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ABSTRACT 

The ability for a human to overlay information from disparate sensor systems or 

remote databases into a common operational picture can enhance rapid decision making 

and implementation in a complex environment. This thesis focuses on operational 

uncertainty as a function of meteorological and oceanographic (METOC) effects on 

maritime route planning. Using an existing decision support system (DSS) with artificial 

intelligence (AI) algorithms developed by New Jersey Institute of Technology and 

University of Connecticut, cognitive load and time to decision were assessed for users of 

an AI-augmented DSS, accounting for METOC conditions and their effects, and users of 

a baseline, “as is,” DSS system. Scenario uncertainty for the user was presented in the 

relative number of Pareto-optimal routes from two locations. Key results were (a) users 

of an AI-augmented DSS with a simplified interface completed assigned tasks 

in significantly less time than users of an information-dense, complex-

interface AI-augmented DSS; (b) users of simplified, AI-augmented DSS arrived at 

decisions with lower cognitive load than baseline DSS and complex-interface AI-

augmented DSS users; and (c) users relied mainly on quantitative data presented in 

tabular form to make route decisions. The differences found in user performance and 

cognitive load between levels of AI augmentation and interface complexity serve 

as a starting point for further exploration into maximizing the potential of human-

machine teaming. 
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I. INTRODUCTION 

A. BACKGROUND 

The U.S. Navy (USN) plays a pivotal role in ensuring territorial integrity of treaty 

partners, supporting freedom of navigation for maritime trade, and maintaining global 

stability. As a key contributor to our nation’s ability to project military power, the USN 

and specifically the Surface Warfare community often face dynamic and uncertain 

operational environments as it enforces U.S. policy in the vast and contested maritime 

warfighting domain. The breakdown of the post-Cold War world order and the 

reemergence of long-term, antagonistic competition by near-peer/peer rival states has the 

potential to degrade the primacy of U.S. influence in strategically critical operational 

theaters. Aside from the kinetic threats that will accompany a potential high-end conflict, 

factors including commercial traffic volume of confined waterways, current and projected 

meteorological and oceanographic (METOC) conditions, and the uncertainty that 

accompanies the fog of war add compounding layers of complexity in the planning and 

execution of modern surface actions. As testament to the complexity of maritime 

operations, the recent collision incidents involving both the USS Fitzgerald (DDG 62) and 

the USS John S. McCain (DDG 56) represent tragic but avoidable consequences of losses 

of situational awareness (SA) and failures to properly use available navigation tools (USN, 

2017). In the case of the USS Fitzgerald   and the USS John S. McCain collisions, the 

Office of the Chief of Naval Operations (CNO) found that ineffective command and control 

(C2), among other factors, contributed to the mishaps resulting in the loss of 17 U.S. Sailors 

(United States Navy [USN], 2017). 

The USN, in efforts to both gain and maintain maritime superiority and minimize 

operational losses such as those described above, invests substantial time and financial 

resources in the training and education of Surface Warfare Officers (SWO) and enlisted 

leadership. However, as the operational environment evolves and becomes inherently more 

complex, the decision and execution cycle of naval leaders must further decrease the time 

required to arrive at appropriate, justified courses of action (COA). To this end, agile and 

effective planning in a dynamic environment requires the “right information from right 
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[sic] sources in the right context to the right person in the right time for the right purpose” 

(Smirnov, 2006, p. 30). Due to the myriad of external factors that impact not only the 

conduct of large-scale naval campaigns but also routine actions such as surface transits, 

digital Decision Support Systems (DSS) including Tool for Multi-objective Planning and 

Asset Routing (TMPLAR), Courses of Action Simulation Tool (COAST), and Conflict 

Identification (CONFIDENT) assist naval decision makers with data analysis, thereby 

streamlining the decision-making process. Recently, artificial intelligence (AI) algorithms 

have been proposed as a means to condense the decision-making cycle through interfacing 

with currently in use DSS systems. In concert with the University of Connecticut 

(UCONN), New Jersey Institute of Technology (NJIT), and Naval Research Laboratory—

Monterey (NRL–MRY), this study evaluated the effectiveness of human decision-making 

aided by an AI-enhanced DSS in simulated surface transit scenarios.    

B. PROBLEM STATEMENT 

In the projected operational environment, the context-independent DSS that are 

currently employed provide an incomplete understanding of available sensor data and 

potentially limit the range of operational COAs available to U.S. planners in the maritime 

domain. Extant planning tools and current and C2 systems do not possess the ability to 

forecast spatial/temporal conflicts in surface routes, compile and process multi-source 

collections or sensor inputs in real time, or integrate the resultant data into a common 

operational picture (COP). This lack of multi-domain awareness resulting from a 

fragmented and flawed understanding of the battlespace and its effects curtails decision 

makers’ ability to effectively mitigate risk, seize the tactical or operational initiative, and 

employ the force in the most resource efficient and tactically effective manner. As a result, 

naval planners currently lack the ability to rapidly develop, validate, and implement 

discrete COAs that account for all data that is theoretically available to the decision  

maker. The employment of AI to fuse, integrate, and display available sensor data utilizing 

current DSS applications’ graphical user interfaces (GUI) and display architecture will 

allow the decision maker to account for fluid temporal, environmental, and adversarial 

considerations.  
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C. PURPOSE STATEMENT 

The purpose of this quantitative study is to evaluate the effectiveness of 

UCONN/NJIT-developed, AI-augmentation to the TMPLAR application for surface vessel 

route planning/deconfliction and to assess its ability to reduce the cognitive workload of 

system users. The DSS framework currently under development aims to provide the user 

with real-time knowledge derived from environmental context and situational variables, 

potentially reducing the analytic burden for the user and facilitating the development and 

selection of situationally appropriate and tactically sound COAs. This experiment is 

important because, if it is successful, the employment of an AI-augmented, proactive DSS 

could reduce costs associated with greater fuel expenditures due to inefficient route 

planning while underway, mitigate contributing factors to safety mishaps at sea, and allow 

individual ships to spend more time influencing the battlespace vice transiting to/between 

theaters. From the use of environmental circumstances and surface transits as the 

parameters for this initial augmented DSS application and study, the framework could later 

be extended to consider unknown/enemy threats and additional domains (subsurface, air, 

etc.), or applied to land-based campaigns in expeditionary or mature operational theaters. 

D. RESEARCH QUESTIONS 

1. How does the employment of a context-aware, AI-augmented DSS impact 

decision-making timelines over baseline DSS in simulated ship transits 

under conditions of METOC uncertainty? 

2. How can the employment of a context-aware, AI-augmented DSS affect 

the cognitive load of a user over baseline DSS during surface transit 

planning in conditions of METOC uncertainty? 

3. What information do AI-augmented and baseline DSS users prioritize 

when selecting Pareto-optimal routes during surface transit planning in 

conditions of METOC uncertainty? 
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E. RESEARCH METHOD 

Utilizing context-dependent AI algorithms developed by NJIT and UCONN, ship 

navigation and routing performance decisions both with and without the use of an 

augmented DSS framework were evaluated and analyzed at NPS (Glasgow Hall, Room 

103). The context-dependent, algorithm-augmented DSS was tested for efficacy by human 

decision makers under uncertain METOC conditions in a human-in-the-loop experiment. 

The experiment was structured as a 3 x 3 repeated measures design. The first independent 

variable was the employment of an AI-algorithm enhanced DSS or the baseline, “as is,” 

DSS system (TMPLAR). Each participant was randomly assigned the use of an AI-

enhanced or baseline, non-augmented DSS to accomplish the assigned tasks. The second 

independent variable was uncertainty of METOC conditions and was defined by the 

number of Pareto-optimal routes from two known locations given by the system. Levels of 

uncertainty were categorized as: 1) Low/Easy difficulty: decision maker was given choice 

of COAs with projected fuel usage within one standard deviation of the mean for the given 

route, 2) Moderate/Medium difficulty: decision maker was given choice of COAs with 

projected fuel usage within two standard deviations of the mean for the given route, 3) 

High/Hard difficulty: decision maker was given choice of all COAs across the entire 

distribution of fuel usage for the given route. Under each condition of METOC uncertainty 

(low, moderate, high), participants planned 20 routes using the TMPLAR application, 

totaling 60 routes per participant. Surface routes planned for the experiment were Alaska-

Seattle, Norfolk-Haiti, Alaska-San Diego, and Gibraltar-Norfolk. Results were then 

compared between AI-augmented DSS and baseline DSS trials across the relative 

uncertainty conditions.  

Pilot testing of AI-algorithm augmented and baseline TMPLAR application was 

conducted prior to experimentation in order to determine time required for participant 

familiarization and gauge to scenario difficulty. Results from the pilot test were used to 

shape expectations for the timeline of individual participant trials. After pilot testing was 

completed, the study’s experiment was conduct with revised timelines gleaned from the 

pilot test. Experiment participants were drawn from the NPS student body with no  
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preference given to Department of Defense (DOD) service or warfare specialty. Participant 

trials were initially projected to last 75 minutes and not exceed two hours in duration. Upon 

arrival in Glasgow 103, participants were given a verbal orientation on the experimental 

goals and design. At that time, the participants provided written informed consent to 

participate in the experiment. Participants were then seated in front of a monitor equipped 

with an eye tracking and pupillometry measurement system. Participants then spent 

approximately one minute allowing the system to calibrate to their eye movements. This 

was then followed by an orientation of the TMPLAR user interface and hands-on practical 

application of the requisite application functions. After the participants were comfortable 

with the task and the expectations of the experiment, 60 surface routes were selected across 

three degrees of METOC uncertainty which were presented to them on a semi-random 

basis. Simultaneous to the conduct of route selection, eye tracking and pupillometry data 

was collected from the participants to gauge cognitive workload between users of 

augmented and baseline DSS applications. Upon completion of the route planning, 

participants populated questionnaires relating to demographics and their experiences while 

conducting the experiment.  

At the conclusion of the experiment, the data collected were analyzed to determine 

the relationship between route optimization and use of AI-augmented DSS under 

conditions of METOC uncertainty and the cognitive workload associated with each. 

Recommendations and conclusions proposed and further areas of research into the subject 

are recorded in Chapter V of this thesis. 

F. DATA, OBSERVATIONS, AND ANALYSIS METHOD 

The data presented to the user were structured corresponding to distance traveled, 

time of passage, and total fuel consumption between two geospatial data points per trial. 

Experimental observations were collected by the recording of user-selected, DSS-

generated routes simulated within TMPLAR. The number of iterations of the TMPLAR 

simulation addressing each independent variable (uncertainty level and employment of AI-

augmented/baseline DSS systems) were regulated by the researcher to ensure that the 

sample is representative of the target user population.  
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A 3 (DSS) x 3 (uncertainty) Analysis of Variance (ANOVA) was utilized to 

compare sample means and covariance across the dependent variables (time, optimal route, 

number of routes considered). This procedure was used to determine if changes in the 

independent variables had significant effects on the dependent variables and if there were 

any causal relationships among the dependent or independent variables. Further analysis 

was done with the eye tracking and pupillometry data. Eye-tracking data can provide 

insight into the decision-making process (e.g., what information was considered), while 

pupillometry is commonly used as a measure indicating cognitive load (e.g., Coyne et al., 

2009; Klinger et al., 2010). 

G. POTENTIAL BENEFITS, LIMITATIONS, AND RECOMMENDATIONS 

The benefits of this study to the USN is twofold. First, AI-augmentation to existing 

DSS systems exhibits the potential to improve the operational mobility of surface vessels 

through more efficient routing, more complete exploitation of existing environmental data, 

and cost savings through minimized fuel consumption. Additionally, the USN will benefit 

from the ability to condense the planning and decision cycle of key decision makers 

through the fusion, analysis, and display of disparate sensor data and the reduction of the 

human cognitive workload, thereby enabling leaders to make an informed decision with 

the best information available faster than the adversary.  

Due to the parameters of the AI algorithms developed by NJIT and UCONN, only 

five origin/destination pairs were trialed during the experiment. These routes link routinely 

traveled points of origin and destinations with little intervening landmasses or terrain, 

meaning it is possible to follow largely direct courses for large portions of the simulated 

voyages. Recommendations for future research will include experimentation testing the 

efficacy of AI-augmented DSS systems in more complicated and dynamic scenarios.   

H. THESIS ORGANIZATION 

This thesis is organized into five chapters. Chapter I outlines the background, 

problem, and purpose of the study. Chapter II contains a literature review of the current 

body of knowledge relating to METOC effects on maritime operations, naval C2, AI, and  
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the TMPLAR application. Chapter III describes the design methodology and experiment 

procedure. Chapter IV communicates the results of the experiment, and Chapter V provides 

the conclusions and recommendations. 
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II. LITERATURE REVIEW 

A. INTRODUCTION  

The body of literature addressing the fields of human decision-making and AI is 

large and robust. From the available information in existing studies, it is apparent that the 

employment of AI will play increasingly larger roles in how humans weigh alternatives 

and make comparative decisions. With the ever-expanding capabilities of computer 

hardware and processing power due to the effects of Moore’s Law and the increasing 

sophistication and deployability of information systems (IS), real-world applications and 

benefits of AI employment are being pushed to the tactical edge to meet the needs of the 

warfighter. As such, this chapter will discuss how METOC factors affect maritime 

operations, naval C2 and DSS employment, AI, the notion of cognitive load, and the 

TMPLAR application.   

B. METOC  

1. Environmental Factors and Their Effects on Maritime Operations  

METOC is the term used by the DOD to encompass, “all environmental factors, 

from the sub-bottom of the Earth’s oceans through maritime, land areas, airspace, 

ionosphere, and outward into space” (Joint Chiefs of Staff [JCS], 2020, p. 140). In a 

military context, METOC effects have the capacity to impact all combatants, operations, 

and equipment employed in a given battlespace (United States Marine Corps [USMC], 

2018b). As more advanced weapons and support systems are adopted by the force, 

knowledge of current and projected METOC conditions are increasingly critical to not only 

the function of these systems but in the conduct of missions and campaigns as a whole 

(USMC, 2018b). As a result of the Department of the Navy’s (DON) mission set and its 

ability to operate in and influence the maritime (surface and subsurface), land, air, and 

space domains, an accurate understanding of the METOC environment by all mission 

stakeholders is critical to the enduring success of the naval services. 

METOC factors, both positive and negative, have great effects on the ability of a 

force to conduct both routine movements of afloat assets and aggregated maritime 
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operations. The concept known as “weather routing” is a collective term used to describe 

the actions taken to plan and safely execute a voyage that accounts for various constraints, 

including environmental factors, ship-dependent goals, and cargo care (Krata & 

Szlapczynska, 2018). The goal of weather routing is to minimize the resistance of a ship as 

it transits through the waterspace, limit undesired motion disrupting personnel and cargo, 

and the seeking of calmer conditions where possible to optimize ship performance (Perera 

& Soares, 2017). Methods of weather routing typically account for both time-independent 

and static constraints such as landmasses, well-known hazards, and territorial waters and 

dynamic, time-dependent factors such as safety of passage thresholds for METOC 

conditions (Krata & Szlapczynska, 2018). As a result, the practice of weather routing is 

done to offset the hazards and negative effects of degraded environmental conditions while 

optimizing time of passage or fuel economy in a maritime movement. 

The three most basic environmental factors that affect the movement of ships while 

underway are winds, waves, and currents (Cai et al., 2014). Wind, in the context of 

maritime movements, can have both positive and negative effects for the movement of a 

vessel (Cai et al., 2014). In cases of wind speeds of less than 20 knots, an underway vessel 

will typically gain speed if it is experiencing a tailwind or lose speed if moving into a 

headwind (National Geospatial-Intelligence Agency [NGA], 2017). By extension, it is also 

expected that a ship would either expend more or less fuel, accordingly, if a given speed is 

to be maintained as one navigates through a headwind or tailwind. At wind speeds of 

greater than 20 knots, ship speed is typically reduced regardless of wind direction due to 

increased wave activity, resulting in the need for greater frequency of steering corrections 

(NGA, 2017). Furthermore, the concept of “sail area” is of significance to underway ships 

dealing with winds. Sail area refers to how much of a ship’s surface area is exposed to the 

relative wind (NGA, 2017). Consequently, vessels with greater sail area as a ratio to overall 

length are more greatly affected by the force of head, tail, and beam winds (NGA, 2017).  

