecore