23,602 research outputs found

    Intelligent Agents for Disaster Management

    No full text
    ALADDIN [1] is a multi-disciplinary project that is developing novel techniques, architectures, and mechanisms for multi-agent systems in uncertain and dynamic environments. The application focus of the project is disaster management. Research within a number of themes is being pursued and this is considering different aspects of the interaction between autonomous agents and the decentralised system architectures that support those interactions. The aim of the research is to contribute to building more robust multi-agent systems for future applications in disaster management and other similar domains

    Artificial Intelligence Applications for Drones Navigation in GPS-denied or degraded Environments

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Urban Drone Navigation: Autoencoder Learning Fusion for Aerodynamics

    Full text link
    Drones are vital for urban emergency search and rescue (SAR) due to the challenges of navigating dynamic environments with obstacles like buildings and wind. This paper presents a method that combines multi-objective reinforcement learning (MORL) with a convolutional autoencoder to improve drone navigation in urban SAR. The approach uses MORL to achieve multiple goals and the autoencoder for cost-effective wind simulations. By utilizing imagery data of urban layouts, the drone can autonomously make navigation decisions, optimize paths, and counteract wind effects without traditional sensors. Tested on a New York City model, this method enhances drone SAR operations in complex urban settings.Comment: 47 page

    Uavs path planning under a bi-objective optimization framework for smart cities

    Get PDF
    Unmanned aerial vehicles (UAVs) have been used extensively for search and rescue operations, surveillance, disaster monitoring, attacking terrorists, etc. due to their growing advantages of low-cost, high maneuverability, and easy deployability. This study proposes a mixed-integer programming model under a multi-objective optimization framework to design trajectories that enable a set of UAVs to execute surveillance tasks. The first objective maximizes the cumulative probability of target detection to aim for mission planning success. The second objective ensures minimization of cumulative path length to provide a higher resource utilization goal. A two-step variable neighborhood search (VNS) algorithm is offered, which addresses the combinatorial optimization issue for determining the near-optimal sequence for cell visiting to reach the target. Numerical experiments and simulation results are evaluated in numerous benchmark instances. Results demonstrate that the proposed approach can favorably support practical deployability purposes

    Training of Crisis Mappers and Map Production from Multi-sensor Data: Vernazza Case Study (Cinque Terre National Park, Italy)

    Get PDF
    This aim of paper is to presents the development of a multidisciplinary project carried out by the cooperation between Politecnico di Torino and ITHACA (Information Technology for Humanitarian Assistance, Cooperation and Action). The goal of the project was the training in geospatial data acquiring and processing for students attending Architecture and Engineering Courses, in order to start up a team of "volunteer mappers". Indeed, the project is aimed to document the environmental and built heritage subject to disaster; the purpose is to improve the capabilities of the actors involved in the activities connected in geospatial data collection, integration and sharing. The proposed area for testing the training activities is the Cinque Terre National Park, registered in the World Heritage List since 1997. The area was affected by flood on the 25th of October 2011. According to other international experiences, the group is expected to be active after emergencies in order to upgrade maps, using data acquired by typical geomatic methods and techniques such as terrestrial and aerial Lidar, close-range and aerial photogrammetry, topographic and GNSS instruments etc.; or by non conventional systems and instruments such us UAV, mobile mapping etc. The ultimate goal is to implement a WebGIS platform to share all the data collected with local authorities and the Civil Protectio

    A new tow maneuver of a damaged boat through a swarm of autonomous sea drones

    Get PDF
    Given the huge rising interest in autonomous drone swarms to be employed in actual marine applications, the present paper explores the possibility to recover a distressed vessel by means of the other agents belonging to the swarm itself. Suitable approaches and control strategies are developed and tested to find the highest performance algorithms. Different rules are exploited to obtain a correct behaviour in terms of swarm interaction, namely collective and coordinated, and individual. An innovative feedback control strategy is adopted and demonstrated its effectiveness. Extensive simulation runs have been conducted, whose results validate the approach
    • …
    corecore