According to the American Practical Navigator, Volume I published by the NGA, 

“wave height is the major factor affecting ship performance” (NGA, 2017, p. 695). Much 

like the effects of wind, wave actions moving in an opposite direction to the heading of a 

ship result in reduced speed, while those moving with the ship from the stern can increase 



11 

speed up to a certain point, beyond which performance is negatively affected (NGA, 2017). 

In general, large and sustained waves will result in slower speeds for a given power input 

due to reduced propeller thrust and increased drag as a result of steering actions (NGA, 

2017). For the case of large vessels, the effects of waves and swell are generally larger than 

that of wind speed and direction (NGA, 2017). The variables of wave height, wave angle, 

and period all have negative impacts on the resistance of a ship as it transits the waterspace 

(Perera & Soares, 2017). 

As opposed to wind and significant waves, currents are not as problematic in the 

routing of vessels under most conditions, especially when transiting near low latitudes 

(NGA, 2017). Due to worldwide oceanic currents being largely known, many vessels 

routinely take advantage of these more predictable conditions; for example: westward 

movements between the Panama Canal and southwest Asia can be optimized with 

favorable currents by travelling along a latitude of roughly 22°N, thereby offsetting the 

time penalty that would otherwise be accepted due to increased distance (NGA, 2017). 

Aside from periodic and generally forecasted weather anomalies such as ElNiño, 

hurricanes, and tropical typhoons, currents are generally more predictable than winds or 

waves (NGA, 2017).  

2. U.S. Navy Approach to METOC Support 

U.S. Joint Doctrine as it pertains to METOC is governed by four principles (JCS, 

2018b). The first of these is accuracy, which attests that the data provided must be, 

“measurably correct in representing the current and future state of the environment,” (JCS, 

2018, p. vii). The next principle is consistency, which means that data provided to all 

echelons of the supported command must be synchronized with no conflicting information 

(JCS, 2018b). The third joint principle of METOC is relevancy, which is associated with 

the information’s usefulness in the given situation (JCS, 2018b). The final joint METOC 

principle is timeliness, describing that information must be provided at a point early enough 

to where it can provide input into the commander’s decision cycle (JCS, 2018b). Nested 

under the joint METOC principles are the METOC processes, which are defined as: 

collection, analysis, prediction, tailoring, dissemination, integration, and mitigation (JCS, 
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2018b). These processes in turn support the characterization and exploitation functions,  

in which characterization is the description of the past, present, or future METOC state  

and exploitation which represents the mitigation of negative effects and the capitalization 

on advantageous conditions (JCS, 2018b). Refer to Figure 1 for an illustration of  

the relationship between METOC processes and functions and their support to the  

decision cycle.  

 
Figure 1. METOC Processes and Functions. Source: Joint 

Chiefs of Staff (2018b). 

Established under the framework set by Joint Doctrine, the DON possesses 

considerable organic capabilities to characterize and exploit METOC information.  

The organization that provides these capabilities in the DON is Naval Meteorology and 

Oceanography Command (NAVMETOCCOM) (USN, 2011). As an Echelon III command, 

Commander, NAVMETOCCOM (COMNAVMETOCCOM) provides general METOC, 

Bathymetry/Hydrography (Bathy/Hydro), and Precise Time and Astrometry (PTA), 

through four directorates: Undersea Warfare, Expeditionary Warfare, Weather Services, 

and Positioning, Navigation, and Timing (USN, 2011). These directorates provide  
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tailored products in support of Naval Oceanography Operations Command 

(NAVOCEANOPSCOM), which in turn provides products to both the fleet and Joint Force 

(USN, 2011). Aiding the directorates with production and subject-matter expertise are three 

production centers: Fleet Numerical Meteorology and Oceanography Center 

(FLENUMMETOCCEN), Naval Oceanographic Office (NAVOCEANO), and the U. S. Naval 

Observatory (USNAVOBSY) (USN 2011). Additionally, the Naval Meteorology and 

Oceanography Professional Development Center serves as the training establishment for 

NAVMETOCCOM. Refer to Figure 2 for an illustration of the organization of 

NAVMETOCCOM.  

 
Figure 2. NAVMETOCOM Organizational Structure. 

Source: United States Navy (2011).  

The products developed and services provided by the aforementioned organizations 

are made available to the force through a variety of mechanisms. Fleet Weather Center 

(FWC), Norfolk and FWC, San Diego, provide METOC maritime support to “enable fleet 

safety and readiness through accurate and timely weather forecasts, warnings and 

recommendations” (USN, 2011, p. 3–1)). The FWCs provide a myriad of products on request 

of a staff or ship, including Optimum Track Ship Routing (OTSR), Enroute Weather Forecasts 

(WEAX), High Winds and Seas Warnings, and several other products (USN, 2011). OSTR is 



14 

a message that may contain the following: weather advisories for conditions that approach or 

exceed safety thresholds for the supported unit, divert recommendations, and route 

recommendations given the type of ship, operational constraints, and environmental factors 

(USN, 2011). The WEAX is a weather and sea state forecast tailored to the requester’s route 

or port area while the High Winds and Seas Warnings provide notification of areas exhibiting 

winds greater than or equal to 35 knots and seas greater than or equal to 12 feet (USN, 2011). 

These products are made available on a push and pull basis and contribute to the safe 

accomplishment of assigned tasks while underway.     

Aside from the functions of the FWCs, METOC support is pushed to the operational 

forces through Fleet Operations Support. Fleet Operations Support provides “timely, 

comprehensive and tactically relevant METOC products and services in direct support of 

deploying Carrier Strike Group (CSG), Expeditionary Strike Group (ESG), and 

Amphibious Readiness Group (ARG) Commanders, assigned units, staff and other U.S. 

and Joint or Coalition forces, as directed” (USN, 2011, p. 5–1)). This is accomplished 

through the attachment of Strike Group Oceanography Teams (SGOT) to deploying CVN 

and LHA/D platforms (USN, 2011). The SGOT assists in the mission planning for the 

strike group and augments organic METOC division staffs. When a condition arises that a 

ship or unit without organic METOC capability deploys, a smaller Mobile Environmental 

Team (MET) may be assigned, according to mission priority, to provide METOC services 

(USN, 2011). 

C. NAVAL C2 

1. Doctrinal Basis 

Like the other warfighting functions, C2 is firmly founded in doctrine and 

institutional experience. Joint Publication (JP) 3–32 describes C2 as “the means by which 

a commander synchronizes and/or integrates joint force activities” (JCS, 2018, p. I-2)). In 

all operational contexts, C2 is performed through an interrelated system of 

people/organizations, processes and procedures, and systems that are employed to not only 

plan operations, but direct and control elements toward the accomplishment of a mission 

(JCS, 2018). In the view of the USN, the principal element of C2 is command, which refers 

to the legal authority a commander holds due to rank or billet and the responsibility to 
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effectively employ the resources under their charge in the accomplishment of an assigned 

mission (USN, 1995). On the other hand, control is the concept through which a 

commander monitors and influences actions toward the accomplishment of a mission 

(USN, 1995). Using feedback mechanisms, a commander can keep apprised of the current 

situation, adapt to the external trends and forces in the battlespace, apply resources where 

needed, and synchronize the force (USN, 1995). As a result, C2 is an interactive process in 

which the leaders and the led are complementary pieces of the whole and can better react 

to changing conditions and take advantage of fleeting opportunities (USMC, 2018a).  

Throughout the history of armed conflict, and in some military forces in the world 

today, the idea of C2 as a reciprocal, interactive process has not found universal acceptance. 

The inverse of the DON’s concept of a reciprocal C2 relationship is a unidirectional flow 

of C2 (USMC, 2018a). In such a scheme where both command and control flow from top 

down, the overall system is less adaptable to changes and disruptions and is less likely to 

capitalize on emerging opportunities. Refer to Figure 3 for a comparison of C2 views. 

    
Figure 3. Views of the Relationship between Command and 

Control. Source: USMC (2018). 
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The vastness of the maritime domain, the complexity of the USN’s mission, and its 

culture of independence require naval commanders to execute their orders with a high 

reliance on commander’s intent and mission-type orders (JCS, 2018a). Critical to the 

successful implementation of mission-type orders is the commander’s decision and 

execution cycle, commonly referred to as the Observe, Orient, Decide, Act (OODA) Loop 

(USN, 1995). Since developed by John Boyd in the 1980s, the model has become 

ubiquitous in the DOD in the 21st Century. In this model a decision maker first makes an 

observation of the environment through a variety of means including visual, sensor, combat 

report, etc. (USN, 1995). This data is then fused, overlaid, or otherwise displayed in some 

fashion that allows the decision maker to make a mental representation of the battlespace, 

thus orienting him or herself (USN, 1995). From the understanding gained from the mental 

picture, the decision maker then decides on a COA and issues the order or acts on the 

decision (USN, 1995). Refer to Figure 4 for an illustration of the decision and execution 

cycle in a military context. 

   
Figure 4. Decision and Execution Cycle. Source: Boyd (1986). 

When considering the observe and orientation phases of the decision and execution 

cycle, one should take note of the subtleties associated with the terms data, information, 

knowledge, and understanding. These discrete concepts when arranged in a progressive, 

upward fashion make what is known as the Cognitive Hierarchy (USN, 1995). At the 
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lowest end of the progression, raw bits from sensors, signals, and visual observations 

comprise data, but are not necessarily meaningful in and of themselves (USN, 1995). Once 

it is processed, collated, or filtered, these data become information that begins to hold some 

limited value in a military context (USN, 1995). The evaluation, analysis, and fusion of 

information allows information to progress in the hierarchy to the state of knowledge, 

where the relationship between events can be derived (USN, 1995). Finally, understanding 

results from applied judgment and intuition, ultimately permitting synthesis and an 

awareness of a situation or system (USN, 1995). The ultimate goal of C2 is to achieve the 

state of understanding of an enemy’s system or battlespace while allowing for a decision 

and execution cycle to operate inside that of the adversary. Refer to Figure 5 for a graphical 

depiction of the Cognitive Hierarchy. 

 
Figure 5. Cognitive Hierarchy. Source: United States Navy. (1995).  

2. Decision-Making Theory 

A popular theory of decision making that has gained traction in the U.S. military is 

Naturalistic Decision-Making (NDM). NDM arose in the 1980s as an attempt to 

conceptualize how people make decisions in real-world situations with emphasis on the 

role of the actor’s experience (Klein, 2008). In the context of NDM study, the “real-world” 
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is an environment that is characterized by time constraints, ill-defined goals, and general 

uncertainty (Lipshitz et al., 2001). NDM holds that in real-world environments, people do 

not make decisions by comparing multiple options or by employing evaluation techniques, 

rather they use their own experiences to categorize a problem and formulate a COA (Klein, 

2008). Lipshitz et al. describe the essential characteristics of NDM as, “proficient decision 

maker, situation-action matching decision rules, context-bound informal modeling, process 

orientation, and empirical-based prescription,” (Lipshitz et al., 2001, p. 332). In the context 

of NDM, a proficient decision maker refers to an actor with the requisite experience or 

knowledge base in the area of the problem (Lipshitz et al., 2001). Situation-action matching 

decision rules describes the behavior of choosing an action because of a desirable rule-

based outcome; for example, “Choose Option A because its outcome is better than Option 

B” (Lipshitz et al., 2001). Context-bound informal modeling describes the notion that 

abstract, formal models are of little utility because “expert knowledge,” is domain- and 

context-specific (Lipshitz et al., 2001). Process orientation outlines the unique cognitive 

process of the decision maker and what information they actually use (Lipshitz et al., 2001). 

Finally, empirical-based prescription is the action of improving a decision maker’s 

performance by “deriving prescriptions from descriptive models of expert performance” 

(Lipshitz et al., 2001, 335). 

A well-known derivative of NDM is the Recognition-Primed Decision Making 

(RPDM). RPDM is unique in that it attests that patterns describe factors of causation for 

any given situation in the real world, thus are the basis for decision-making (Klein, 2008). 

These patterns recorded in the memory of the decision maker provide situational cues 

paired with expected outcomes that can be called upon when a real-world problem with 

similar circumstances is encountered (Klien, 2008). Much like NDM, expertise is stressed 

but the factors of analytical processing are also represented (Boyes & Potter, 2015). From 

pattern matching and past experiences, selections of COAs is often timely and spontaneous 

(Boyes & Potter, 2015). According to Klein, recognition, which drives pattern matching, 

has four aspects: plausible goals, expectancies, relevant cues, and possible actions that 

could be taken (Klein, 2008). Refer to Figure 6 for a visual model of RPDM. 
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Figure 6. Recognition-Primed Decision Making.  

Source: Klein (1993).  

Expanding from the basis of NDM, the Dynamic Model of Situated Cognition 

(DMSC) was developed to account for technology’s inclusion in decision making 

processes in complex environments (Shattuck & Miller, 2005). DMSC arose to describe 

not only the processes decision makers use to arrive at decisions, but serves to illustrate the 

effects of technology on the perceptions in which decisions are based (Shattuck & Miller, 

2005). Central to DMSC is the concept of situated cognition, which argues that knowledge 

and cognition are linked to the environment and context in which it was learned (Brown et 

al., 1989). Using this principle as a foundation, DMSC models the relationship between all 

data present in an environment, technological systems, perceptual and cognitive systems, 
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and the mental projection of the decision maker (Shattuck & Miller, 2005). Refer to  

Figure 7 for an illustration of the DMSC.  

  
Figure 7. The Dynamic Model of Situated Cognition.  

Source: Shattuck and Miller (2005).  

In Figure 7, the shapes in Oval 1 represent all of the information that exists in a 

given operational environment, hence a totally accurate but unobtainable view for a given 

moment in time (Shattuck & Miller, 2005). Progressing to the right in the diagram, Oval 2 

represents the data that is detected or observed by a sensor or other technological system 

(Shattuck & Miller, 2005). The amount of data in Oval 2 will always be less than Oval 1 

and will possibly contain inaccuracies, such as false positives or false negatives (Shattuck 

& Miller, 2005). Oval 3 contains the data in Oval 2 that is made available to the decision 

maker (Shattuck & Miller, 2005). Oval 3 will not contain all of the information present in 

Oval 2 and any errors manifested in Oval 2 will be represented in Oval 3 (Shattuck & 

Miller, 2005). At this point the data that has passed through the layers of the technological 

system is filtered through the first of three “lenses,” that represent the factors of situated 

cognition and context before passing into the perceptual and cognitive systems (Shattuck 
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& Miller, 2005). Oval 4 represents the collection of data that is actually perceived by the 

decision maker, which then gets filtered through another lens before arriving at Oval 5, 

where it signifies comprehension of the data presented (Shattuck & Miller, 2005). Finally, 

the data passes through another lens and arrives at Oval 6 where the mental projection of 

the data is made by the decision maker (Shattuck & Miller, 2005). Like the other processes 

discussed, the DMSC is a continual process that occurs continuously as conditions change 

and new data is generated and made available. 

3. DSS Systems / Multi-Objective Optimization 

To deal with the high volume of data generated by today’s combat systems, IS have 

been developed as a means to gather and process data in a way to provide value added to a 

military organization. As such, a DSS can be viewed as a subset of a the more general or 

generic IS classification. At a broad level, a DSS can be described as, “computerized 

systems to aid human decision makers by providing them better and more timely 

information, as well as the processing of this data in models,” (Olson, 2013, para. 2). There 

exists multiple more specific, yet divergent definitions of the concept and as a result, 

several researchers have chosen to describe a DSS by its characteristics. In 1980, Sprague 

Jr. outlined the following as characteristics of a DSS: 

• they tend to be aimed at the less well structured, underspecified problems 
that upper level managers typically face; 

• they attempt to combine the use of models or analytic techniques with 
traditional data access and retrieval functions; 

• they specifically focus on features which make them easy to use by 
noncomputer people in an interactive mode; and 

• they emphasize flexibility and adapt- ability to accommodate changes in 
the environment and the decision making approach of the user.  
(Sprague, 1980, p. 2). 

