982 research outputs found

    Towards a neural-level cognitive architecture: modeling behavior in working memory tasks with neurons

    Full text link
    Constrained by results from classic behavioral experiments we provide a neural-level cognitive architecture for modeling behavior in working memory tasks. We propose a canonical microcircuit that can be used as a building block for working memory, decision making and cognitive control. The controller controls gates to route the flow of information between the working memory and the evidence accumulator and sets parameters of the circuits. We show that this type of cognitive architecture can account for results in behavioral experiments such as judgment of recency, probe recognition and delayedmatch- to-sample. In addition, the neural dynamics generated by the cognitive architecture provides a good match with neurophysiological data from rodents and monkeys. For instance, it generates cells tuned to a particular amount of elapsed time (time cells), to a particular position in space (place cells) and to a particular amount of accumulated evidence.http://sites.bu.edu/tcn/files/2019/05/Cogsci2019_TiganjEtal.pdfAccepted manuscrip

    Towards understanding the role of central processing in release from masking

    Get PDF
    People with normal hearing have the ability to listen to a desired target sound while filtering out unwanted sounds in the background. However, most patients with hearing impairment struggle in noisy environments, a perceptual deficit which current hearing aids and cochlear implants cannot resolve. Even though peripheral dysfunction of the ears undoubtedly contribute to this deficit, surmounting evidence has implicated central processing in the inability to detect sounds in background noise. Therefore, it is essential to better understand the underlying neural mechanisms by which target sounds are dissociated from competing maskers. This research focuses on two phenomena that help suppress background sounds: 1) dip-listening, and 2) directional hearing. When background noise fluctuates slowly over time, both humans and animals can listen in the dips of the noise envelope to detect target sound, a phenomenon referred to as dip-listening. Detection of target sound is facilitated by a central neuronal mechanism called envelope locking suppression. At both positive and negative signal-to-noise ratios (SNRs), the presence of target energy can suppress the strength by which neurons in auditory cortex track background sound, at least in anesthetized animals. However, in humans and animals, most of the perceptual advantage gained by listening in the dips of fluctuating noise emerges when a target is softer than the background sound. This raises the possibility that SNR shapes the reliance on different processing strategies, a hypothesis tested here in awake behaving animals. Neural activity of Mongolian gerbils is measured by chronic implantation of silicon probes in the core auditory cortex. Using appetitive conditioning, gerbils detect target tones in the presence of temporally fluctuating amplitude-modulated background noise, called masker. Using rate- vs. timing-based decoding strategies, analysis of single-unit activity show that both mechanisms can be used for detecting tones at positive SNR. However, only temporal decoding provides an SNR-invariant readout strategy that is viable at both positive and negative SNRs. In addition to dip-listening, spatial cues can facilitate the dissociation of target sounds from background noise. Specifically, an important cue for computing sound direction is the time difference in arrival of acoustic energy reaching each ear, called interaural time difference (ITD). ITDs allow localization of low frequency sounds from left to right inside the listener\u27s head, also called sound lateralization. Models of sound localization commonly assume that sound lateralization from interaural time differences is level invariant. Here, two prevalent theories of sound localization are observed to make opposing predictions. The labelled-line model encodes location through tuned representations of spatial location and predicts that perceived direction is level invariant. In contrast, the hemispheric-difference model encodes location through spike-rate and predicts that perceived direction becomes medially biased at low sound levels. In this research, through behavioral experiments on sound lateralization, the computation of sound location with ITDs is tested. Four groups of normally hearing listeners lateralize sounds based on ITDs as a function of sound intensity, exposure hemisphere, and stimulus history. Stimuli consists of low-frequency band-limited white noise. Statistical analysis, which partial out overall differences between listeners, is inconsistent with the place-coding scheme of sound localization, and supports the hypothesis that human sound localization is instead encoded through a population rate-code

    A Local Circuit Model of Learned Striatal and Dopamine Cell Responses under Probabilistic Schedules of Reward

