4 research outputs found

    Achieving Small World Properties using Bio-Inspired Techniques in Wireless Networks

    Full text link
    It is highly desirable and challenging for a wireless ad hoc network to have self-organization properties in order to achieve network wide characteristics. Studies have shown that Small World properties, primarily low average path length and high clustering coefficient, are desired properties for networks in general. However, due to the spatial nature of the wireless networks, achieving small world properties remains highly challenging. Studies also show that, wireless ad hoc networks with small world properties show a degree distribution that lies between geometric and power law. In this paper, we show that in a wireless ad hoc network with non-uniform node density with only local information, we can significantly reduce the average path length and retain the clustering coefficient. To achieve our goal, our algorithm first identifies logical regions using Lateral Inhibition technique, then identifies the nodes that beamform and finally the beam properties using Flocking. We use Lateral Inhibition and Flocking because they enable us to use local state information as opposed to other techniques. We support our work with simulation results and analysis, which show that a reduction of up to 40% can be achieved for a high-density network. We also show the effect of hopcount used to create regions on average path length, clustering coefficient and connectivity.Comment: Accepted for publication: Special Issue on Security and Performance of Networks and Clouds (The Computer Journal

    On the Fundamentals of Stochastic Spatial Modeling and Analysis of Wireless Networks and its Impact to Channel Losses

    Get PDF
    With the rapid evolution of wireless networking, it becomes vital to ensure transmission reliability, enhanced connectivity, and efficient resource utilization. One possible pathway for gaining insight into these critical requirements would be to explore the spatial geometry of the network. However, tractably characterizing the actual position of nodes for large wireless networks (LWNs) is technically unfeasible. Thus, stochastical spatial modeling is commonly considered for emulating the random pattern of mobile users. As a result, the concept of random geometry is gaining attention in the field of cellular systems in order to analytically extract hidden features and properties useful for assessing the performance of networks. Meanwhile, the large-scale fading between interacting nodes is the most fundamental element in radio communications, responsible for weakening the propagation, and thus worsening the service quality. Given the importance of channel losses in general, and the inevitability of random networks in real-life situations, it was then natural to merge these two paradigms together in order to obtain an improved stochastical model for the large-scale fading. Therefore, in exact closed-form notation, we generically derived the large-scale fading distributions between a reference base-station and an arbitrary node for uni-cellular (UCN), multi-cellular (MCN), and Gaussian random network models. In fact, we for the first time provided explicit formulations that considered at once: the lattice profile, the users’ random geometry, the spatial intensity, the effect of the far-field phenomenon, the path-loss behavior, and the stochastic impact of channel scatters. Overall, the results can be useful for analyzing and designing LWNs through the evaluation of performance indicators. Moreover, we conceptualized a straightforward and flexible approach for random spatial inhomogeneity by proposing the area-specific deployment (ASD) principle, which takes into account the clustering tendency of users. In fact, the ASD method has the advantage of achieving a more realistic deployment based on limited planning inputs, while still preserving the stochastic character of users’ position. We then applied this inhomogeneous technique to different circumstances, and thus developed three spatial-level network simulator algorithms for: controlled/uncontrolled UCN, and MCN deployments

    Vers une amélioration de la diffusion des informations dans les réseaux sans-fils