Stated otherwise, a DSS does not make a decision for a human decision maker, but allows 

for them to improve their mental processes and arrive at better and faster conclusions 

(Susnea, 2012). 

Giving testament to the fact that the concept of a DSS is not a recent development, 

S.L. Alter described seven distinct DSS types, each of which exhibits distinct roles and 
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functions (Alter, 1976). The first of these are what are known as “file drawer systems,” 

which are computerized systems that provide immediate access to pre-organized 

information, such as in inventory or real-time monitoring of equipment. Secondly, “data 

analysis systems,” are platforms that allow non-managerial / non-technical personnel to 

conduct data retrieval, simple calculations, and general analysis without specialized 

training (Alter, 1976). The third DSS type, according to Alter, is “analysis information 

systems,” which exist to provide the user with the capability to access and analyze 

databases and small models, such as in sales information systems. “Accounting models,” 

the fourth DSS type described by Alter, have the purpose of forecasting the outcome of 

financial decisions based off of accounting principles. The fifth DSS, the “Representational 

model,” focuses on simulations based off of relationships that are not wholly definitional, 

such as in a risk analysis model (Alter, 1976). Alter’s sixth type, “optimization models,” 

provides the user with optimal solutions based off of known constraints. The final and 

seventh DSS type are what are known as “suggestion models,” which deal with structured 

tasks and are based both on rules and/or optimization (Alter, 1976). These seven DSS types 

are generally classified as data-oriented, containing the file drawer, data analysis, and 

analysis information systems, and model-oriented, including the accounting, 

representational, optimization, and suggestion models. Refer to Figure 8 for Alter’s general 

classification of DSS systems. 
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Figure 8. Data vs. Model System Types. Source: Alter (1976).  

While all of these DSS types have military applications, the optimization model is 

of most concern to this study.  

DSS tools used to fuse, structure, and present available data in a way conducive to 

rapid decision making do so by using multi-objective optimization. Multi-objective 

optimization is a discipline that involves decisions made that attempt to achieve two or 

more conflicting goals simultaneously (Ehrgott, 2008). The factors limiting how the 

decision maker achieves these goals are described as constraints, with those solutions not 

violating the constraints representing vectors of the feasible set (Ehrgott, 2008). The 

vectors of the feasible set in multi-objective optimization equate to the limits of the COAs 

available to the decision maker, either intuitively derived or as the result of DSS 

algorithms. Traditionally, two issues have the potential to impact the pertinence of 

optimization models: input data that is not exactly known and lack of a singular, clearly 

defined objective function (Ide & Schöbel, 2016). The process of military decision making, 

and in particular that in the maritime domain, closely resemble shortest path optimizations 

in which we seek to find an optimized solution to a problem with multiple antagonistic 
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objectives. In multi-objective shortest path optimizations, most often not all data are known 

(Ide & Schöbel, 2016). This gap in information is the result of lack of sensitivity of sensors, 

incorrect interpretation of available data, bandwidth restrictions, or general uncertainty of 

the battlespace, all cases which are commonplace in the current operational environment. 

The multi-objective method weighs the objectives proportionally according to subjective 

preferences and transposes the sum of the weighted vectors into a single objective function, 

which then produces multiple compromised, but optimized solutions (Chitra & Subbaraj, 

2010). The application of AI to augment environmental data input, objective function 

calculation, and COA development and prioritization has the potential to enhance the 

fidelity of COAs produced, and produce more options as outputs from shortest path 

optimization algorithms.  

A DSS that is in current widespread use in the USN is the Integrated Bridge System 

(IBS). IBS was developed by Sperry Marine, now part of Northrop Grumman, with the 

goal of maximizing bridge crew efficiency and safety (Sperry Marine, 2014). Within the 

USN alone, IBS has been fielded on CVN, CG, DDG, LHD, LPD, SSN, SSBN, LCAC, 

and PC platforms (Sperry Marine, 2014). Sperry Marine’s IBS utilizes three core 

components to automate the collection, processing, and display of operational and 

environmental data: the Ship Control System (SCS), Automated Radar Plotting Aid 

(ARPA), and the Voyage Management System (VMS) (Sperry Marine, 2014). The basic 

functions of the SCS is to interface with Sperry Marine’s Machinery Control System 

(MCS) and facilitate the monitoring and adjustment of a ship’s propulsion system remotely 

(Sperry Marine, 2014). Sperry Marine’s ARPA provides automation to the acquisition and 

tracking of contacts onto a common display (Sperry Marine, 2014). The VMS is IBS’ 

navigation and movement planning system and provides functionality that fulfills 

Electronic Chart Display and Information System—Navy (ECDIS–N) requirements 

(Sperry Marine, 2014). The VMS component of IBS has several features that support 

decision-making, such as vessel advanced position prediction, a configurable conning 

information display, and a navigation station that allows for optional weather and route 

optimization software modules (Sperry Marine, 2010). Refer to Figure 9 for and illustration 

of a typical IBS configuration. 
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Figure 9. Military IBS Configuration. Source: Sperry Marine (2014). 

D. ARTIFICIAL INTELLIGENCE

1. Relationship between AI and DSS

AI as a concept was first conceived in 1956 as “the ability of machines to 

understand, think, and learn in a similar way to human beings” (Pan, 2016, para. 2.1). The 

capabilities and possible applications of AI have grown since the concept’s inception. 

Reflecting the current information environment consisting of the Internet, networked 

communities, integrated sensors, and big data, AI has introduced new computing 

architypes such as human-machine augmented intelligence and perception fusion (Pan, 

2016). However, AI using computer-based tools to accomplish traditionally human-centric 

tasks does not equate to a system capable of decision making without virtualized emulation 

of how human beings arrive at decisions (Pomerol, 1997). Tasks are programmed and 

executed in accordance with instructions, reflecting preconceived decisions made by the 

system designer (Pomerol, 1997). In military functions, one of the most relevant 

applications of AI given today’s operational environment is in DSSs. A DSS is a “look 



ahead machine,” that is a “multi-model, interactive system used by a decision maker to 

perform an exploration” (Pomerol, 1997, p. 21). As a result of system design and the 

assertion that rational decision makers can arrive at unique and independent solutions given 

the same problem, AI and by extension DSSs, encompass a large subjective component to 

their design and functionality (Pomerol, 1997). In the DSSs, the first phase that occurs 

within the system is diagnosis or pattern-matching, in which the perceived environment is 

compared and contrasted to recorded environments to gain an understanding of the current 

state (Pomerol, 1997). Once the system arrives at an understanding of the current state, the 

data are then weighed against other contributing factors producing a set of tenable 

outcomes, which are then subject to the system’s preferences, producing a decision or 

chosen action (Pomerol, 1997). Additionally, human planners and DSSs, through different 

processes, share the ability to perform look-ahead reasoning or a “what if?” analysis in 

which one sees the consequences of a COA (Pomerol, 1997). A “what if?” analysis, 

otherwise known as scenario reasoning, has two essential outputs: 1) all outcomes possible 

given what is known of the situation or the environment, 2) the probability or plausibility 

of each outcome (Pomerol, 1997). The user may then apply his or her preferences based 

off of experience or personal/institutional biases and select a COA. Inherent to the notion 

of AI-augmentation to DSS is the concept of deep learning. Deep learning is a “technique 

for classifying patterns, based on sample data, using neural networks with multiple layers” 

(Marcus, 2018, p. 3). Utilizing input layers, hidden layers containing many nodes, and 

output layers, deep learning neural networks are often used as classification tools, in which 

the system decides what category given input parameters belong to (Marcus, 2018).  

2. AI Applications of a Maritime DSS

Given the proliferation of AI and the benefits afforded to planners through the 

employment of DSSs, attention has recently been shifted to their applications in naval 

operations and maritime trade. The impacts of oceanographic effects on surface vessel 

routing is an inherent consideration to military and commercial maritime operations. 

Among the myriad of concerns of underway naval leaders are maintaining desired levels 

of fuel, speed, and the safety of ship and crew, all while considering external factors such 

planned fleet maneuvers and METOC effects (Chu et al., 2015). Also, due to the 
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complexities of the maritime domain, time of passage and total distance traveled represent 

additional objectives impacted by oceanographic phenomena (Sidoti et al., 2017). In gas 

turbine powerplants, fuel consumed increases approximately 1–4% at moderate speeds and 

roughly 9% at high speeds (Chu et al., 2015). Additionally, sea conditions have significant 

impacts on fuel consumption; at constant speed, a vessel will consume 10% more fuel when 

transiting in conditions of Sea State 4 and one knot surface currents than in calm conditions 

(Chu et al., 2015). In addition to surface hydrographic conditions, ship motions and wind 

resistance influence fuel economy and limit achievable speed (Vettor & Soares, 2016). As 

a result of naval movements being functions of multiple objectives (fuel efficiency, time 

available, speed, etc.), route optimization is inherently complex. Due to this complexity, 

DSS tools are required for human decision makers to optimize, evaluate, validate, and 

select COAs as they pertain to routing of surface vessels (Sidoti et al., 2017). With the vast 

amount of observable data that can potentially be integrated into a DSS from disparate 

sensors and sources, AI with the ability to learn has the capacity to further reduce the 

cognitive load of mission planners through the reduction or elimination of repetitive, time-

consuming tasks.  

E. COGNITIVE LOAD AND INDICATORS 

1. Cognitive Load  

AI has the capacity to reduce the cognitive load of mission planners through the 

reduction or elimination of repetitive, time-consuming tasks. Performance routine, 

repetitive tasks contributes to the “Intrinsic cognitive load,” of users and places demands 

on their working memory. Intrinsic cognitive load is representative of the sum difficulty of 

a task and is compounded by the interactivity of its material or constituent factors (Coyne 

et al., 2009). The concept of intrinsic cognitive load is visible in the context of military 

operations where the complexity of the operational environment and the interrelationship 

of the actors within tax the working memory of planners as they attempt to conceptualize 

their surroundings as a prerequisite to developing COAs. As such, AI when applied to a 

DSS application can serve to minimize intrinsic cognitive load by automating routine or 

repetitive tasks, allowing the user to focus on making a sound decision with the best 
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information available in the shortest time while learning from the environment. To quantify 

this phenomenon, cognitive load of human users can be measured through the degree of 

pupil dilation while performing a task, also known as pupillometry (Klingner et al., (2010). 

In the past, cognitive load as indicated through pupillometry has shown to be lesser  

when users are presented with tasks given by visual rather than aural means, allowing 

individuals to omit the process of forming a mental picture of the task (Klinger et al., 2010). 

This suggests that better cognitive performance can be achieved through decreased 

workload on working memory, a state that context-dependent DSS applications aim to 

achieve for the user.  

2. Eye Tracking / Pupillometry 

As previously mentioned, the measure of pupil diameter has been used an indicator 

of cognitive load (Krejtz et al., 2018). Traditionally measured with specialized pupilometer 

equipment, modern eye tracking devices and software have emerged as an alternative 

method, allowing researchers to estimate cognitive load using changes to baseline pupil 

diameter in response to stimuli over time (Krejtz et al., 2018). Ikehara and Crosby attest 

that while pupil diameter is able to examine the range of cognitive states experienced by 

the user during the performance of a task, the results may be affected by presentation, such 

as sudden changes to the display intensity (Ikehara & Crosby, 2005). Aside from eye 

tracking, other indications of cognitive load that can be provided by eye trackers are gaze 

position, number and duration of fixations, and revisits, all of which indicate complexity 

or relative difficulty of the task (Ikehara & Crosby, 2005). In addition to pupil 

measurements and gaze data provided by eye trackers, the investigation of microsaccades, 

or involuntary eye movements during fixation, has been discussed as a measure of task 

difficulty perceived by a user (Krejtz et al., 2018). The magnitude of microsaccadic 

responses has been shown to increase with task difficulty along with intra- and inter-trial 

changes in pupil diameter (Krejtz et al., 2018). In addition, the eye movement and fixations 

recorded with an eye tracker have also shown to be a reliable indicator of task difficulty   
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3. User Manipulation of Data and Mouse Dynamics 

Beyond recording of pupil and eye behavior, cognitive load has been measured by 

a concept known as mouse dynamics (MD), referring to the manner in which a user moves 

and uses a computer mouse during the conduct of a task (Grimes & Valacich, 2015). The 

basic user inputs that constitute a MD signature are screen coordinates of the mouse 

pointer, timestamps, or, “state changes,” such as mouse movements or clicks (Grimes & 

Valacich, 2015). When a user interacts with a graphical environment, MD can be further 

categorized as general mouse movement, drag and drop, point and click, and silence 

indicating no movement (Ahmed & Traore, 2007). These types of positive clicking 

interactions with the user interface make logging user activity easier and more conducive 

to post-experimental data analysis. In 2015, Grimes and Valacich showed that when under 

high cognitive load users tend to move a mouse more slowly and with more changes in 

direction (Grimes & Valacich, 2015). In another study, Hibbeln et al. exploited the known 

connection to deception and increased cognitive activity and found that users committing 

simulated fraudulent activities in an experimental setting exhibited greater numbers of 

mouse clicks and higher measurements of other indicators of cognitive load (Hibbeln et al., 

2014). Overall, past research shows that MD is a non-invasive, reliable indicator for 

cognitive load.  

F. TMPLAR  

1. Function / Capabilities 

TMPLAR utilizes an automated system to suggest multiple route solutions to the 

human user, taking into account METOC information, geographic hazards to maritime 

traffic, bathymetry, and ship characteristics (Mishra et al., 2017). Recognizing that 

maritime movements involve multiple conflicting objectives such as time, fuel usage, and 

distance, TMPLAR presents multiple Pareto-optimal solutions to the user, allowing them 

to apply intuition and judgement as to the best compromise between the multiple objectives 

for a route solution (Mishra et al., 2017). TMPLAR was developed in the Python language 

and is imbedded natively with multiple empirical algorithms to achieve both single and 

multiple-objective optimization (Sidoti, 2018). As of August 2018, TMPLAR utilizes A* 
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and Q-Learning algorithms to accomplish single-objective optimizations and also Martins’ 

and NAMOA algorithms for multi-objective optimizations (Sidoti, 2018). TMPLAR also, 

as of 2018, has four separate modes of operation: Lite, Robust, and Submarine which all 

employ a Fibonacci A algorithm and a Martins’ mode that uses a Backwards Martins’ 

algorithm (Sidoti, 2018). The four modes of operation in TMPLAR aggregate to support 

18 current USN and Military Sealift Command (MSC) ship classes (Sidoti, 2018). Refer to 

Figure 10 for a complete list of supported ship classes. 

 
Figure 10. Templar Supported Ship Classes. Source: Sidoti (2018).  

2. Benefit of TMPLAR and Similar Systems 

Context-dependent DSSs have been applied to real-world and virtual surface 

transits in the past. Recently, the TMPLAR application, used in concert with the embedded 

Smart Voyage Planning Decision Aid (SVPDA), was trialed against Ship Tracking and 

Routing Software++ (STARS++) in a shortest path problem set (Sidoti et al., 2017). Sidoti 

et al. found that through the addition of inclement weather avoidance algorithms to 

TMPLAR’s functionality, the TMPLAR application outperformed software then in use by 

maritime navigators, resulting in a 33% fuel efficiency increase in simulated transits (Sidoti 

et al., 2017). In 2012, the SVPDA, with integrated data pertaining to wave 

height/period/velocity from WaveWatch III (WW3), ocean current velocity from U.S. 

Navy Coastal Ocean Model (NCOM), and surface winds from Navy Operational Global 

Atmospheric Prediction System (NOGAPS) was trailed in real-world surface passages 
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aboard two Arleigh Burke-class guided missile destroyers and one Henry J. Kaiser-class 

fleet replenishment oiler (Chu et al., 2015). This data, known as the METOC ensemble, 

showed the potential to achieve statistically significant fuel savings over great circle (GC) 

baselines when factors such as powerplant type and hull fouling are considered (Chu et al., 

2015). Additionally, ocean current data obtained from the Surface Velocity Program (SVP) 

drifters over the period of 1985–2009 has shown to significantly reduce transit times for, 

“super-slow steaming,” vessels in the western Pacific / east Asia region (Chang et al., 

2013). 

