2,492 research outputs found

    MOSAIC vision and scenarios for mobile collaborative work related to health and wellbeing

    Get PDF
    The main objective of the MOSAIC project is to accelerate innovation in Mobile Worker Support Environments by shaping future research and innovation activities in Europe. The modus operandi of MOSAIC is to develop visions and illustrative scenarios for future collaborative workspaces involving mobile and location-aware working. Analysis of the scenarios is input to the process of road mapping with the purpose of developing strategies for R&D leading to deployment of innovative mobile work technologies and applications across different domains. This paper relates to one specific domain, that of Health and Wellbeing. The focus is therefore is on mobile working environments which enable mobile collaborative working related to the domain of healthcare and wellbeing services for citizens. This paper reports the work of MOSAIC T2.2 on the vision and scenarios for mobile collaborative work related to this domain. This work was also an input to the activity of developing the MOSAIC roadmap for future research and development targeted at realization of the future Health and Wellbeing vision. The MOSAIC validation process for the Health and Wellbeing scenarios is described and one scenario – the Major Incident Scenario - is presented in detail

    United We Ride National Dialogue

    Get PDF
    The Coordinating Council on Access and Mobility (CCAM) asked the National Academy of Public Administration and Easter Seals Project ACTION to develop and host the first United We Ride (UWR) National Dialogue. The goal of the Dialogue was to help shape future policy direction and provide input to the next CCAM strategic plan. The National Academy also assembled a small work group with representatives of the Federal Interagency Coordinating Council on Access and Mobility, Easter Seals Project ACTION, and the National Resource Center on Human Service Transportation to help guide the process of design and implementation.The CCAM includes 11 federal departments, nine of which are responsible for providing transportation for people with disabilities, older adults, and people with limited incomes. CCAM officially launched United We Ride in 2004 to (1) provide more rides for target populations while using the same or fewer assets, (2) simplify access, and (3) increase customer satisfaction.Key FindingsThe process used to create coordinated transportation plans needs improvement. Significant federal policy barriers still exist to strategies that would facilitate access to transportation services. Mobility management strategies are underutilized in communities across the country, and missed opportunities to bridge gaps between transportation and other community services still need to be addressed

    A Review of Platforms for the Development of Agent Systems

    Full text link
    Agent-based computing is an active field of research with the goal of building autonomous software of hardware entities. This task is often facilitated by the use of dedicated, specialized frameworks. For almost thirty years, many such agent platforms have been developed. Meanwhile, some of them have been abandoned, others continue their development and new platforms are released. This paper presents a up-to-date review of the existing agent platforms and also a historical perspective of this domain. It aims to serve as a reference point for people interested in developing agent systems. This work details the main characteristics of the included agent platforms, together with links to specific projects where they have been used. It distinguishes between the active platforms and those no longer under development or with unclear status. It also classifies the agent platforms as general purpose ones, free or commercial, and specialized ones, which can be used for particular types of applications.Comment: 40 pages, 2 figures, 9 tables, 83 reference

    AI-AUGMENTED DECISION SUPPORT SYSTEMS: APPLICATION IN MARITIME DECISION MAKING UNDER CONDITIONS OF METOC UNCERTAINTY

    Get PDF
    The ability for a human to overlay information from disparate sensor systems or remote databases into a common operational picture can enhance rapid decision making and implementation in a complex environment. This thesis focuses on operational uncertainty as a function of meteorological and oceanographic (METOC) effects on maritime route planning. Using an existing decision support system (DSS) with artificial intelligence (AI) algorithms developed by New Jersey Institute of Technology and University of Connecticut, cognitive load and time to decision were assessed for users of an AI-augmented DSS, accounting for METOC conditions and their effects, and users of a baseline, 'as is,' DSS system. Scenario uncertainty for the user was presented in the relative number of Pareto-optimal routes from two locations. Key results were (a) users of an AI-augmented DSS with a simplified interface completed assigned tasks in significantly less time than users of an information-dense, complex-interface AI-augmented DSS; (b) users of simplified, AI-augmented DSS arrived at decisions with lower cognitive load than baseline DSS and complex-interface AI-augmented DSS users; and (c) users relied mainly on quantitative data presented in tabular form to make route decisions. The differences found in user performance and cognitive load between levels of AI augmentation and interface complexity serve as a starting point for further exploration into maximizing the potential of human-machine teaming.Office of Naval ResearchMajor, United States Marine CorpsApproved for public release. distribution is unlimite

    Multi-Criteria Decision Making in Complex Decision Environments

    Get PDF
    In the future, many decisions will either be fully automated or supported by autonomous system. Consequently, it is of high importance that we understand how to integrate human preferences correctly. This dissertation dives into the research field of multi-criteria decision making and investigates the satellite image acquisition scheduling problem and the unmanned aerial vehicle routing problem to further the research on a priori preference integration frameworks. The work will aid in the transition towards autonomous decision making in complex decision environments. A discussion on the future of pairwise and setwise preference articulation methods is also undertaken. "Simply put, a direct consequence of the improved decision-making methods is,that bad decisions more clearly will stand out as what they are - bad decisions.

    Integrating case based reasoning and geographic information systems in a planing support system: Çeşme Peninsula study

    Get PDF
    Thesis (Doctoral)--Izmir Institute of Technology, City and Regional Planning, Izmir, 2009Includes bibliographical references (leaves: 110-121)Text in English; Abstract: Turkish and Englishxii, 140 leavesUrban and regional planning is experiencing fundamental changes on the use of of computer-based models in planning practice and education. However, with this increased use, .Geographic Information Systems. (GIS) or .Computer Aided Design.(CAD) alone cannot serve all of the needs of planning. Computational approaches should be modified to deal better with the imperatives of contemporary planning by using artificial intelligence techniques in city planning process.The main aim of this study is to develop an integrated .Planning Support System. (PSS) tool for supporting the planning process. In this research, .Case Based Reasoning. (CBR) .an artificial intelligence technique- and .Geographic Information Systems. (GIS) .geographic analysis, data management and visualization techniqueare used as a major PSS tools to build a .Case Based System. (CBS) for knowledge representation on an operational study. Other targets of the research are to discuss the benefits of CBR method in city planning domain and to demonstrate the feasibility and usefulness of this technique in a PSS. .Çeşme Peninsula. case study which applied under the desired methodology is presented as an experimental and operational stage of the thesis.This dissertation tried to find out whether an integrated model which employing CBR&GIS could support human decision making in a city planning task. While the CBS model met many of predefined goals of the thesis, both advantages and limitations have been realized from findings when applied to the complex domain such as city planning
    • …
    corecore