4 research outputs found

    Integration of Context Information through Probabilistic Ontological Knowledge into Image Classification

    Get PDF
    The use of ontological knowledge to improve classification results is a promising line of research. The availability of a probabilistic ontology raises the possibility of combining the probabilities coming from the ontology with the ones produced by a multi-class classifier that detects particular objects in an image. This combination not only provides the relations existing between the different segments, but can also improve the classification accuracy. In fact, it is known that the contextual information can often give information that suggests the correct class. This paper proposes a possible model that implements this integration, and the experimental assessment shows the effectiveness of the integration, especially when the classifier’s accuracy is relatively low. To assess the performance of the proposed model, we designed and implemented a simulated classifier that allows a priori decisions of its performance with sufficient precision

    A Knowledge Graph Based Integration Approach for Industry 4.0

    Get PDF
    The fourth industrial revolution, Industry 4.0 (I40) aims at creating smart factories employing among others Cyber-Physical Systems (CPS), Internet of Things (IoT) and Artificial Intelligence (AI). Realizing smart factories according to the I40 vision requires intelligent human-to-machine and machine-to-machine communication. To achieve this communication, CPS along with their data need to be described and interoperability conflicts arising from various representations need to be resolved. For establishing interoperability, industry communities have created standards and standardization frameworks. Standards describe main properties of entities, systems, and processes, as well as interactions among them. Standardization frameworks classify, align, and integrate industrial standards according to their purposes and features. Despite being published by official international organizations, different standards may contain divergent definitions for similar entities. Further, when utilizing the same standard for the design of a CPS, different views can generate interoperability conflicts. Albeit expressive, standardization frameworks may represent divergent categorizations of the same standard to some extent, interoperability conflicts need to be resolved to support effective and efficient communication in smart factories. To achieve interoperability, data need to be semantically integrated and existing conflicts conciliated. This problem has been extensively studied in the literature. Obtained results can be applied to general integration problems. However, current approaches fail to consider specific interoperability conflicts that occur between entities in I40 scenarios. In this thesis, we tackle the problem of semantic data integration in I40 scenarios. A knowledge graphbased approach allowing for the integration of entities in I40 while considering their semantics is presented. To achieve this integration, there are challenges to be addressed on different conceptual levels. Firstly, defining mappings between standards and standardization frameworks; secondly, representing knowledge of entities in I40 scenarios described by standards; thirdly, integrating perspectives of CPS design while solving semantic heterogeneity issues; and finally, determining real industry applications for the presented approach. We first devise a knowledge-driven approach allowing for the integration of standards and standardization frameworks into an Industry 4.0 knowledge graph (I40KG). The standards ontology is used for representing the main properties of standards and standardization frameworks, as well as relationships among them. The I40KG permits to integrate standards and standardization frameworks while solving specific semantic heterogeneity conflicts in the domain. Further, we semantically describe standards in knowledge graphs. To this end, standards of core importance for I40 scenarios are considered, i.e., the Reference Architectural Model for I40 (RAMI4.0), AutomationML, and the Supply Chain Operation Reference Model (SCOR). In addition, different perspectives of entities describing CPS are integrated into the knowledge graphs. To evaluate the proposed methods, we rely on empirical evaluations as well as on the development of concrete use cases. The attained results provide evidence that a knowledge graph approach enables the effective data integration of entities in I40 scenarios while solving semantic interoperability conflicts, thus empowering the communication in smart factories

    An infrastructure for probabilistic reasoning with web ontologies

    Full text link
    We present an infrastructure for probabilistic reasoning with ontologies based on our Markov logic engine RockIt. Markov logic is a template language that combines first-order logic with log-linear graphical models. We show how to translate OWL-EL as well as RDF schema to Markov logic and how to use RockIt for applying MAP inference on the given set of formulas. The resulting system is an infrastructure for log linear logics that can be used for probabilistic reasoning with both extended OWL-EL and RDF schema. We describe our system and illustrate its benefits by presenting experimental results for two types of applications. These are ontology matching and knowledge base verification, with a special focus on temporal reasoning. Moreover, we illustrate two further use cases which are Activity Recognition and Root Cause Analysis. Our infrastructure has been applied to these use cases in the context of a cooperation with industry partners. The experiments indicate that our system, which is based on a well-founded probabilistic semantics, is capable of solving relevant problems as good as or better than state of the art systems that have specifically been designed for the respective problem. The heterogeneity of the presented uses cases illustrates the wide applicability of our infrastructure
    corecore