417 research outputs found

    Locomation strategies for amphibious robots-a review

    Get PDF
    In the past two decades, unmanned amphibious robots have proven the most promising and efficient systems ranging from scientific, military, and commercial applications. The applications like monitoring, surveillance, reconnaissance, and military combat operations require platforms to maneuver on challenging, complex, rugged terrains and diverse environments. The recent technological advancements and development in aquatic robotics and mobile robotics have facilitated a more agile, robust, and efficient amphibious robots maneuvering in multiple environments and various terrain profiles. Amphibious robot locomotion inspired by nature, such as amphibians, offers augmented flexibility, improved adaptability, and higher mobility over terrestrial, aquatic, and aerial mediums. In this review, amphibious robots' locomotion mechanism designed and developed previously are consolidated, systematically The review also analyzes the literature on amphibious robot highlighting the limitations, open research areas, recent key development in this research field. Further development and contributions to amphibious robot locomotion, actuation, and control can be utilized to perform specific missions in sophisticated environments, where tasks are unsafe or hardly feasible for the divers or traditional aquatic and terrestrial robots

    WindBots: A Concept for Persistent In-Situ Science Explorers for Gas Giants

    Get PDF
    This report summarizes the study of a mission concept to Jupiter with one or multiple Wind Robots able to operate in the Jovian atmosphere, above and below the clouds - down to 10 bar, for long durations and using energy obtained from local sources. This concept would be a step towards persistent exploration of gas giants by robots performing in-situ atmospheric science, powered by locally harvested energy. The Wind Robots, referred in this report as WindBots (WBs), would ride the planetary winds and transform aeolian energy into kinetic energy of flight, and electrical energy for on-board equipment. Small shape adjustments modify the aerodynamic characteristics of their surfaces, allowing for changes in direction and a high movement autonomy. Specifically, we sought solutions to increase survivability to strong/turbulent winds, and mobility and autonomy compared to passive balloons

    Locomotion system for ground mobile robots in uneven and unstructured environments

    Get PDF
    One of the technology domains with the greatest growth rates nowadays is service robots. The extensive use of ground mobile robots in environments that are unstructured or structured for humans is a promising challenge for the coming years, even though Automated Guided Vehicles (AGV) moving on flat and compact grounds are already commercially available and widely utilized to move components and products inside indoor industrial buildings. Agriculture, planetary exploration, military operations, demining, intervention in case of terrorist attacks, surveillance, and reconnaissance in hazardous conditions are important application domains. Due to the fact that it integrates the disciplines of locomotion, vision, cognition, and navigation, the design of a ground mobile robot is extremely interdisciplinary. In terms of mechanics, ground mobile robots, with the exception of those designed for particular surroundings and surfaces (such as slithering or sticky robots), can move on wheels (W), legs (L), tracks (T), or hybrids of these concepts (LW, LT, WT, LWT). In terms of maximum speed, obstacle crossing ability, step/stair climbing ability, slope climbing ability, walking capability on soft terrain, walking capability on uneven terrain, energy efficiency, mechanical complexity, control complexity, and technology readiness, a systematic comparison of these locomotion systems is provided in [1]. Based on the above-mentioned classification, in this thesis, we first introduce a small-scale hybrid locomotion robot for surveillance and inspection, WheTLHLoc, with two tracks, two revolving legs, two active wheels, and two passive omni wheels. The robot can move in several different ways, including using wheels on the flat, compact ground,[1] tracks on soft, yielding terrain, and a combination of tracks, legs, and wheels to navigate obstacles. In particular, static stability and non-slipping characteristics are considered while analyzing the process of climbing steps and stairs. The experimental test on the first prototype has proven the planned climbing maneuver’s efficacy and the WheTLHLoc robot's operational flexibility. Later we present another development of WheTLHLoc and introduce WheTLHLoc 2.0 with newly designed legs, enabling the robot to deal with bigger obstacles. Subsequently, a single-track bio-inspired ground mobile robot's conceptual and embodiment designs are presented. This robot is called SnakeTrack. It is designed for surveillance and inspection activities in unstructured environments with constrained areas. The vertebral column has two end modules and a variable number of vertebrae linked by compliant joints, and the surrounding track is its essential component. Four motors drive the robot: two control the track motion and two regulate the lateral flexion of the vertebral column for steering. The compliant joints enable limited passive torsion and retroflection of the vertebral column, which the robot can use to adapt to uneven terrain and increase traction. Eventually, the new version of SnakeTrack, called 'Porcospino', is introduced with the aim of allowing the robot to move in a wider variety of terrains. The novelty of this thesis lies in the development and presentation of three novel designs of small-scale mobile robots for surveillance and inspection in unstructured environments, and they employ hybrid locomotion systems that allow them to traverse a variety of terrains, including soft, yielding terrain and high obstacles. This thesis contributes to the field of mobile robotics by introducing new design concepts for hybrid locomotion systems that enable robots to navigate challenging environments. The robots presented in this thesis employ modular designs that allow their lengths to be adapted to suit specific tasks, and they are capable of restoring their correct position after falling over, making them highly adaptable and versatile. Furthermore, this thesis presents a detailed analysis of the robots' capabilities, including their step-climbing and motion planning abilities. In this thesis we also discuss possible refinements for the robots' designs to improve their performance and reliability. Overall, this thesis's contributions lie in the design and development of innovative mobile robots that address the challenges of surveillance and inspection in unstructured environments, and the analysis and evaluation of these robots' capabilities. The research presented in this thesis provides a foundation for further work in this field, and it may be of interest to researchers and practitioners in the areas of robotics, automation, and inspection. As a general note, the first robot, WheTLHLoc, is a hybrid locomotion robot capable of combining tracked locomotion on soft terrains, wheeled locomotion on flat and compact grounds, and high obstacle crossing capability. The second robot, SnakeTrack, is a small-size mono-track robot with a modular structure composed of a vertebral column and a single peripherical track revolving around it. The third robot, Porcospino, is an evolution of SnakeTrack and includes flexible spines on the track modules for improved traction on uneven but firm terrains, and refinements of the shape of the track guidance system. This thesis provides detailed descriptions of the design and prototyping of these robots and presents analytical and experimental results to verify their capabilities