    Full text link
    Before choosing, it helps to know both the expected value signaled by a predictive cue and the associated uncertainty that the reward will be forthcoming. Recently, Fiorillo et al. (2003) found the dopamine (DA) neurons of the SNc exhibit sustained responses related to the uncertainty that a cure will be followed by reward, in addition to phasic responses related to reward prediction errors (RPEs). This suggests that cue-dependent anticipations of the timing, magnitude, and uncertainty of rewards are learned and reflected in components of the DA signals broadcast by SNc neurons. What is the minimal local circuit model that can explain such multifaceted reward-related learning? A new computational model shows how learned uncertainty responses emerge robustly on single trial along with phasic RPE responses, such that both types of DA responses exhibit the empirically observed dependence on conditional probability, expected value of reward, and time since onset of the reward-predicting cue. The model includes three major pathways for computing: immediate expected values of cures, timed predictions of reward magnitudes (and RPEs), and the uncertainty associated with these predictions. The first two model pathways refine those previously modeled by Brown et al. (1999). A third, newly modeled, pathway is formed by medium spiny projection neurons (MSPNs) of the matrix compartment of the striatum, whose axons co-release GABA and a neuropeptide, substance P, both at synapses with GABAergic neurons in the SNr and with the dendrites (in SNr) of DA neurons whose somas are in ventral SNc. Co-release enables efficient computation of sustained DA uncertainty responses that are a non-monotonic function of the conditonal probability that a reward will follow the cue. The new model's incorporation of a striatal microcircuit allowed it to reveals that variability in striatal cholinergic transmission can explain observed difference, between monkeys, in the amplitutude of the non-monotonic uncertainty function. Involvement of matriceal MSPNs and striatal cholinergic transmission implpies a relation between uncertainty in the cue-reward contigency and action-selection functions of the basal ganglia. The model synthesizes anatomical, electrophysiological and behavioral data regarding the midbrain DA system in a novel way, by relating the ability to compute uncertainty, in parallel with other aspects of reward contingencies, to the unique distribution of SP inputs in ventral SN.National Science Foundation (SBE-354378); Higher Educational Council of Turkey; Canakkale Onsekiz Mart University of Turke

    27th Annual Computational Neuroscience Meeting (CNS*2018): Part One

    Get PDF

    ROLE OF INHIBITION AND SPIKING VARIABILITY IN ORTHO- AND RETRONASAL OLFACTORY PROCESSING

    Get PDF
    Odor perception is the impetus for important animal behaviors, most pertinently for feeding, but also for mating and communication. There are two predominate modes of odor processing: odors pass through the front of nose (ortho) while inhaling and sniffing, or through the rear (retro) during exhalation and while eating and drinking. Despite the importance of olfaction for an animal’s well-being and specifically that ortho and retro naturally occur, it is unknown whether the modality (ortho versus retro) is transmitted to cortical brain regions, which could significantly instruct how odors are processed. Prior imaging studies show different brain activity for the two modes, even with identical odors. However, odors are first processed via coordinated spiking of neurons in the olfactory bulb (OB) before being relayed downstream to higher cortical regions. Thus, we investigate responses of mitral cells (MC), one of principle neurons in OB, to ortho and retro stimulus to elucidate how the OB processes and codes this information. We analyze our collected in vivo rat data to inform modeling of the OB circuitry and MC responses to both modes of olfaction. Our efforts show that the OB does indeed process odors differently and that the temporal profile of each stimulus route to the OB is crucial for distinguishing ortho and retro odors. Additionally, we detail the rich spiking dynamics observed in our MC model and use a phenomenological model to explain the unexpected non-monotonic spike variability observed as weak-to-moderate background noise increases. Lastly in both anesthetized and awake rodents, we show that MCs with synaptic connections to cortical regions reliably transmit ortho versus retro input stimulus information. Drug manipulation affecting GABAA-mediated synaptic inhibition leads to changes in decoding of ortho/retro and only affects firing response for one of the two modes. We have not only shown that ortho versus retro information is encoded to downstream brain regions, but with models and analysis, we uncover the network dynamics that promote this encoding
    • …
    corecore