G. SUMMARY 

The existing literature pertaining to DSS, AI, and oceanographic factors’ impact on 

maritime operations provides a robust foundation for the evaluation of AI-augmented DSS 

and its applications in the maritime domain. The potential for budgetary savings due to 

decreased fuel expenditures, mitigated environmental impacts, and a more tactically and 

operationally agile force makes this research relevant to the USN’s enduring mission set. 

Detailed analysis of the effectiveness and efficiency of AI-augmented DSS in uncertain 

environments will not only validate the concept for naval applications but provide insight 

into its applicability in other warfighting domains.  
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III. METHODS 

A. DESIGN AND PARTICIPANTS 

1. Experimental Design 

Assessing the efficacy of the context-dependent, AI-augmented DSS was 

accomplished utilizing a human-in-the-loop experiment. The experiment was structured as 

a 3 x 3 repeated measures design. The first independent variable in this construct the 

employment of AI-augmented or non-augmented DSS types. The first DSS type that was 

examined was classified as Level 0, indicating the as-is, off-the-shelf TMPLAR system 

with no AI-augmentation. Information that was made available to the user at Level 0 was 

restricted to a low-detail map depicting the start and end points of the voyage and a data 

table containing route and ship movement metrics. At Level 0, the user was not afforded 

any mechanism to conduct comparative analysis of ship routes other than the movement 

metrics displayed in the data table. Aside from the baseline system, the AI-augmented DSS 

was comprised of two additional DSS levels. Increasing in complexity of user interface 

from Level 0, Level 1 incorporated a user-customizable cumulative probabilistic 

distribution function, allowing for comparative analyses of fuel-usage or inclement 

weather probabilities based off of the underlying simulations. The visualization of the 

Pareto-optimal routes allowed for direct comparison of fuel usage and distance of travel of 

all routes calculated by the DSS. The Level 2 DSS level which represented an iterational 

model that was not adopted and therefore omitted from the experiment. The next level used 

in the experiment was the Level 3 DSS interface, and it was the most advanced, data-rich 

option. In addition to the baseline data present in Level 0 and the illustration of the 

cumulative probabilistic distribution function introduced at Level 1, the Level 3 interface 

incorporated a visualization of the Pareto-optimization of tenable sea routes as they were 

calculated using the AI algorithm embedded in the augmented DSS. 

The second independent variable that was examined was the uncertainty of the 

simulated operational environment. Uncertainty for the purposes of this experiment was 

defined by the relative number of Pareto-optimal routes from the desired starting point and 
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destination per simulation. As discussed previously, levels of uncertainty were categorized 

as: 1) Low: decision maker given choice of COAs with projected fuel usage within one 

standard deviation of the mean for the given route, 2) Moderate: decision maker given 

choice of COAs with projected fuel usage within two standard deviations of the mean for 

the given route, 3) High: decision maker given choice of all COAs across the entire 

distribution of fuel usage for the given route. Participants were assigned a non-augmented 

(Level 0) or augmented (Level 1 or Level 3) in sequence of their participation resulting in 

a roughly equal number of participants across all DSS levels trialed. Within each trail, 

every participant was presented with 60 total navigation scenarios representing an 

approximately equal breakdown of Low, Moderate, and High uncertainty problems.   

2. Participants 

Participants for the experiment were drawn exclusively from the NPS student  

body. No particular service affiliation, prior experience, or participant nationality  

was required and all volunteers were accepted. The researchers used a variety of methods 

to recruit experimental subjects, all of which were approved by the NPS Institutional 

Review Board (IRB). Volunteers self-scheduled an experiment session through the 

www.signupgenius.com web application. Once a volunteer self-scheduled for a time slot, 

an email was automatically sent to the student researcher notifying him of the reservation.  

In total 40 volunteers participated in the study. The service breakdown of 

experiment participants indicated a large majority of DON volunteers, generally reflecting 

the service breakdown of the NPS student body. Of the 40 volunteers, 21 had a USMC 

service affiliation and 13 held positions in the USN, totaling a combined 86% of all 

participants. Refer to Figure 11 for a complete experiment participant service breakdown. 
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Figure 11. Armed Services of Experiment Participants. 

Experiment participants were predominately male with 35 of 40 participants totaling 88% 

representation. Additionally, the mean age of the volunteers was 33.25 years of age. See 

Figure 12 for participant age and gender breakdown. 

  
Figure 12. Age and Gender of Experiment Participants. 
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B. MATERIALS 

1. TMPLAR 

The most essential material to the conduct of this study was the TMPLAR 

application itself. The TMPLAR iteration used in this study was web-based and accessible 

from any web browser using a non-Domain Name Service (DNS)-qualified, public internet 

protocol (IP) Version 4 (V4) address. The application itself was hosted on a web server 

administered by and located at the UCONN campus in Storrs, Connecticut. The web-based 

nature of the application allowed for simultaneous trials to be conducted by several 

participants at separate workstations within the testing site without degraded capability or 

performance.  

The TMPLAR application used in this study utilized two separate portals, one 

dedicated for user trials and a separate administrator portal. The administrator portal was 

used primarily for assigning scenarios to each user profile with approximately equal 

distributions of low, moderate, and high uncertainty scenarios. Additionally, the 

researchers had the ability to “Black List,” or otherwise remove any scenarios that were 

technically problematic or faulty from any of the user profiles and replace them with others 

of equal uncertainty levels. The researchers also were able to use the administrator portal 

to view the progress of users as they completed their assigned scenarios in real time. Lastly, 

the administrator portal allowed the researchers to download log files detailing the users’ 

route selections in addition to the timestamps of those selections, confidence ratings, and a 

record containing X and Y screen coordinates of each mouse click. 

The user portal was the mechanism through which both the experiment was 

conducted and the time to decision (TTD) and route selection data was collected. Like the 

administrator portal, the user portal was accessed through a public IP address and viewable 

through any standard commercial internet connection. Volunteer interaction with the user 

portal was initiated by a splash page, prompting the user to enter a researcher-provided, 

pseudo-random identification number, as shown in Figure 13. 
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Figure 13. TMPLAR User Splash Page. 

The user identification number corresponded to a set of 65 route planning scenarios, with 

the initial five serving the purpose of orienting the user to the interface and the remaining 

60 being recorded for analysis. After the identification number was entered, the user was 

then taken to one of three DSS interfaces, depending on which DSS level was assigned. 

Figure 14 illustrates the user interface for the Level 0 DSS. 

 
Figure 14. TMPLAR Level 0 DSS Interface. 
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The Level 0 DSS is divided into two fields. At the top of the screen is Field I, which is a 

low-detail map segment that allowed users to pan and zoom along the generated routes 

with the computer mouse. Field II at the bottom of the screen contained data for relevant 

route attributes, with bolded figures indicating the most advantageous value for a given 

attribute. Clicking on values in the, “Route,” column populated corresponding color-coded 

routes in Field I, allowing users to visually compare route tracks. Final route selections for 

each scenario were made by clicking on the, “Select,” Button that corresponded with the 

desired route. Upon making their selection, users were then prompted to rate their 

confidence in the chosen route on a 1 – 7 Likert Scale.  

Increasing in complexity and the amount of data made available to the user, the 

Level 1 DSS added AI-augmentation underneath the user interface. A screenshot of the 

Level 1 DSS interface is shown in Figure 15.  

 
Figure 15. TMPLAR Level 1 DSS Interface. 

For the purposes of analysis and standardization, DSS Levels 1 and 3 generally follow field 

designations as those used in quadrants of a Cartesian Plane. Field I, as in the Level 0 DSS, 

is still represented by the map at the top of the screen. Field II containing the cumulative 

distribution function was located at the bottom left of the screen. By selecting routes in the 
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leftmost column of the data table, probability regressions would be displayed in Field II 

and route lines populated in Field I, with median values based off of the simulations 

represented as stars along the Field II regressions. The tabs at the top of Field II allowed 

uses to switch between route attributes for comparative analysis. Field III was located at 

the bottom right of the interface and contained the route data table as in Level 0. The 

procedure for route selection and confidence rating remained the same as in DSS Level 0.  

The TMPLAR DSS Level 3 interface, as shown in Figure 16, again incorporated 

AI-augmentation to its simulation algorithm and provided the user with the most tools 

pertaining to the required task. 

 
Figure 16. TMPLAR Level 3 DSS Interface. 

Beginning with Field I in the top right, the user was presented with a graphical depiction 

of the Pareto-optimal front weighing fuel usage and distance. By clicking on the ovals 

grouping together like routes, route attribute data would appear below in Field IV. The next 

field counterclockwise at the top left was Field II, with the map having the same 

functionality as in the previous DSS Levels. Field III in the bottom left contained the 

cumulative distribution function, again with functionality as before. Field IV at the bottom 

right contained the route attribute data table. Again, clicking on the values in the leftmost 
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column populated the map with graphical route tracks and the cumulative distribution 

function with probability regressions.    

2. Eye Tracking / Pupillometry 

Eye tracking and pupillometry data was captured with the Gazepoint suite, which 

included the GP3HD tracker, Gazepoint Analysis UX Edition v6.0.0, and Gazepoint 

Control x64 applications. The Gazepoint suite allows users to calibrate the eye tracker to 

an experiment participant, build a customized experiment, and record/analyze an 

experiment’s results (Vogl, 2014). User-defined/customizable eye tracking projects that 

can be conducted with the Gazepoint suite include general screen capture, projects 

involving text, images, or video, and web interface navigation (Gazepoint, 2019). The 

GP3HD eye tracker model used in this experiment had a user-selectable sample rate of 

60/150Hz and accuracy of gaze measurement of 0.5 – 1o from the user focal point 

(Gazepoint 2020). Gazepoint Analysis supported a five or nine-point user calibration and 

had a field of view of 35cm x 22 cm with a plus or minus 15cm range of depth movement 

(Gazepoint 2020). The GP3HD tracker itself measured 320 x 45 x 47 mm in dimensions 

and had a mass of 155g (Gazepoint 2020). The tracker was mounted directly beneath the 

computer screen where participants conducted the experiment as shown in Figure 17. 
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Figure 17. Participant Workstation. 

A Gazepoint Analysis user-defined profile was configured specifically for this 

experiment. This was done first by launching the Gazepoint Analysis application. Upon 

loading, Gazepoint Analysis prompted the researcher to open a saved project or begin a 

new project. After electing to begin a new project, Gazepoint Analysis then prompted the 

researcher to select the media to be used for this experiment. As this experiment used a 

web-based application, the IP address of the TMPLAR application was entered and saved. 

After this was accomplished, the researcher was given access to the Gazepoint Analysis 

user interface, as shown in Figure 18.  
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Figure 18. Gazepoint Analysis User Interface. 

The left side of the user interface allows the researcher to select between media used for a 

recording, such as a different video or website for different participants, select or view 

previously made recordings, or establish Areas of Interest (AOI) for analysis and assign 

then to user profiles. The ribbon near the top of the screen contained basic functions, 

allowing the researcher to load and save a project, calibrate the GP3HD sensor to a user, 

begin a recording, select the active screen for multi-screen displays, and display researcher-

defined AOI zones. After the project shell was created and the TMPLAR application IP 

address loaded in the media list, Gazepoint Analysis was configured to record and collect 

basic eye tracking and pupillometry data for users as they conduct the experiment.  

 The Gazepoint Control application was the final major component of the Gazepoint 

suite that was utilized for this study. Gazepoint Control acts as a, “Power Switch,” for the 

GP3HD tracker and needs to be running in order to collect data (Vogl, 2014). The functions 

performed by the Gazepoint Control application are largely automatic and require no action 

from the researcher (Vogl, 2014). For the purposes of this study, Gazepoint Control was 

almost exclusively used to calibrate the eye tracker to each participant before the 
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experiment trials began. See Figure 19 for a graphic depicting the Gazepoint Control 

interface.  

 
Figure 19. Gazepoint Control User Interface. 

The ribbon at the top of the window in the Gazepoint Control interface contained the 

relevant commands for the researcher. Of most importance, “Calibrate,” launched the 

calibration sequence for each user. Other options including sampling rate were left as 

default, and biometrics, such as heart rate monitoring, were supported by Gazepoint but 

not utilized for this experiment.  

3. Exit Questionnaire 

The final material used to collect data was an exit questionnaire administered to all 

participants. The questionnaire used a Likert Scale for user ordinal ranking of efficiency of 

the TMPLAR application, its overall utility, and to rate their overall experience in maritime 

route planning. Fill in the blank responses were recorded capturing demographic data 

including age, gender, hours of sleep the previous night, etc. Finally, narrative responses 

were recorded for user suggestions for improvement to the TMPLAR application and other 
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maritime route planning tools used, if applicable. The Exit Questionnaire instrument is 

shown in full in Appendix A.   

C. PROCEDURE 

1. Pilot Test 

A pilot test of the TMPLAR application was conducted from 26 AUG – 13 SEP 

2019 aboard the NPS Campus in Glasgow Hall. The goal of the pilot test was to trail the 

TMPLAR application and observe proper function, determine if any scenarios did not 

function correctly and needed to be added to the, “Black List,” refine the participant in-

brief and exit questionnaire, and determine the approximate time required for each 

participant to conduct the experiment. Pilot test volunteers were recruited by word of 

mouth, with 12 personnel participating. Upon arrival to the testing space, participants were 

immediately given an Informed Consent document, which they duly signed. See Appendix 

B for the Informed Consent form. After the Informed Consent form was signed by the 

participant, the student researcher explained the function of the TMPLAR application, the 

goals of the pilot test and the study, and the specific tasks assigned to the participant. After 

the verbal brief was complete and all questions were answered, the participants were 

assigned a user identification number, which was then entered in the TMPLAR splash page 

to begin the assessment. 

Of the 12 participants for the pilot test, three personnel each were assigned to the 

DSS 0, DSS 1, and DSS 3 interfaces. Each participant completed 10 scenarios across all 

uncertainty levels in their assigned DSS. The progress of the participants was closely 

monitored for any issues with the TMPLAR application. After the participants completed 

their scenarios, the Exit Questionnaire was administered. When the Exit Questionnaire was 

complete, the student researcher engaged the participants in a verbal debrief to discuss 

functionality of TMPLAR, clarity of instructions and assigned tasks, clarity of Exit 

Questionnaire, and any proposed points for improvement. From the pilot test, it was 

determined that full 65 scenario trials would likely take between 60–90 minutes to 

complete and that full user manual-style written instructions were necessary.  
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2. Experimentation 

The main experiment was conducted between the period of 28 OCT 2019 – 28 FEB 

2020 in Glasgow Hall, Room 103. A total of 40 volunteers participated in the main 

experiment. Upon sign up, the student researcher contacted the volunteer via email to 

confirm the time and send electronic copies of the Informed Consent Form and the 

TMPLAR User Manual for their assigned DSS level. Before participant arrival to the 

experiment, the student researcher checked the GP3HD tracker, the Gazepoint Analysis 

and Gazepoint Control Applications, and TMPLAR for correct function to ensure that the 

experiment trails occurred without issue. 

Upon arrival of the volunteers to the research space, they were immediately greeted 

and presented with the Informed Consent form, which was then signed and filed. Next, the 

participants received a verbal brief from the student researcher covering the goals of the 

study and the tasks assigned to the participants. The verbal brief is enclosed in Appendix 

C. They were then presented with a hard copy of the TMPLAR User Manual (DSS 0: 

Appendix D, DSS 1: Appendix E, DSS 3: Appendix F), which the student researcher then 

used to talk through the layout of the TMPLAR interface and the functions available to the 

participant. Participants were also given, “TMPLAR Quick Start,” graphics depicting the 

steps required to complete a scenario in their given TMPLAR interface as shown in 

Appendix G. Once the instructions and experiment goals were understood, the student 

researcher and participant moved on to eye tracker calibration. 

Eye tracker calibration was performed through the Gazepoint Control application 

and conducted for every user. The participant was instructed to center him or herself in 

front of the computer monitor and assume a posture that was natural to them and 

comfortable. The student researcher then examined the Gazepoint Control interface to 

ensure that the user was centered in the sensor’s field of view and that the GP3HD device 

was tracking their eyes. If the user was not centered or the GP3HD device could not track 

the user’s eyes, body position and sensor orientation were adjusted until the desired result 

was achieved. The calibration sequence was then initiated, in which a white dot appeared 

on a black background on the display and moved to the four corners, then ending in center 

of the monitor. Gazepoint Control then provided a prompt notifying the student researcher 
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that calibration was either successful or that calibration had failed for one or both eyes. If 

calibration had failed for a particular user, repeated attempts for successful calibration were 

made for as long as practical without jeopardizing the timeline needed for the volunteer to 

conduct the experiment.  