    Get PDF
    Dans les systèmes d'alertes publiques, l étude de la diffusion des informations dans le réseau est essentielle. Les systèmes de diffusion des messages d'alertes doivent atteindre beaucoup de nœuds en peu de temps. Dans les réseaux de communication basés sur les interactions device to device , on s'est récemment beaucoup intéressé à la diffusion des informations et le besoin d'auto-organisation a été mis en évidence. L'auto-organisation conduit à des comportements locaux et des interactions qui ont un effet sur le réseau global et présentent un avantage de scalabilité. Ces réseaux auto-organisés peuvent être autonomes et utiliser peu d'espace mémoire. On peut développer des caractères auto-organisés dans les réseaux de communication en utilisant des idées venant de phénomènes naturels. Il semble intéressant de chercher à obtenir les propriétés des small world pour améliorer la diffusion des informations dans le réseau. Dans les modèles de small world on réalise un recâblage des liens dans le réseau en changeant la taille et la direction des liens existants. Dans un environnement sans-fils autonome une organisation de ce type peut être créée en utilisant le flocking, l'inhibition latérale et le beamforming . Dans ce but, l'auteur utilise d'abord l'analogie avec l'inhibition latérale, le flocking et le beamforming pour montrer comment la diffusion des informations peut être améliorée. L'analogue de l'inhibition latérale est utilisé pour créer des régions virtuelles dans le réseau. Puis en utilisant l'analogie avec les règles du flocking, on caractérise les propriétés des faisceaux permettant aux nœuds de communiquer dans les régions. Nous prouvons que les propriétés des small world sont vérifiées en utilisant la mesure des moyennes des longueurs des chemins. Cependant l'algorithme proposé est valable pour les réseaux statiques alors que dans les cas introduisant de la mobilité, les concepts d'inhibition latérale et de flocking nécessiteraient beaucoup plus de temps. Dans le cas d'un réseau mobile la structure du réseau change fréquemment. Certaines connexions intermittentes impactent fortement la diffusion des informations. L'auteur utilise le concept de stabilité avec le beamforming pour montrer comment on peut améliorer la diffusion des informations. Dans son algorithme il prévoit d'abord la stabilité du nœud en utilisant des informations locales et il utilise ce résultat pour identifier les nœuds qui réaliseront du beamforming. Dans l'algorithme, les nœuds de stabilité faible sont autorisés à faire du beamforming vers les nœuds de forte stabilité. La frontière entre forte et faible stabilité est fixée par un seuil. Cet algorithme ne nécessite pas une connaissance globale du réseau, mais utilise des données locales. Les résultats sont validés en étudiant le temps au bout duquel plus de nœuds reçoivent l'information et en comparant avec d'autres algorithmes de la littérature. Cependant, dans les réseaux réels, les changements de structure ne sont pas dus qu'à la mobilité, mais également à des changements de la densité des nœuds à un moment donné. Pour tenir compte de l'influence de tels événements sur la diffusion des informations concernant la sécurité publique, l'auteur utilise les concepts de modèle de métapopulation, épidémiologiques, beamforming et mobilité géographique obtenu à partir de données D4D. L'auteur propose la création de trois états latents qu'il ajoute au modèle épidémiologique connu: SIR. L'auteur étudie les états transitoires en analysant l'évolution du nombre de postes ayant reçu les informations et compare les résultats concernant ce nombre dans les différents cas. L'auteur démontre ainsi que le scenario qu'il propose permet d'améliorer le processus de diffusion des informations. Il montre aussi les effets de différents paramètres comme le nombre de sources, le nombre de paquets, les paramètres de mobilité et ceux qui caractérisent les antennes sur la diffusion des informationsIn public warning message systems, information dissemination across the network is a critical aspect that has to be addressed. Dissemination of warning messages should be such that it reaches as many nodes in the network in a short time. In communication networks those based on device to device interactions, dissemination of the information has lately picked up lot of interest and the need for self organization of the network has been brought up. Self organization leads to local behaviors and interactions that have global effects and helps in addressing scaling issues. The use of self organized features allows autonomous behavior with low memory usage. Some examples of self organization phenomenon that are observed in nature are Lateral Inhibition and Flocking. In order to provide self organized features to communication networks, insights from such naturally occurring phenomenon is used. Achieving small world properties is an attractive way to enhance information dissemination across the network. In small world model rewiring of links in the network is performed by altering the length and the direction of the existing links. In an autonomous wireless environment such organization can be achieved using self organized phenomenon like Lateral inhibition and Flocking and beamforming (a concept in communication). Towards this, we first use Lateral Inhibition, analogy to Flocking behavior and beamforming to show how dissemination of information can be enhanced. Lateral Inhibition is used to create virtual regions in the network. Then using the analogy of Flocking rules, beam properties of the nodes in the regions are set. We then prove that small world properties are achieved using average path length metric. However, the proposed algorithm is applicable to static networks and Flocking and Lateral Inhibition concepts, if used in a mobile scenario, will be highly complex in terms of computation and memory. In a mobile scenario such as human mobility aided networks, the network structure changes frequently. In such conditions dissemination of information is highly impacted as new connections are made and old ones are broken. We thus use stability concept in mobile networks with beamforming to show how information dissemination process can be enhanced. In the algorithm, we first predict the stability of a node in the mobile network using locally available information and then uses it to identify beamforming nodes. In the algorithm, the low stability nodes are allowed to beamform towards the nodes with high stability. The difference between high and low stability nodes is based on threshold value. The algorithm is developed such that it does not require any global knowledge about the network and works using only local information. The results are validated using how quickly more number of nodes receive the information and different state of the art algorithms. We also show the effect of various parameters such as number of sources, number of packets, mobility parameters and antenna parameters etc. on the information dissemination process in the network. In realistic scenarios however, the dynamicity in the network is not only related to mobility. Dynamic conditions also arise due to change in density of nodes at a given time. To address effect of such scenario on the dissemination of information related to public safety in a metapopulation, we use the concepts of epidemic model, beamforming and the countrywide mobility pattern extracted from the D4DD4D dataset. Here, we also propose the addition of three latent states to the existing epidemic model (SIRSIR model). We study the transient states towards the evolution of the number of devices having the information and the difference in the number of devices having the information when compared with different cases to evaluate the results. Through the results we show that enhancements in the dissemination process can be achieved in the addressed scenarioEVRY-INT (912282302) / SudocSudocFranceF

    Energieeffiziente und rechtzeitige Ereignismeldung mittels drahtloser Sensornetze

    Get PDF
    This thesis investigates the suitability of state-of-the-art protocols for large-scale and long-term environmental event monitoring using wireless sensor networks based on the application scenario of early forest fire detection. By suitable combination of energy-efficient protocol mechanisms a novel communication protocol, referred to as cross-layer message-merging protocol (XLMMP), is developed. Qualitative and quantitative protocol analyses are carried out to confirm that XLMMP is particularly suitable for this application area. The quantitative analysis is mainly based on finite-source retrial queues with multiple unreliable servers. While this queueing model is widely applicable in various research areas even beyond communication networks, this thesis is the first to determine the distribution of the response time in this model. The model evaluation is mainly carried out using Markovian analysis and the method of phases. The obtained quantitative results show that XLMMP is a feasible basis to design scalable wireless sensor networks that (1) may comprise hundreds of thousands of tiny sensor nodes with reduced node complexity, (2) are suitable to monitor an area of tens of square kilometers, (3) achieve a lifetime of several years. The deduced quantifiable relationships between key network parameters — e.g., node size, node density, size of the monitored area, aspired lifetime, and the maximum end-to-end communication delay — enable application-specific optimization of the protocol
    corecore