    Design and Development of an Inspection Robotic System for Indoor Applications

    Get PDF
    The inspection and monitoring of industrial sites, structures, and infrastructure are important issues for their sustainability and further maintenance. Although these tasks are repetitive and time consuming, and some of these environments may be characterized by dust, humidity, or absence of natural light, classical approach relies on large human activities. Automatic or robotic solutions can be considered useful tools for inspection because they can be effective in exploring dangerous or inaccessible sites, at relatively low-cost and reducing the time required for the relief. The development of a paradigmatic system called Inspection Robotic System (IRS) is the main objective of this paper to demonstrate the feasibility of mechatronic solutions for inspection of industrial sites. The development of such systems will be exploited in the form of a tool kit to be flexible and installed on a mobile system, in order to be used for inspection and monitoring, possibly introducing high efficiency, quality and repetitiveness in the related sector. The interoperability of sensors with wireless communication may form a smart sensors tool kit and a smart sensor network with powerful functions to be effectively used for inspection purposes. Moreover, it may constitute a solution for a broad range of scenarios spacing from industrial sites, brownfields, historical sites or sites dangerous or difficult to access by operators. First experimental tests are reported to show the engineering feasibility of the system and interoperability of the mobile hybrid robot equipped with sensors that allow real-time multiple acquisition and storage

    Autonomous Systems, Robotics, and Computing Systems Capability Roadmap: NRC Dialogue

    Get PDF
    Contents include the following: Introduction. Process, Mission Drivers, Deliverables, and Interfaces. Autonomy. Crew-Centered and Remote Operations. Integrated Systems Health Management. Autonomous Vehicle Control. Autonomous Process Control. Robotics. Robotics for Solar System Exploration. Robotics for Lunar and Planetary Habitation. Robotics for In-Space Operations. Computing Systems. Conclusion

    Dynamics Of Reconfigurable Multibody Space Systems Connected By Magnetic Flux Pinning

    Full text link
    Many future space systems, from solar power collection satellites to sparseaperture telescopes, will involve large-scale space structures which must be launched in a modular fashion. Currently, assembling modular structures in orbit is a challenging problem in multi-vehicle control or human-vehicle interaction. Some novel approaches to assembling modular space structures or formation-flying space systems involve augmenting the system dynamics with non-contacting force fields such as electromagnetic interactions. However, familiar divergenceless forces are subject to Earnshaw's Theorem and require active control in 6 DOF for stability. This study proposes an approach to modular spacecraft assembly based on the passively stable physics of magnetic flux pinning, an interaction between superconductors and magnetic fields which is not limited by Earnshaw's Theorem. Spacecraft modules linked by flux pinning passively fall into stable, many-degree-of-freedom basins of attraction in which flux pinning holds the modules together with stiffness and damping but no mechanical contact. This dissertation reports several system identification experiments that characterize the physical properties of flux pinning for spacecraft applications and identify avenues for design of flux-pinning space hardware. Once assembled in orbit, altering a spacecraft to effect repairs or adapt to new missions presents significant control challenges as well. Flux-pinning technology also offers exciting possibilities for new spacecraft-reconfiguration techniques, in which a spacecraft changes structure and function at the system level. Flux-pinned modular spacecraft can reconfigure in such a way that the passive physics of flux pinning and the space environment govern the low-level dynamics of a reconfiguration maneuver, instead of full-state feedback control. These reconfiguration maneuvers take the form of sequences of passively stable evolutions to equilibrium states, with joint kinematics between modules preventing collisions. This dissertation develops a theory for multibody spacecraft reconfiguration controllers that take a high-level, hybrid-systems approach in which a pre-computed graph structure stores all the reachable configurations that meet certain design-specified criteria. Edges of the graph carry mission-related weights so that a space system can optimize power consumption, robustness measures, or other performance metrics during a maneuver. These technologies and control strategies may provide opportunities for versatile space systems that can accomplish a wide variety of future missions