After the calibration sequence, users completed five practice scenarios, in which 

they were encouraged to explore the user interface and ask the student researcher questions 

when required. This ensured that the users were comfortable with TMPLAR and that they 

understood all of the application’s functions that were made available to them. After the 

five practice scenarios were completed, the participants seamlessly transitioned to 60 route 

planning scenarios that were recorded as participant results. While the participants worked 

their way through the scenarios, the student researcher observed their progress through the 

Gazepoint Analysis window on his own separate display, as shown in Figure 20. 

 
Figure 20. Experiment In-Progress View through Gazepoint 

Analysis Interface 

Through the in-progress view in the Gazepoint Analysis window, the student 

researcher was not only able to determine the user’s relative progress at any point in the 
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experiment, but was able to give them corrective verbal cues if their posture was affecting 

the GP3HD sensor’s ability to measure their eye movements. Upon completion of the last 

route planning scenario, TMPLAR prompted the users notifying them that the experiment 

was complete. The recording was stopped and saved in Gazepoint Analysis and the 

participants were given the exit questionnaire. After completing the exit questionnaire, 

participants were then verbally debriefed and their responses captured. 

3. Data Retrieval and Structuring 

After the departure of the volunteer, the student researcher navigated to the 

TMPLAR administrator portal and downloaded the aggregated dump file for the 

experiment trials. The dump.zip file contained five separate .csv files, which captured 

participant performance during the experiment. The first of these was named, “notes.csv,” 

and captured any entries made by participants using the notes function in TMPLAR. The, 

“timer.csv,” file captured total elapsed times for experiment completion across users. The 

third file in the dump,zip pack was, “scenarios.zip,” and included the numeric codes for all 

scenarios assigned to each User Identification number,  totaling 65 per user. The, 

“chosenroutes.csv,” file was of high utility in that it contained 65 entries per user, recording 

the User Identification, scenario number, route selected, user confidence rating of their 

selection, and the timestamp of their selection. The final file made available through the 

TMPLAR administrator portal was entitled, “logdata.csv.” This file contained User 

Identification numbers, X and Y screen coordinates with descriptions of screen elements 

that users clicked, and corresponding timestamps. Data from these files was screened for 

validity, duplicate values were identified and omitted when required, and data was 

transferred to individual and collective spreadsheets corresponding to assigned DSS level. 

Additionally, Exit Questionnaire responses were transferred to spreadsheets for later 

analysis. 

 Raw click data, as previously discussed, was provided in the, “logdata.csv,” dump 

file. Since this file provided X and Y screen coordinates logging every mouse click made 

by the user, a pixel map of the display was used to categorize clicks into fields 

corresponding with the DSS-unique divisions of the interface. Using a screen resolution of 
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1920 x 1080 in the experiment’s display, the pixel maps displayed in Figure 21 were used 

to categorize user clicks recorded by TMPLAR. 

  
Figure 21. Pixel Maps Used for User Click Categorization. 

In addition to recording frequency of user clicks in specific fields, the, “logdata.csv,” file 

also noted when users made their route selection, bringing each scenario to an end and 

progressing to the next. The notation of, “Select Route,” in the log file allowed for fault 

checking for both time to complete each scenario and the completion of all scenarios for 

each user. 

The retrieval of user eye fixation and tracking data was initiated through the 

Gazepoint Analysis Interface. First, a user’s profile was selected under the, “Recording 

List,” header and the video recording slider at the bottom of the screen was moved to the 

beginning of the sixth scenario. This was done to discount the first five scenarios that were 

dedicated to practice only. Next, the “+,” button was selected beneath the, “AOI List,” 

pane. Once this was done, the mouse cursor changed from a standard cursor to a crosshair 

pattern, allowing the student researcher to designate an AOI by freehand. The freehand 

option was not used because the greatest amount of consistency between users was desired. 

Instead, a general square pattern was made in the approximate area that the AOI was to be 

placed, then the AOI was double-clicked in the, “AOI List,” pane. A prompt then appeared, 
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allowing for the manual entry of X and Y coordinates for the AOI’s origin and width and 

height dimensions for the AOI itself. Refer to Figure 22 for AOI dimensions used for each 

level of DSS.  

 
Figure 22. Pixel Maps Used for AOI Designation. 

This process was repeated for each AOI required the user’s assigned DSS level. 

When all AOIs for a given user were designated, the video recording slider was advanced 

to the completion of the 65th scenario and paused. The, “Calculate,” button under the, 

“AOI  List,” captured the percentages of users gazes in each AOI. This data was then 

exported, and the resulting file contained the time each AOI was viewed in seconds, time 

each AOI was viewed as a percentage, number of visual fixations per AOI, and number of 

visual revisits that a user made to an AOI. Unlike the process used to categorize mouse 

clicks into fields where the same pixel map was applied for all users, each AOI was entered 

manually for each user to account for the varying times that each user began scenario six 

and finished scenario 65. 

The process used to retrieve the pupillometry data collected through the Gazepoint 

suite was comparatively straightforward. The user profile was selected and the, “Export,” 

button was clicked as before. Here, all data options were selected for export. See Appendix 

H for a complete listing of Gazepoint Analysis output data fields. Once the .csv file was 
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exported, it was organized into user-specific folders along with the TMPLAR dump files, 

click analysis, and AOI/eye tracking data for further analysis.  
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IV. RESULTS 

A. TIME TO DECISION 

User time to decision was recorded in TMPLAR and made available in a .csv file 

for analysis. These data were organized into the three levels of DSS users and three 

different scenario difficulties. Additionally, one participant was omitted from the analyses 

due to the user not completing all scenarios assigned. User time to decision data was first 

grouped into the DSS level assigned to the user. After this was done, a 3 (DSS level) x 3 

(scenario difficulty) repeated measures ANOVA was conducted to determine what, if any 

significant differences were present in user time to decision. After analysis, it was apparent 

that there was a significant main effect of decision time across the DSS levels; F(2, 36) = 

3.31, p = 0.05, and 𝜂𝜂𝑝𝑝2 = 0.16. Additionally, a significant main effect of decision time across 

the difficulty, F(2, 117) = 5.63, p = 0.01, and 𝜂𝜂𝑝𝑝2 = 0.09 was present. There was no 

interaction between DSS level and difficulty, p = 0.52.  

Follow-up t-tests for the main effect of DSS revealed a significant difference 

between DSS 0 and DSS 3, t(24) = -2.03, p = 0.05, and DSS 1 and DSS 3, t(23) = -2.80, p 

= 0.01. There was no difference between DSS 0 and DSS 1, p = 0.28. Participants in the 

DSS 3 condition took longer to make a decision than those in DSS 0 and DSS 1 conditions. 

However, there was no difference in decision time between the DSS 0 and DSS 1 

conditions. Descriptive statistics and pairwise comparisons across DSS levels are 

illustrated in Table 1. 



52 

Table 1. User Time to Decision across DSS Levels 

 
 

T-tests for scenario difficulty revealed significant differences between Easy and 

Hard, t(78) = -3.35, p < 0.01 scenarios. There was no difference between Easy and 

Medium, p = 0.09 and Medium and Hard, p = 0.11 scenarios. Participants making route 

selections classified as Hard took longer to make a decision than those classified as Easy. 

Descriptive statistics and pairwise comparisons across difficulty conditions are in Table 2.  

Table 2. User Time to Decision across Difficulty 

 
 
 

Lower 
Bound

Upper 
Bound

DSS 0 14 30.18 11.47 3.07 23.56 36.80
DSS 1 13 25.82 13.51 3.75 17.66 33.98
DSS 3 12 39.44 15.61 4.51 29.52 49.36

DSS A DSS B
Mean 

Difference 
(A - B)

df Std. Error Sig. t

DSS 0 DSS 1 0.10 25 0.08 0.28 1.10
DSS 0 DSS 3 -0.11 24 0.08 0.05 -2.03
DSS 1 DSS 3 -0.21 23 0.08 0.01 -2.80

N Mean Standard 
Deviation

Standard 
Error

95% Confidence Interval

Pairwise Comparisons

User TTD Across DSS
Descriptive Statistics

Field

Lower 
Bound

Upper 
Bound

Easy 14 24.70 10.57 1.69 21.27 28.13
Medium 13 30.26 13.23 3.75 25.97 34.55
Hard 12 38.79 19.85 2.12 32.35 45.22

Difficulty 
A

Difficulty 
B

Mean 
Difference 

(A - B)
df Std. Error Sig. t

Easy Medium -0.09 78 0.01 0.09 -1.73
Easy Hard -0.18 78 0.01 0.00 -3.35
Medium Hard -0.09 78 0.01 0.11 -1.63

Pairwise Comparisons

User TTD Across Difficulty
Descriptive Statistics

Field N Mean Standard 
Deviation

Standard 
Error

95% Confidence Interval
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B. USER CLICKS WITHIN TMPLAR INTERFACE 

User interaction with the TMPLAR interface was quantified through the mapping 

and recording of mouse clicks. Level of user interaction with the TMPLAR interface fields 

was assessed to determine (a) what data and presentation mode was most utilized by users 

to make route selections, and (b) if the reliance on data presented in screen fields common 

across all DSS levels changed as more data was made available to the user. To assess what 

data field was most utilized by users within DSS levels, measurements reporting clicks in 

each screen field were divided by overall click counts for each user, yielding percentages 

by field. Click data was then compiled, extreme outliers were identified and omitted, and 

the data set was transformed using a LOG10(x + 1) algorithm due to non-normal 

distributions identified by abnormal skewness and kurtosis.  

 A univariate ANOVA conducted on DSS 0 user mouse clicks revealed a significant 

main effect of screen field within DSS 0; F(1, 26) = 35.44, p < 0.01, and 𝜂𝜂𝑝𝑝2 = 0.58. 

Therefore, it was determined that users interacted with the Table through mouse clicks at 

statistically significant higher rates than the Map. Refer to Table 3 for descriptive statistics 

of DSS 0 click data.  

Table 3. Analysis of DSS 0 Click Data. 

 
 

DSS 1 click data were analyzed using a univariate ANOVA with allowances made 

for the inclusion of the Cumulative Distribution Function (CDF) screen field. The ANOVA 

revealed a significant main effect of screen field, F (2, 27) = 253.94, p < 0.01, and 𝜂𝜂𝑝𝑝2 = 

0.95. Follow-on t-tests confirmed significant differences between the Map and CDF, t(18) 

= 10.59, p < 0.01, Map and Table, , t(18) = -7.93, p < 0.01, and the CDF and Table fields, 

t(18) = -102.04, p < 0.01. From this analysis, it was determined that DSS 1 users clicked 

Lower 
Bound

Upper 
Bound

Map 14 0.16 0.13 0.03 0.09 0.24
Table 14 0.84 0.13 0.03 0.76 0.91

Percentage of User Clicks by Screen Field: DSS 0
Descriptive Statistics

Field N Mean % Standard 
Deviation

Standard 
Error

95% Confidence Interval
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the Table field at significantly higher rates than either the Map or the CDF. Also, users 

interacted with the Map screen field at significantly higher rates than the CDF field. Refer 

to Table 4 for descriptive statistics and pairwise comparison of DSS 1 click data.  

Table 4. Analysis of DSS 1 Click Data. 

 

 

A univariate ANOVA was then conducted for DSS 3 click data with the inclusion 

of the Pareto Distribution screen field. The ANOVA reported a significant main effect of 

screen field, F(3, 28) = 144.38, p < 0.01, and 𝜂𝜂𝑝𝑝2 = 0.94. The results of t-tests reported 

significant differences between the Pareto Distribution and Map, t(14) = 8.74, p < 0.01, 

Pareto Distribution and CDF,  t(14) = 45.22, p < 0.01, Pareto Distribution and the Table, 

t(14) = -5.19, p < 0.01, the Map and Table, t(14) = -10.32, p < 0.01, and the CDF and 

Table fields, t(14) = -96.09, p < 0.01. The results show that DSS 3 users, through mouse 

clicks, interacted with the Pareto Distribution and the Table significantly more than the 

CDF or the Map. Additionally, a significant difference was determined to be present 

between the Pareto Distribution and the Table. Refer to Table 5 for descriptive statistics 

and pairwise comparison of DSS 3 click data.  

Lower 
Bound

Upper 
Bound

Map 10 0.15 0.11 0.04 0.07 0.23
CDF 10 0.00 0.00 0.00 0.00 0.00
Table 10 0.85 0.11 0.04 0.77 0.93

Field A Field B
Mean 

Difference 
(A - B)

df Std. Error Sig. t

Map CDF 1.10 18 0.09 0.00 10.59
Map Table -0.84 18 0.09 0.00 -7.93
CDF Table -1.932 18 0.09 0.00 -102.04

Pairwise Comparisons (Transformed Data)

Percentage of User Clicks by Screen Field: DSS 1
Descriptive Statistics

Field N Mean % Standard 
Deviation

Standard 
Error

95% Confidence Interval
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Table 5. Analysis of DSS 3 Click Data. 

 
 

To determine the screen fields most utilized by users across DSS levels, screen 

elements common across all DSS levels, which included the Map and Table fields, were 

examined. The univariate ANOVA conducted using pooled Map and Table data for all 

DSS levels revealed a significant main effect of screen field; F(1, 26) = 104.69, p < 0.01, 

and 𝜂𝜂𝑝𝑝2 = 0.63. As a result, it was determined that users interacted with the Table through 

mouse clicks at statistically significant higher rates than the Map across all DSS levels. 

Refer to Table 6 for descriptive statistics of the common screen elements click data.  

Table 6. Analysis of Common Screen Elements Click Data. 

 
 

Lower 
Bound

Upper 
Bound

Pareto 8 0.38 0.09 0.03 0.30 0.45
Map 8 0.02 0.03 0.01 0.00 0.05
CDF 8 0.00 0.00 0.00 0.00 0.00
Table 8 0.60 0.07 0.03 0.54 0.66

Field A Field B
Mean 

Difference 
(A - B)

df Std. Error Sig. t

Pareto Map 1.30 14 0.11 0.00 8.74
Pareto CDF 1.58 14 0.11 0.00 45.22
Pareto Table -0.21 14 0.11 0.00 -5.19
Map CDF 0.28 14 0.11 0.08 1.92
Map Table -1.51 14 0.11 0.00 -10.32
CDF Table -1.784 14 0.11 0.00 -96.09

Percentage of User Clicks by Screen Field: DSS 3
Descriptive Statistics

Field N Mean % Standard 
Deviation

Standard 
Error

95% Confidence Interval

Pairwise Comparisons (Transformed Data)

Lower 
Bound

Upper 
Bound

Map 32 0.12 0.12 0.02 0.08 0.17
Table 32 0.78 0.15 0.03 0.73 0.84

Percentage of User Clicks by Screen Field: Common Screen Elements
Descriptive Statistics

Field N Mean % Standard 
Deviation

Standard 
Error

95% Confidence Interval
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C. VISUAL FIXATIONS 

As previously discussed, user gaze fixations were recorded using the Gazepoint 

software suite and the GP3HD eye tracker. As a result of inconsistent sampling for each 

user caused by the different amounts of time used by each participant, percentages of total 

recorded gazes per each screen field were used to feed the following analysis. As before, 

extreme outliers were identified and omitted. The data set was transformed using a 

LOG10(x) algorithm due to non-normal distributions. As for the click data, this transformed 

data set was then used to determine if any statistically significant difference existed 

between user gaze rates for screen elements (map, data table, cumulative distribution 

function, Pareto distribution) within DSS levels and for screen elements common across 

DSS levels (map and table only). The comparative rates of gaze fixations were assessed to 

determine (a) what data and presentation mode did users fixate upon the most as they made 

route selections, and (b) if the reliance on data presented in screen fields common across 

all DSS levels changed as more data was made available to the user.  

