583 research outputs found

    Group twin coloring of graphs

    Full text link
    For a given graph GG, the least integer k≥2k\geq 2 such that for every Abelian group G\mathcal{G} of order kk there exists a proper edge labeling f:E(G)→Gf:E(G)\rightarrow \mathcal{G} so that ∑x∈N(u)f(xu)≠∑x∈N(v)f(xv)\sum_{x\in N(u)}f(xu)\neq \sum_{x\in N(v)}f(xv) for each edge uv∈E(G)uv\in E(G) is called the \textit{group twin chromatic index} of GG and denoted by χg′(G)\chi'_g(G). This graph invariant is related to a few well-known problems in the field of neighbor distinguishing graph colorings. We conjecture that χg′(G)≤Δ(G)+3\chi'_g(G)\leq \Delta(G)+3 for all graphs without isolated edges, where Δ(G)\Delta(G) is the maximum degree of GG, and provide an infinite family of connected graph (trees) for which the equality holds. We prove that this conjecture is valid for all trees, and then apply this result as the base case for proving a general upper bound for all graphs GG without isolated edges: χg′(G)≤2(Δ(G)+col(G))−5\chi'_g(G)\leq 2(\Delta(G)+{\rm col}(G))-5, where col(G){\rm col}(G) denotes the coloring number of GG. This improves the best known upper bound known previously only for the case of cyclic groups Zk\mathbb{Z}_k

    Hipergráfok = Hypergraphs

    Get PDF
    A projekt célkitűzéseit sikerült megvalósítani. A négy év során több mint száz kiváló eredmény született, amiből eddig 84 dolgozat jelent meg a téma legkiválóbb folyóirataiban, mint Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, stb. Számos régóta fennálló sejtést bebizonyítottunk, egész régi nyitott problémát megoldottunk hipergráfokkal kapcsolatban illetve kapcsolódó területeken. A problémák némelyike sok éve, olykor több évtizede nyitott volt. Nem egy közvetlen kutatási eredmény, de szintén bizonyos értékmérő, hogy a résztvevők egyike a Norvég Királyi Akadémia tagja lett és elnyerte a Steele díjat. | We managed to reach the goals of the project. We achieved more than one hundred excellent results, 84 of them appeared already in the most prestigious journals of the subject, like Combinatorica, Journal of Combinatorial Theory, Journal of Graph Theory, Random Graphs and Structures, etc. We proved several long standing conjectures, solved quite old open problems in the area of hypergraphs and related subjects. Some of the problems were open for many years, sometimes for decades. It is not a direct research result but kind of an evaluation too that a member of the team became a member of the Norvegian Royal Academy and won Steele Prize

    On the neighbour sum distinguishing index of planar graphs

    Full text link
    Let cc be a proper edge colouring of a graph G=(V,E)G=(V,E) with integers 1,2,…,k1,2,\ldots,k. Then k≥Δ(G)k\geq \Delta(G), while by Vizing's theorem, no more than k=Δ(G)+1k=\Delta(G)+1 is necessary for constructing such cc. On the course of investigating irregularities in graphs, it has been moreover conjectured that only slightly larger kk, i.e., k=Δ(G)+2k=\Delta(G)+2 enables enforcing additional strong feature of cc, namely that it attributes distinct sums of incident colours to adjacent vertices in GG if only this graph has no isolated edges and is not isomorphic to C5C_5. We prove the conjecture is valid for planar graphs of sufficiently large maximum degree. In fact even stronger statement holds, as the necessary number of colours stemming from the result of Vizing is proved to be sufficient for this family of graphs. Specifically, our main result states that every planar graph GG of maximum degree at least 2828 which contains no isolated edges admits a proper edge colouring c:E→{1,2,…,Δ(G)+1}c:E\to\{1,2,\ldots,\Delta(G)+1\} such that ∑e∋uc(e)≠∑e∋vc(e)\sum_{e\ni u}c(e)\neq \sum_{e\ni v}c(e) for every edge uvuv of GG.Comment: 22 page

    On Coloring Resilient Graphs

    Full text link
    We introduce a new notion of resilience for constraint satisfaction problems, with the goal of more precisely determining the boundary between NP-hardness and the existence of efficient algorithms for resilient instances. In particular, we study rr-resiliently kk-colorable graphs, which are those kk-colorable graphs that remain kk-colorable even after the addition of any rr new edges. We prove lower bounds on the NP-hardness of coloring resiliently colorable graphs, and provide an algorithm that colors sufficiently resilient graphs. We also analyze the corresponding notion of resilience for kk-SAT. This notion of resilience suggests an array of open questions for graph coloring and other combinatorial problems.Comment: Appearing in MFCS 201
    • …
    corecore