    Exploration of robotic-wheel technology for enhanced urban mobility and city scale omni-directional personal transportation

    Get PDF
    Thesis (S.M.)--Massachusetts Institute of Technology, School of Architecture and Planning, Program in Media Arts and Sciences, 2008.Includes bibliographical references (leaves 50-52).Mobility is traditionally thought of as freedom to access more goods and services. However, in my view, mobility is also largely about personal freedom, i.e., the ability to exceed one's physical limitations, in essence, to become "more than human" in physical capabilities. This thesis explores novel designs for omni-directional motion in a mobility scooter, car and bus with the aim of increasing personal mobility and freedom. What links these designs is the use of split active caster wheel robot technology. In the first section, societal and technological impacts of omni-directional motion in the city are examined. The second section of the thesis presents built and rendered prototypes of these three designs. The third and final section, evaluates implementation issues including robotic controls and an algorithm necessary for real world omni-directional mobility.by Raul-David Valdivia Poblano.S.M

    Cooperative Control of Multiple Biomimetic Robotic Fish

    Get PDF

    A reconfigurable multi-terrain adaptive casualty transport aid base on Watt II six-bar linkage for industrial environment

    Get PDF
    Introduction: This paper presents the Reconfigurable Multi-Terrain Adaptive Casualty Transport Aid (RMTACTA), an innovative solution addressing the critical need for rapid and safe pre-hospital casualty transport in industrial environments. The RMTACTA, leveraging the Watt II six-bar linkage, offers enhanced adaptability through six modes of motion, overcoming the limitations of traditional stretchers and stretcher vehicles by facilitating navigation across narrow and challenging terrains.Methods: The RMTACTA's design incorporates two branching four-bar mechanisms to form a compact, reconfigurable Watt II six-bar linkage mechanism. This setup is controlled via a single remote rope, allowing for easy transition between its multiple operational modes, including stretcher, stretcher vehicle, folding, gangway-passing, obstacle-crossing, and upright modes. The mechanical design and kinematics of this innovative linkage are detailed, alongside an analysis of the optimal design and mechanical evaluation of rope control.Results: A prototype of the RMTACTA was developed, embodying the proposed mechanical and kinematic solutions. Preliminary tests were conducted to verify the prototype's feasibility and operability across different terrains, demonstrating its capability to safely and efficiently transport casualties.Discussion: The development of the proposed Reconfigurable Multi-Terrain Adaptive Casualty Transport Aid (RMTACTA) introduces a novel perspective on the design of emergency medical transport robots and the enhancement of casualty evacuation strategies. Its innovative application of the Watt II six-bar linkage mechanism not only showcases the RMTACTA's versatility across varied terrains but also illuminates its potential utility in critical scenarios such as earthquake relief, maritime rescue, and battlefield medical support

    An overview of waste materials for sustainable road construction

    Get PDF
    Untreated soil typically has low shear strength, swelling behavior, high compressibility and its characteristics were highly dependent on the environment. In general, such problematic soil will lead to severe damages in road construction industry such as bearing capacity failure, slope instability, and excessive settlement. Agricultural waste, construction waste, and municipal waste have recently gained considerable attention as a sustainable material in road construction application due to its availability, environmental friendly and low-cost materials. Therefore in this review, randomly distributed fiber reinforced soil and oriented distributed fiber reinforced soil will be extensively discussed based on the emerging trend. It further reviewed the feasibility of using waste materials as a reinforcement material for the road construction industry. The review also attempts to evaluate and compare the engineering properties of soil and sustainable materials in order to enhance soil performance as well as help to improve the environment affected by growing waste materials
    corecore