A Univariate ANOVA performed DSS 0 visual fixations revealed a significant 

main effect of screen field within DSS 0; F (1, 20) = 58.51, p < 0.01, and 𝜂𝜂𝑝𝑝2 = 0.575. From 

this information, it was determined that users visually fixated on the Table field at 

statistically significant higher rates than the Map. Refer to Table 7 for descriptive statistics 

of DSS 0 visual fixations data.  

Table 7. Analysis of DSS 0 Visual Fixations Data. 

 
 

The analysis continued with DSS 1 fixations data, with the ANOVA reporting a 

significant main effect of screen field, F(2, 30) = 18.16, p < 0.01, and 𝜂𝜂𝑝𝑝2 = 0.55. T-tests 

revealed significant differences between the Map and Table, t(20) = -6.15, p < 0.01, and 

Lower 
Bound

Upper 
Bound

Map 11 0.22 0.14 0.04 0.12 0.32
Table 11 0.78 0.14 0.04 0.68 0.88

Percentage of Fixations by Screen Field: DSS 0
Descriptive Statistics

Field N Mean % Standard 
Deviation

Standard 
Error

95% Confidence Interval
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the CDF and Table fields, t(20) = -5.68, p < 0.01. From these figures, it was determined 

that DSS 1 users visually fixated on the Table field at significantly higher rates than either 

the Map or the CDF, for which there was no significant difference between. Refer to Table 

8 for descriptive statistics and pairwise comparison of DSS 1 visual fixations data. 

Table 8. Analysis of DSS 1 Visual Fixation Data. 

 
 

The Univariate ANOVA was repeated for DSS 3. Once again, the ANOVA 

reported a significant main effect of screen field, F(3, 36) = 30.49, p < 0.01, and 𝜂𝜂𝑝𝑝2 = 0.72. 

Individual t-tests described significant differences between the Pareto Distribution and 

Map, t(18) = 7.23, p < 0.01, Pareto Distribution and CDF,  t(18) = 3.84, p < 0.01, Pareto 

Distribution and Table,  t(18) = -3.10, p = 0.01, the Map and Table, t(18) = -9.63, p < 0.01, 

and the CDF and Table fields, t(18) = -5.65, p < 0.01. From this information, it was 

determined that DSS 3 users visually fixated on the Pareto Distribution and the Table with 

significantly higher frequency than the CDF or the Map. As in the results from the DSS 3 

click data, no significant differences were shown to exist between the CDF and Map fields. 

Refer to Table 9 for descriptive statistics and pairwise comparison of DSS 3 visual fixation 

data.  

Lower 
Bound

Upper 
Bound

Map 11 0.18 0.17 0.05 0.06 0.29
CDF 11 0.14 0.12 0.04 0.06 0.22
Table 11 0.68 0.18 0.05 0.57 0.80

Field A Field B
Mean 

Difference 
(A - B)

df Std. Error Sig. t

Map CDF 0.17 20 0.16 0.39 0.88
Map Table -0.72 20 0.16 0.00 -6.15
CDF Table -0.890 20 0.16 0.00 -5.68

Percentage of Fixations by Screen Field: DSS 1
Descriptive Statistics

Field N Mean % Standard 
Deviation

Standard 
Error

95% Confidence Interval

Pairwise Comparisons (Transformed Data)
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Table 9. Analysis of DSS 3 Visual Fixations Data. 

 
 

Like in the case of user clicks, screen elements common across all DSS levels were 

studied to determine which common field (Map or Table) did users visually fixate on the 

greatest. The univariate ANOVA ran using the aggregated Map and Table data for all DSS 

levels revealed a significant main effect; F(1, 62) = 110.17, p < 0.01, and 𝜂𝜂𝑝𝑝2 = 0.64. 

Mirroring the results from the common screen element user click analysis, users were 

shown to visually fixate on the Table field at statistically significant higher rates than the 

Map across all DSS levels. Refer to Table 10 for descriptive statistics of common screen 

elements visual fixation data. 

Table 10. Analysis of Common Screen Elements Visual Fixations Data. 

 
 

Lower 
Bound

Upper 
Bound

Pareto 10 0.32 0.12 0.04 0.24 0.41
Map 10 0.06 0.04 0.01 0.03 0.09
CDF 10 0.12 0.07 0.02 0.08 0.17
Table 10 0.50 0.12 0.04 0.41 0.58

Field A Field B
Mean 

Difference 
(A - B)

df Std. Error Sig. t

Pareto Map 0.80 18 0.12 0.00 7.23
Pareto CDF 0.49 18 0.12 0.00 3.84
Pareto Table -0.20 18 0.12 0.01 -3.10
Map CDF -0.31 18 0.12 0.06 -2.01
Map Table -1.00 18 0.12 0.00 -9.63
CDF Table -0.695 18 0.12 0.00 -5.65

Percentage of Fixations by Screen Field: DSS 3
Descriptive Statistics

Field N Mean % Standard 
Deviation

Standard 
Error

95% Confidence Interval

Pairwise Comparisons (Transformed Data)

Lower 
Bound

Upper 
Bound

Map 32 0.16 0.15 0.03 0.10 0.21
Table 32 0.66 0.19 0.03 0.59 0.72

Percentage of Fixations by Screen Field: Common Screen Elements
Descriptive Statistics

Field N Mean % Standard 
Deviation

Standard 
Error

95% Confidence Interval
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D. PUPILLOMETRY  

Like with user gaze fixations, pupillometry measurements were recorded using the 

Gazepoint software suite and the GP3HD eye tracker. However, screen fields were not 

taken into account when pupil diameter was recorded. As a result, raw pupil diameter 

observations were utilized to describe the effects of DSS level on the relative cognitive 

load of users. No transformations were applied to the data because of its inherent normal 

distribution within DSS level. A univariate ANOVA conducted using pupil measurements 

revealed a significant main effect of screen field across DSS level; F(2, 103358) = 6192.69, 

p < 0.01, and 𝜂𝜂𝑝𝑝2 = 0.11. Individual t-tests reported significant differences between the DSS 

0 and DSS 1, t(60014) = 58.71, p < 0.01, DSS 0 and DSS 3, t(69530) = -42.35, p < 0.01, 

and DSS 1 and DSS 3, t(77172) = -111.86, p < 0.01. As a result, it was determined that 

DSS 3 users expressed significantly greater pupil diameter than DSS 0 users, who in turn 

showed significantly greater pupil diameter than DSS 1 users. Refer to Table 11 for 

descriptive statistics and pairwise comparison for user pupillometry data. 

Table 11. Analysis of User Pupil Diameter across DSS Levels. 

 
 

E. CONFIDENCE RATINGS 

User confidence in each scenario route selection was recorded in TMPLAR and 

made available in a .csv file for analysis. To minimize the effects of abnormal skewness 

and kurtosis, a special data transformation was made prior to statistical analysis. First, user 

Lower 
Bound

Upper 
Bound

DSS 0 26187 3.45 0.49 0.00 3.44 3.45
DSS 1 33829 3.22 0.44 0.00 3.22 3.23
DSS 3 43345 3.61 0.51 0.00 3.61 3.62

DSS A DSS B
Mean 

Difference 
(A - B)

df Std. Error Sig. t

DSS 0 DSS 1 0.22 60014 0.00 0.00 58.71
DSS 0 DSS 3 -0.17 69530 0.00 0.00 -42.35
DSS 1 DSS 3 -0.39 77172 0.00 0.00 -111.86

Pairwise Comparisons

User Pupil Diameter Across DSS
Descriptive Statistics

Field N Mean 
(mm)

Standard 
Deviation

Standard 
Error

95% Confidence Interval
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confidence ratings made on the 1 - 7 Likert Scale were transformed using the reciprocal of 

the user entry. For example, a user entry of, “1,” was transformed to, “7,” and an entry of, 

“2,” was transformed to, “6,” and so on. The reciprocal of the Likert Scale mitigated the 

effects of overly negative skewness of the data without compromising the validity of the 3 

(DSS level) x 3 (scenario difficulty) repeated measures ANOVA. After the reciprocal was 

taken, the data was smoothed using the LOG10(x) algorithm to achieve a more normal 

distribution. From the resulting data set, user confidence across DSS levels and scenario 

difficulty were analyzed to determine if any significant difference was present. The 3 x 3 

repeated measures ANOVA showed that there was no significant main effect of confidence 

across the DSS levels; F(2, 36) = 0.46, p = 0.64, and 𝜂𝜂𝑝𝑝2 = 0.03. However, a significant 

main effect of confidence across difficulty; F(2, 36) = 73.50, p < 0.01, and 𝜂𝜂𝑝𝑝2 = 0.67, was 

present. There was no interaction between DSS level and difficulty for user confidence 

ratings, p = 0.83. Descriptive statistics pertaining to mean confidence ratings across DSS 

levels are illustrated in Table 12. 

Table 12. Analysis of User Mean Route Confidence Ratings  
across DSS Level. 

 
 

Further t-tests applied toward scenario difficulty uncovered significant differences 

between Easy and Hard, t(76) = -1.22, p < 0.01 and Medium and Hard, t(76) = -0.77, p < 

0.01, scenarios. From this, it was determined that participants making route selections 

classified as Hard had higher confidence in their decisions for scenarios classified as 

Medium or Easy. Users did not have any difference in their confidence ratings for Easy 

and Medium scenarios. Descriptive statistics and pairwise comparisons for user confidence 

ratings across difficulty conditions are shown in Table 13.  

Lower 
Bound

Upper 
Bound

DSS 0 14 5.97 1.21 0.32 5.27 6.67
DSS 1 13 5.79 0.83 0.23 5.29 6.29
DSS 3 12 5.92 0.61 0.18 5.53 6.30

User Mean Confidence Ratings Across DSS
Descriptive Statistics

Field N Mean Standard 
Deviation

Standard 
Error

95% Confidence Interval
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Table 13. Analysis of User Mean Route Confidence Ratings  
across Difficulty.  

 
 

F. SURVEY RESPONSES 

As discussed in Chapter III, each study participant completed a written survey after 

the conclusion of the experiment. The survey consisted of twelve questions, requiring 

responses in short-answer, narrative form, and on a 1 – 7 Likert Scale (1 = lowest/least 

positive response, 7 = greatest/most positive response). The survey questions were focused 

on service information and experience, sleep habits, and demographic information 

(addressed in Chapter III.A.2). As before, for responses made on the 1 – 7 Likert Scale, the 

reciprocal (1 = 7, 2 = 6, etc.) and LOG10(x) of the resulting figure was used for inputs into 

the ANOVA. However, raw Likert Scale figures were used for the descriptive statistics. 

Furthermore, any extreme outliers that were identified after transformation were omitted. 

1. Efficiency of TMPLAR Application 

The first question asked of the participants in the survey was, “How efficient was 

the planning software?” As this question required a response on a Likert Scale, the 

aforementioned transformation was applied to the responses. A univariate ANOVA 

conducted the transformed responses indicated no significant main effect of efficiency 

ratings across DSS level; F(2, 37) = 0.83, p = 0.44, and 𝜂𝜂𝑝𝑝2 = 0.04. See Table 14 for 

descriptive statistics and pairwise comparison of user ratings of efficiency of TMPLAR 

application.  

Lower 
Bound

Upper 
Bound

Easy 39 6.05 0.77 0.12 5.80 6.30
Medium 39 5.90 0.94 0.15 5.60 6.21
Hard 39 5.74 1.09 0.17 5.38 6.09

Difficulty 
A

Difficulty 
B

Mean 
Difference 

(A - B)
df Std. Error Sig. t

Easy Medium -0.02 76 0.01 0.08 -0.44
Easy Hard -0.05 76 0.01 0.00 -1.22
Medium Hard -0.03 76 0.01 0.00 -0.77

Pairwise Comparisons (Transformed Data)

Field N Mean Standard 
Deviation

Standard 
Error

95% Confidence Interval

User Mean Confidence Ratings Across Difficulty
Descriptive Statistics
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Table 14. User Efficiency Ratings of TMPLAR Application. 

 
 

2. Helpfulness of TMPLAR Application 

The second question on the post-experiment survey was, “Do you feel that the 

software was helpful in enabling you to choose the optimum route?”  As this question 

required a response on a Likert Scale, the descriptive statistics are expressed in terms of 

raw figures while the Univariate ANVOA utilizes the aforementioned transformed data set. 

Again, no significant main effect of helpfulness ratings across DSS level; F(2, 31) = 0.17, 

p = 0.85, and 𝜂𝜂𝑝𝑝2 = 0.01, was discovered. As a result, DSS can be said to have no effect on 

user helpfulness ratings. See Table 15 for descriptive statistics of TMPLAR application 

helpfulness.  

Table 15. User Helpfulness Ratings of TMPLAR Application. 

 

3. Time Available to Complete Scenarios 

 
The next question contained in the participant survey asked the users, “Did you feel 

like you had enough time to plan all the routes?” Although users were briefed to take as 

much time as needed, they were required to provide a response on a Likert Scale. A 

Univariate ANOVA reported no significant main effect of efficiency ratings across DSS 

Lower 
Bound

Upper 
Bound

DSS 0 14 5.86 1.10 0.29 5.22 6.49
DSS 1 13 5.54 0.78 0.22 5.07 6.01
DSS 3 13 5.46 1.27 0.35 4.70 6.23

User Mean TMPLAR Efficiency Ratings
Descriptive Statistics

Field N Mean Standard 
Deviation

Standard 
Error

95% Confidence Interval

Lower 
Bound

Upper 
Bound

DSS 0 8 6.00 0.00 0.00 6.00 6.00
DSS 1 13 6.00 1.00 0.28 5.40 6.60
DSS 3 13 6.17 0.72 0.21 5.71 6.62

User Mean TMPLAR Helpfulness Ratings
Descriptive Statistics

Field N Mean Standard 
Deviation

Standard 
Error

95% Confidence Interval
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level; F(2, 37) = 0.89, p = 0.42, and 𝜂𝜂𝑝𝑝2 = 0.05. Therefore, DSS was found to have no effect 

on the users’ perception of time available to complete the assigned task. Refer to Table 16 

for descriptive statistics of user ratings of perceived time available to complete the assigned 

task.  

Table 16. User Ratings of Time Available to Complete Scenarios.  

 
 

4. User-Proposed Additions to TMPLAR Functionality 

The first question on the post-experiment survey that required a narrative answer 

was, “Are there any additions to the software that would have helped you in your route 

decisions?” Of the 40 participants that completed the post-experiment survey, 21 provided 

substantive responses. The received responses generally addressed three aspects of 

TMPLAR: the user interface, the map, and the presentation of data. 

User suggestions addressing the user interface were centered on the ability to 

customize the screen or specific fields to suit individual taste. A common theme was the 

ability to rearrange the order of the data columns, or completely hide them, within the table 

field to more suit the individual planner’s mental priorities. Additionally, a single button 

to display or hide all routes on the map and distribution function field were proposed. For 

the DSS 3 interface specifically, it was proposed that a simpler way to select routes on the 

Pareto distribution should be implemented, such as by drawing a selection box with the 

mouse over the desired points. Also, the ability to sort routes by two different fields 

(maximum wave height and the by fuel usage, for example) was suggested. Finally, the 

ability to set the Pareto distribution and the cumulative distribution function to display 

maximum simulation values instead of medians was suggested to allow the user to better 

conceptualize the overall risk of selected routes.  

Lower 
Bound

Upper 
Bound

DSS 0 14 6.07 1.07 0.29 5.45 6.69
DSS 1 13 6.38 0.65 0.18 5.99 6.78
DSS 3 13 6.54 0.88 0.24 6.01 7.07

User Ratings of Time Available to Complete Scenarios
Descriptive Statistics

Field N Mean Standard 
Deviation

Standard 
Error

95% Confidence Interval
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On the other hand, user suggestions pertaining to the map field were comparatively 

simple. Multiple users expressed the desire for weather affecting navigation routes to be 

visually displayed on the map. Other requests included the incorporation of the surface 

tracks of known contacts and a visual depiction of traffic density.  

The final and most substantive classification of user suggestions for the 

improvement of the TMPLAR application relates to the presentation of data. The most 

recurring comment was that ship speed was not displayed anywhere on the screen. This 

omission should be corrected as speed is an important consideration for safety of transit. 

Another suggestion that was received on more than one occasion was for the display of the 

AI’s relative confidence in the displayed route’s vitals. If the route was calculated using 

unreliable or incomplete data, the users generally need to know before making decisions. 

Another suggestion was for an option to set the most fuel efficient or the more direct route 

as the system default, then display all other calculated route statistics in terms of the default 

route. For example, “Route 1,” would always be set as the default. “Route 2,” would then 

display distance to destination as, “+150 nm,” and so on. This would allow for easier 

mental comparison of multiple route options. Finally, multiple users requested that routes 

outside of a certain confidence interval be omitted to reduce metal load on the decision 

maker as they weigh their options. 

5. User Sleep Hours Prior to Experiment  

The last item on the survey addressed the amount of sleep the users experienced the 

night prior. No transformations were required for the user sleep hours data set. The 

Univariate ANOVA found no evidence of a significant main effect in reported user sleep 

hours across DSS level; F(2, 37) = 0.97, p = 0.39, and 𝜂𝜂𝑝𝑝2 = 0.05. Therefore, it was 

determined that a significant difference is sleep hour prior to the experiment could not be 

found across DSS users. As a result, hours of sleep prior to the experiment cannot be 

examined as a contributing factor for time to decision performance or cognitive load. Refer 

to Table 17 for descriptive statistics of user sleep hours prior to experiment across DSS 

levels.  
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Table 17. User Hours of Sleep Prior to Experiment  
across DSS Levels. 

 
 
 
 
 
 
 
 
 
 
 
 
 

Lower 
Bound

Upper 
Bound

DSS 0 14 7.00 1.09 0.29 6.37 7.63
DSS 1 13 6.42 1.32 0.37 5.63 7.22
DSS 3 13 6.96 1.16 0.32 6.26 7.66

User Hours of Sleep Prior to Experiment Across DSS
Descriptive Statistics

Field N Mean Standard 
Deviation

Standard 
Error

95% Confidence Interval
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V. CONCLUSIONS AND RECOMMENDATIONS 

A. CONCLUSIONS 

1. Time to Decision 

The built-in functionality of the TMPLAR application and the Gazepoint software 

suite allowed for many conclusions to be drawn from the experimental trials. The first and 

most important of these conclusions pertains to the time to decision achieved by users of 

AI-augmented and baseline DSS. The results show that DSS 1 and DSS 0 users recorded 

the fastest time to decision with DSS 3 users posting the slowest times. However, users of 

the baseline system (DSS 0) and the simplified, AI-Augmented DSS (DSS 1) did not show 

a significant difference in time to decision. This indicates that DSS 0 users were provided 

with enough information to facilitate quick decision-making while DSS 1 users reaped the 

benefits of the AI-augmentation without the drawbacks of the increased user interface 

complexity of DSS 3. The result also indicates that simpler displays, with or without AI-

augmentation, are more conducive to faster time to decision than more complex, 

information-dense interfaces.  

Easy (projected fuel usage within one standard deviation of the mean for the given 

route), Medium (projected fuel usage within two standard deviations of the mean), and 

Hard (all COAs across the entire distribution) difficulties were also assessed for their 

effects on time to decision. Significant differences in time to decision were shown to exist 

between the Easy and Hard time to decision data points. This indicates better, in terms of 

time, decision-making capability when the DSS restricts the route options to those fitting 

the route output parameters (routes within one standard deviation of the mean) as opposed 

to displaying the entire solution set as calculated by TMPLAR. This clear result represents 

a future TMPLAR setting that can default route options output to those within default 

setting of one standard deviation from the calculated mean with a setting that can be 

adjusted to display the entire distribution if desired.  
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2. User Interaction with Screen Fields 

User interaction with the TMPLAR interface was quantified by recording mouse 

clicks and visual fixations on or within pre-defined screen fields for all DSS levels. For 

DSS 0, users clicked the computer mouse within the dimensions of the Table field at a 

frequency that was greater to a statistically significant degree than the Map Field. This data 

is reinforced by similar results for visual fixations, which indicated that users fixated on 

the Table at a statistically significant higher rate than the Map field. From both the click 

data and the eye tracking information, it is concluded that users interacted with and relied 

upon the data table most in their decision making with DSS 0. 

A similar result was seen in DSS 1, where the screen was divided into three fields, 

the Map, a Cumulative Distribution Function, and a Table field. User click data indicated 

that experiment participants clicked the mouse within the Table field at higher, statistically 

significant rates than either the Map (which exhibited the second greatest click rates) or the 

Cumulative Distribution Function (lowest click rates) fields. Furthermore, a significant 

difference existed between the Map and Cumulative Distribution Function fields, with 

nearly no user clicks in the latter. Visual fixation data obtained from the eye tracker again 

reinforces the click data by ordering the level of user fixations (from greatest to least) as 

the Table, Map, and Cumulative Distribution Function fields. In DSS 1 visual fixations, 

statistically significant differences existed between the Map/Table and Cumulative 

Distribution Function/Table Fields. It can therefore be concluded that in DSS 1, users 

physically and visually interacted with the Table field at statistically significant higher rates 

than the Map or Cumulative Distribution Function field. 

Results for DSS 3 user interaction with screen fields again demonstrate the primacy 

of the Table field for decision makers. Click data showed that users interacted with the 

interface in the following descending order of frequency: Table, Pareto Distribution. Map 

and finally the Cumulative Distribution function. Statistically significant differences were 

present for user clicks between all screen fields except the Map and the CDF. DSS 3 user 

visual fixations yielded similar results with gaze rates for fields being recorded in the 

following descending order: Table, Pareto Distribution, Table, Pareto Distribution, 

Cumulative Distribution Function, and lastly Map. A statistically significant difference 
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existed between all screen fields except the Map and CDF, as in the user click analysis. 

From these results, it is concluded that DSS 3 users physically and visually interacted with 

the Table and Pareto Distribution at statistically significant higher rates than the Map or 

Cumulative Distribution Function field. However, it is important to note, that users were 

required to click on route instances on the Pareto Distribution to progress through the 

scenarios. As a result, data skewness toward the Pareto Distribution is artificial and 

accounted for by the DSS 3 user interface design. 

An analysis of user interaction with screen fields that were common to all three 

DSS levels (Map and Table fields) yielded results indicative of those found in the within-

DSS examinations. Both user clicks and gaze fixations favored the Table field at 

statistically significant and higher rates than those recorded in the Map Field. This result 

and those above indicate that users both tactilely through an input device and 

physiologically through eye movements favor data presented in a tabulated, numeric 

format when presented with tasks that require a comparative analysis of mutually 

exclusive, multi-attribute options.  

3. Cognitive Load 

Pupil diameter measurements, which are an indicator of cognitive load, were 

measured with the Gazepoint suite for users across all DSS levels. Mean pupil diameter 

indicated that DSS 3 users were under the greatest cognitive load, followed by DSS 0 users, 

and DSS 1 users, who experienced the least cognitive load. Statistically significant 

differences existed between users of all DSS levels and the cognitive load results are 

congruent with those of the time to decision analysis (DSS 3: longest time required/greatest 

cognitive load; DSS 0: moderate time required/moderate cognitive load, DSS 1: shortest 

time require/least cognitive load).  

4. User Confidence Ratings and Survey Information 

User confidence ratings exhibited statistically significant differences between those 

recorded in the three DSS levels. DSS 0 received the highest confidence ratings for route 

selections, followed by DSS 3, with DSS 1 receiving the lowest confidence ratings. It is 

important to note that these user ratings do not correspond with the ordinal rankings of time 
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to decision performance or cognitive load assessments made above. Confidence ratings 

across scenario difficulty were determined to be highest for Easy difficulty, next highest 

for Medium difficulty, and lowest for Hard difficulty. The differences calculated between 

all three difficulty ratings was shown to be statistically significant. As a result, it was 

concluded that users exhibit greater confidence in the selections made, aided by a DSS, 

when possible solutions are restricted to within one or two standard deviations of the mean 

as opposed to an unrestricted solution set. Also, user ratings of the TMPLAR application’s 

efficiency and helpfulness did not differ significantly across DSS level. Finally, User self-

assessments of their own maritime route planning experience were significantly higher for 

DSS 1 than DSS 0 or DSS 3. However, because, “correctness” of route selection was not 

taken into account in the analysis, the greater relative level of experience did not impact 

the results of what was analyzed (time to decision, cognitive load, reliance on data fields).  

5. Overall Assessment 

Given the results of the experiment and the ensuing analysis, it was determined that 

the DSS 1 interface produced the most beneficial results as compared to the alternatives. 

The underlying function of DSS 1 was augmented with AI that ran maritime route 

simulations against known and forecasted METOC conditions, resulting in options that 

were more refined and relevant to the simulated operational environment. DSS 0 did not 

provide this functionality at all, and while DSS 3 did possess the same underlying AI-

algorithm, its more complex user interface and presentation resulted in poorer performance 

during experimental trials. As a result, DSS 1 users exhibited faster time to decision than 

the alternatives, significantly so in the case of DSS 3. Additionally, DSS 1 had shown by 

a statistically significant margin that its user interface produced a level of cognitive load 

that was significantly less than DSS 0 and DSS 3.  

Nested within the examination pertaining to DSS levels, specific data fields were 

also examined for the level of interaction users had with each. In every DSS level, it was 

shown that users relied most heavily and by a statistically significant margin on route data 

in a standard table format. Where available (as in DSS 3), route data displayed in Pareto 

Distribution was also heavily utilized by users, but this result can be explained by the 
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requirement of users to select routes on the Pareto Distribution to initiate route comparison 

in each scenario.  

B. POTENTIAL BENEFITS 

In addition to the benefits of greater operational mobility afforded by minimized 

fuel consumption and more efficient routing, this study revealed several additional 

significant benefits. From the time to decision analysis, it was shown that AI-augmentation 

to DSS has the ability to significantly reduce the time it takes for a user to arrive at a 

decision over a baseline application. This can focus the development and acquisition of 

future DSS in the DON, thereby maximizing performance out of human users while saving 

time and real-world resources. Also, the inclusion of capabilities such as the tracks of 

surface contacts, a real-time moving map, and threat range rings will make the TMPLAR 

application not only an effective mission planning tool, but also an effective common 

operational picture application. Additionally, the balance demonstrated between user 

interface complexity and volume of data displayed demonstrated an ideal compromise in 

which users were most readily able to make calculated decisions while experiencing the 

least cognitive load, thereby allowing the decision-maker more time to dedicate to more 

dynamic tasks.  

A major benefit yet to be realized from a DSS like TMPLAR is its applications 

outside of the surface maritime domain. Aside from its obvious uses for subsurface vessels, 

TMPLAR, or a similar application, can be conceivably adapted for use in land 

environments. The ability to calculate fuel requirements for surface routes while taking 

into consideration inputs such as METOC effects, road conditions, threat posture, 

visibility, etc., would be in high demand for any operational environment where multi-

vehicle mounted movements are routinely conducted.  

C. LIMITATIONS 

There are several shortcomings of this study that stem from the design of the 

version of the TMPLAR application used for the experiment. A major shortcoming with 

the TMPLAR application that limited a result of the experiment was that users were 

required to interact with certain screen fields to progress the scenario, specifically, the 
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Pareto Distribution in DSS 3. In that iteration of TMPLAR, users were required to select a 

route on the distribution to make its vitals appear in the Table field and its track on the Map 

field. This caused artificially inflated values for the level of interaction both through mouse 

clicks and visual fixations for that screen field. As a result, this study does not adequately 

address the true relative value of a Pareto Distribution compared to a data table, map, or 

cumulative distribution function in navigation problems. Another shortcoming is the 

inclusion of only five origin/destination pairs for navigation scenarios. This lack of variety 

led to feelings of monotony in the participants as they completed the required 60 scenarios. 

If more five origin/destination pairs were included, the participants would have been 

continuously presented with fresh, challenging navigation problems. This in turn could 

have limited the inclination of participants to complete the scenarios faster to finish the 

experiment trial sooner. The final limitation of this study was the lack of any practical way 

to assess or, “score,” the experiment participants’ route selections. If there was a feasible 

way to determine is a user selected the correct route, or even better, a route scored on a 

spectrum of correctness given the known conditions, the researcher would have had a 

powerful metric to assess the relative effectiveness of the TMPLAR DSS levels. 

D. RECOMMENDATIONS & FUTURE WORK 

It is highly recommended that future NPS student researchers continue studies into 

human-machine teaming and AI-augmentation to DSS in partnership with NJIT, UCONN, 

and NRL-MRY. The results of this study are compelling and show definite promise for 

moving the body of knowledge forward in the field of military applications of AI in 

operational environments. The TMPLAR application, although useful in its current state, 

has much room for improvement in the greater levels of performance it can provide to the 

user. The largest recommendation for further study is to quantify the relative level of 

performance gained, in terms of correct route choices, by employing an AI-augmentation 

to a DSS over a standard, non-augmented system. Additionally, it is advised that future 

studies allow for the option of user customization of the interface prior to each trial as a 

separate measure in addition to set levels of DSS. Also, biometric measurements such as 

heart rate and Cortisol can be measured for participants before, during, and after 

experiment trails to gain a greater understanding of stress levels during the experiment and 
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how they affect performance and cognitive load of the users. Lastly, it is recommended 

that in the future, each experiment participant completes a set of fewer scenarios at each 

DSS level, to include the customized option, with the goal of achieving a greater number 

of participants per DSS.      
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APPENDIX A.  EXIT QUESTIONNAIRE 
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APPENDIX B.  INFORMED CONSENT FORM 
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APPENDIX C.  TMPLAR EXPERIMENT VERBAL BRIEF 
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APPENDIX D.  TMPLAR (DSS 0) USER MANUAL 

 
 
 



82 

 
 
 
 
 
 



83 

 
 
 
 
 
 



84 

 

 



85 

APPENDIX E.  TMPLAR (DSS 1) USER MANUAL 
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APPENDIX F.  TMPLAR (DSS 3) USER MANUAL 
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APPENDIX G.  TMPLAR QUICK START GUIDES 
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APPENDIX H.  GAZEPOINT ANALYSIS OUTPUT DATA FIELDS 

Gazepoint Analysis Output Data Fields 

Field Description 

MEDIA_ID A unique numeric identifier associated with the media item in the idea list 

MEDIA_NAME The user defined name of a media item 

CNT The COUNT increments once for each data record generated by Control 

TIME Time elapsed in seconds since the last system initialization 

TIMETICK CPU ticks recorded at time as TIME, can be used to synchronize data with other applications 

FPOGX The X-coordinate of the fixation POG, as a percentage of the screen width (0 to 1) 

FPOGY The Y-coordinate of the fixation POG, as a percentage of the screen height (0 to 1) 

FPOGS The starting time of the fixation POG in seconds since the system initialization or calibration 

FPOGD The duration of the fixation POG in seconds 

FPOGID The fixation POG ID number 

FPOGV The FPOG valid flag is 1 for valid and 0 for not valid 

BPOGX 
The X-coordinate of the un-filtered POG (left & right average), as a percentage of the screen 
width 

BPOGY 
The Y-coordinate of the un-filtered POG (left & right average), as a percentage of the screen 
height 

BPOGV The BPOG valid flag is 1 for valid and 0 for not valid 

CX The X-coordinate of the mouse cursor position, as a percentage of the screen width (0 to 1) 

CY The Y-coordinate of the mouse cursor position, as a percentage of the screen height (0 to 1) 

CS 
Mouse cursor state, 0 for steady state, 1 for left down, 2 for right down, 3 for left up, 4 for right 
up 

USER A custom data field that may be set by the user via the API or Remote 

LPCX The X-coordinate of the left eye pupil in the camera image, as a percentage of width (0 to 1) 

LPCY The Y-coordinate of the left eye pupil in the camera image, as a percentage of height (0 to 1) 

LPD The diameter of the left eye pupil in pixels 

LPS The scale factor of the left eye pupil, normalized to 1 at the head depth at calibration 

LPV The left pupil valid flag is 1 for valid and 0 for not valid 

RPCX The X-coordinate of the right eye pupil in the camera image, as a percentage of width (0 to 1) 

RPCY The Y-coordinate of the right eye pupil in the camera image, as a percentage of height (0 to 1) 

RPD The diameter of the right eye pupil in pixels 

RPS The scale factor of the right eye pupil, normalized to 1 at the head depth at calibration 

RPV The right pupil valid flag is 1 for valid and 0 for not valid 

BKID A unique numeric identifier assigned to each blink. Equal to 0 when no blink is detected 

BKDUR The duration of the preceding blink in seconds 

BKPMIN The number of blinks in the previous 60 second period of time 

LPMM The left pupil diameter in millimeters 

LPMMV The left pupil diameter valid flag is 1 for valid and 0 for not valid 

RPMM The right pupil diameter in millimeters 

RPMMV The right pupil diameter valid flag is 1 for valid and 0 for not valid 
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DIAL The positoin of the user dial (0 to 1) 

DIALV The dial valid flag is 1 for valid (connected) and 0 for not valid 

GSR The galvanic skin respons value (ohms) 

GSRV The galvanic skin response valid flag is 1 for valid and 0 for not valid 

HR The heart rate value in beats per minute 

HRV The heart rate valid flag is 1 for valid (connected) and 0 for not valid 

TTL0 The value of analog input TTL0 channel 0 to 1024 

TTL1 The value of digital input TTL1 channel 0 or 1 

TTLV The TTL valid flag is 1 for valid (connected) and 0 for not valid 

PIXS The conversion scale (pixels to mm) if a tracking marker is used 

PIXV The conversion scale valid flag is 1 for valid and 0 for not valid 

AOI List AOI name if the current fixation point is within (overlapping AOIs are hyphenated) 

SACCADE_MAG Saccade magnitude calculated as the distance between the current fixation and last fixation 

SACCADE_DIR 
Saccade direction calculated as the angle of the vector (current fixation - last fixation) from 
horizontal 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 



103 

LIST OF REFERENCES 

Ahmed, A., & Traore, I. (2007). A new biometric technology based on mouse dynamics. 
IEEE Transactions on Dependable and Secure Computing, 4(3), 165–179. 
https://doi.org/10.1109/TDSC.2007.70207 

Alter, S. L. (1976). Computer aided decision making in organizations:  A decision 
support systems typology [Doctoral dissertation, Massachusetts Institute of 
Technology]. https://dspace.mit.edu/bitstream/handle/1721.1/47047/ 
computeraideddec00alte.pdf?sequence=1 

Boyd, J. R. (1986). A discourse on winning and losing. G.T. Hammond (Ed.). Air 
University Press. https://www.airuniversity.af.mil/Portals/10/AUPress/ 
Books/B_0151_Boyd_Discourse_Winning_Losing.PDF 

Boyes, M., & Potter, T. (2015). The application of recognition-primed decision theory to 
decisions made in an outdoor education context. Journal of Outdoor and 
Environmental Education, 18(1), 2–15. https://doi.org/10.1007/BF03400975 

Brown, J., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of 
learning. Educational Researcher, 18(1), 32–42. 
https://doi.org/10.3102/0013189X018001032 

Cai, Y., Wen, Y., & Wu, L. (2014). Ship route design for avoiding heavy weather and sea 
conditions. TransNav: International Journal on Marine Navigation and Safety of 
Sea Transportation, 8. http://yadda.icm.edu.pl/baztech/element/bwmeta1. 
element.baztech-04241782-dfb7-49fd-862e-956e6e4dcf0c;jsessionid=F7 
B4351B97F7591D623EC8752946DCB1 

Chang, Y. C., Tseng, R. S., Chen, G. Y., Chu, P.C., & Shen, Y. T. (2013). Ship routing 
utilizing strong ocean currents. Journal of Navigation, 66(6), 825–835. 
https://doi.org/10.1017/ S0373463313000441 

Chitra, C., & Subbaraj, P. (2010). Multiobjective optimization solution for shortest path 
routing problem. International Journal of Electronics and Communication 
Engineering, 4(1), 9. https://waset.org/publications/6469/multiobjective-
optimization-solution-for-shortest-path-routing-problem 

Chu, P., Miller, S., Hansen, J., & Anderson, B. (2015). Fuel-saving ship route using the 
Navy’s ensemble meteorological and oceanic forecasts. The Journal of Defense 
Modeling and Simulation: Applications, Methodology, Technology, 12(1), 41–56. 
https://doi.org/10.1177/1548512913516552 



104 

Coyne, J. T., Baldwin, C., Cole, A., & Roberts, D. M. (2009). Applying real time 
physiological measures of cognitive load to improve training. 
https://doi.org/10.1007/978-3-642-02812-0_55 

Ehrgott, M. (2008). Multiobjective optimization. AI Magazine, 29(4), 47–47. 
https://doi.org/10.1609/aimag.v29i4.2198 

Gazepoint. (2019). Gazepoint analysis user manual.  

Gazepoint. (2020, February 5). Gazepoint GP3HD product description. Gazepoint. 
https://www.gazept.com/product/gp3hd/ 

Grimes, M., & Valacich, J. (2015). Mind over mouse: the effect of cognitive load on 
mouse movement behavior. https://www.researchgate.net/publication/ 
320471876_Mind_Over_Mouse_The_Effect_of_Cognitive_Load_on_Mouse_Mo
vement_Behavior 

Hibbeln, M., Jenkins, J., Schneider, C., Valacich, J., & Weinmann, M. (2014). 
Investigating the effect of insurance fraud on mouse usage in human-computer 
interactions. https://pdfs.semanticscholar.org/1590/e1a4b3 
ffa4ad9707295abf30218f173c4a12.pdf 

Ide, J., & Schöbel, A. (2016). Robustness for uncertain multi-objective optimization: a 
survey and analysis of different concepts. OR Spectrum, 38(1), 235–271. 
https://doi.org/10.1007/s00291-015-0418-7 

Ikehara, C., & Crosby, M. (2005). Assessing cognitive load with physiological sensors. 
Proceedings of the 38th Annual Hawaii International Conference on System 
Sciences, 295a–295a. https://doi.org/10.1109/HICSS.2005.103 

Joint Chiefs of Staff. (2018a). Joint maritime operations (JP 3-32). 
https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp3_32.pdf?ver=2019-
03-14-144800-240  

Joint Chiefs of Staff. (2018b). Meteorological and oceanographic operations (JP 3-59). 
https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/jp3_59.pdf  

Joint Chiefs of Staff. (2020). DOD dictionary of military and associated terms. 
https://www.jcs.mil/Portals/36/Documents/Doctrine/pubs/dictionary.pdf 

Klein, G. (1993). Decision making in action: Models and methods. Norwood, NJ: Ablex 
Pub.  

Klein, G. (2008). Naturalistic decision making. Human Factors: The Journal of Human 
Factors and Ergonomic Society, 50(3), 456–460. https://doi.org/10.1518/ 
001872008X288385 



105 

Klingner, J., Tversky, B., & Hanrahan, P. (2011). Effects of visual and verbal 
presentation on cognitive load in vigilance, memory, and arithmetic tasks. 
Psychophysiology, 48(3), 323–332. https://doi.org/10.1111/j.1469-
8986.2010.01069.x 

Krata, P., & Szlapczynska, J. (2018). Ship weather routing optimization with dynamic 
constraints based on reliable synchronous roll prediction. Ocean Engineering, 
150, 124–137. https://doi.org/10.1016/j.oceaneng.2017.12.049 

Krejtz, K., Duchowski, A. T., Niedzielska, A., Biele, C., & Krejtz, I. (2018). Eye tracking 
cognitive load using pupil diameter and microsaccades with fixed gaze. PloS one, 
13(9). http://europepmc.org/backend/ptpmcrender.fcgi?accid=PMC6138399& 
blobtype= pdf 

Lipshitz, R., Klein, G., Orasanu, J., & Salas, E. (2001). Taking stock of naturalistic 
decision making. Journal of Behavioral Decision Making, 14(5), 331–352. 
https://doi.org/10.1002/bdecision maker.381 

Marcus, G. (2018). Deep learning: a critical appraisal. New York, NY: New York 
University. https://arxiv.org/ftp/arxiv/papers/1801/1801.00631.pdf 

Mishra, M., Sidoti, D., Avvari, G., Mannaru, P., Martinez Ayala, D., Pattipati, K., & 
Kleinman, D. (2017). A context-driven framework for proactive decision support 
with applications. IEEE Access, 5, 12475–12495. 
https://doi.org/10.1109/ACCESS.2017.2707091 

National Geospatial-Intelligence Agency. (2017). American practical navigator, volume I 
(Pub. No. 9). https://msi.nga.mil/Publications/APN 

Olson, D. (2013). Decision support systems. In E. Kessler (Ed.), Encyclopedia of 
management theory (Vol. 1, pp. 185–188). Thousand Oaks: SAGE Publications, 
Ltd. http://sk.sagepub.com.libproxy.nps.edu/reference/encyclopedia-of-
management-theory/i2365.xml 

Pan, Y. (2016). Heading toward artificial intelligence 2.0. Engineering, 2(4), 409–413. 
https://doi.org/10.1016/J.ENG.2016.04.018 

Perera, L., & Soares, C. (2017). Weather routing and safe ship handling in the future of 
shipping. Ocean Engineering, 130, 684–695. https://doi.org/10.1016/j.oceaneng. 
2016.09.007 

Pomerol, J. (1997). Artificial intelligence and human decision making. European Journal 
of Operational Research, 99(1), 3–25. https://www-sciencedirect-
com.libproxy.nps.edu/science/article/pii/S0377221796003785?via%3Dihub 

Sidoti, D. (2018). TMLAR: Tool for multi-objective planning and asset routing 
[Unpublished Technical Manual]. 



106 

Sidoti, D., Avvari, G. V., Mishra, M., Zhang, L., Nadella, B. K., Peak, J. E., Hansen, J. 
A., Pattipati, K. R. (2017). A multiobjective path-planning algorithm with time 
windows for asset routing in a dynamic weather-impacted environment. IEEE 
Transactions on Systems, Man, and Cybernetics: Systems, 47(12), 3256–3271. 
https://doi.org/10.1109/TSMC.2016.2573271 

Shattuck, L., & Miller, N. (2005). Extending naturalistic decision making to to complex 
organizations: a dynamic model of situated cognition. Sage Publishers. 
https://calhoun.nps.edu/bitstream/handle/10945/47729/Shattuck-Miller-
Naturalistic_Decision_Making_2011.pdf?sequence=1&isAllowed=y 

Smirnov, A. (2006). Context-driven decision making in network-centric operations: 
agent-based intelligent support. http://handle.dtic.mil/100.2/ADA515001 

Sperry Marine. (2014). Military Integrated Bridge System (IBS) [Fact sheet]. 
https://www.electrotech.net.au/wp-content/uploads/2014/01/product-
brochure1.pdf 

Sperry Marine. (2010). Voyage Management System VMS VT Professional Integrated 
Navigation & Bridge Solutions [Fact sheet]. 
https://imistorage.blob.core.windows.net/imidocs/8116p075.pdf 

Sprague Jr, R. H. (1980). A framework for the development of decision support systems. 
MIS quarterly, 1–26. http://citeseerx.ist.psu.edu/viewdoc/download?doi=1 
0.1.1.476.4750&rep=rep1&type=pdf 

Susnea, E. (2012). Decision support systems in military actions: necessity, possibilities 
and constraints. Journal of Defense Resources Management, 3(2), 131–140. 
https://www.researchgate.net/publication/258833054_Decision_Support_Systems
_in_Military_Actions_Necessity_Possibilities_and_Constraints 

United States Marine Corps. (2018a). Command and control (MCDP-6). 
https://www.marines.mil/Portals/1/Publications/MCDP%206.pdf?ver=2019-07-
18-093633-990 

United States Marine Corps. (2018b). MAGTF meteorological and oceanographic 
operations (MCRP 2–10B.6). https://www.marines.mil/Portals/1/Publications/ 
MCRP%202-10B.6%20Supercedes%20MCWP%203-35.7.pdf?ver=2018-04-05-
131541-697 

United States Navy. (1995). Naval command and control (NDP-6). 
https://apps.dtic.mil/dtic/tr/fulltext/u2/a304321.pdf 

United States Navy. (2011). United States Navy meteorological and oceanographic 
support manual (COMNAVMETOCCOMINST 3140.1M). http://navybmr. 
com/study%20material/COMNAVMETOCCOMINST%203140.1M.pdf 



107 

United States Navy. (2017). Report on the collision between USS Fitzgerald (DDG 62) 
and Motor Vessel ACX Crystal; Report on the Collision between USS John S. 
Mccain (DDG 56) and Motor Vessel Alnic MC [Memorandum for Distribution]. 
Washington, DC: Office of the Chief of Naval Operations. 
https://s3.amazonaws.com/CHINFO/USS+Fitzgerald+and 
+USS+John+S+McCain+Collision+Reports.pdf 

Vettor, R., & Guedes Soares, C. (2016). Development of a ship weather routing system. 
Ocean Engineering, 123, 1–14. https://doi.org/10.1016/j.oceaneng.2016.06.035 

Vogl, J. (2014). Gazepoint 3 eye tracker manual. Department of Psychology, University 
of South Dakota. http://apps.usd.edu/coglab/schieber/eyetracking/Gazepoint 
/pdf/GP3%20Manual.pdf 

 



108 

THIS PAGE INTENTIONALLY LEFT BLANK  

  



109 

INITIAL DISTRIBUTION LIST 

1. Defense Technical Information Center 
 Ft. Belvoir, Virginia 
 
2. Dudley Knox Library 
 Naval Postgraduate School 
 Monterey, California 


	20Sep_Uziel_Steven_First8
	20Sep_Uziel_Steven
	I. Introduction
	A. Background
	B. Problem Statement
	C. Purpose Statement
	D. Research Questions
	E. Research Method
	F. Data, observations, and analysis method
	G. Potential benefits, limitations, and recommendations
	H. Thesis organization

	II. Literature Review
	A. Introduction
	B. METOC
	1. Environmental Factors and Their Effects on Maritime Operations
	2. U.S. Navy Approach to METOC Support

	C. Naval C2
	1. Doctrinal Basis
	2. Decision-Making Theory
	3. DSS Systems / Multi-Objective Optimization

	D. ArtIficial intelligence
	1. Relationship between AI and DSS
	2. AI Applications a Maritime DSS

	E. Cognitive Load and Indicators
	1. Cognitive Load
	2. Eye Tracking / Pupillometry
	3. User Manipulation of Data and Mouse Dynamics

	F. TMPLAR
	1. Function / Capabilities
	2. Benefit of TMPLAR and Similar Systems

	G. Summary

	III. Methods
	A. Design and Participants
	1. Experimental Design
	2. Participants

	B. Materials
	1. TMPLAR
	2. Eye Tracking / Pupillometry
	3. Exit Questionnaire

	C. Procedure
	1. Pilot Test
	2. Experimentation
	3. Data Retrieval and Structuring


	IV. Results
	A. Time to Decision
	B. User Clicks WITHIN TMPLAR Interface
	C. Visual Fixations
	D. Pupillometry
	E. Confidence Ratings
	F. Survey Responses
	1. Efficiency of TMPLAR Application
	2. Helpfulness of TMPLAR Application
	3. Time Available to Complete Scenarios
	4. User-Proposed Additions to TMPLAR Functionality
	5. User Sleep Hours Prior to Experiment


	V. Conclusions and Recommendations
	A. Conclusions
	1. Time to Decision
	2. User Interaction with Screen Fields
	3. Cognitive Load
	4. User Confidence Ratings and Survey Information
	5. Overall Assessment

	B. Potential Benefits
	C. Limitations
	D. Recommendations & Future Work

	Appendix A.  Exit questionnaire
	Appendix B.  Informed Consent Form
	Appendix C.  TMPLAR Experiment Verbal Brief
	Appendix D.  TMPLAR (DSS 0) User Manual
	Appendix E.  TMPLAR (DSS 1) User Manual
	Appendix F.  TMPLAR (DSS 3) User Manual
	Appendix G.  TMPLAR Quick Start Guides
	Appendix H.  Gazepoint analysis output data fields
	List of References
	Initial Distribution List


