406 research outputs found

    A comparative study of discrete velocity methods for low-speed rarefied gas flows

    Get PDF
    In the study of rarefied gas dynamics, the discrete velocity method (DVM) has been widely employed to solve the gas kinetic equations. Although various versions of DVM have been developed, their performance, in terms of modeling accuracy and computational efficiency, is yet to be comprehensively studied in all the flow regimes. Here, the traditional third-order time-implicit Godunov DVM (GDVM) and the recently developed discrete unified gas-kinetic scheme (DUGKS) are analysed in finding steady-state solutions of the low-speed force-driven Poiseuille and lid-driven cavity flows. With the molecular collision and free streaming being treated simultaneously, the DUGKS preserves the second-order accuracy in the spatial and temporal discretizations in all flow regimes. Towards the hydrodynamic flow regime, not only is the DUGKS faster than the GDVM when using the same spatial mesh, but also requires less spatial resolution than that of the GDVM to achieve the same numerical accuracy. From the slip to free molecular flow regimes, however, the DUGKS is slower than the GDVM, due to the complicated flux evaluation and the restrictive time step which is smaller than the maximum effective time step of the GDVM. Therefore, the DUGKS is preferable for problems involving different flow regimes, particularly when the hydrodynamic flow regime is dominant. For highly rarefied gas flows, if the steady-state solution is mainly concerned, the implicit GDVM, which can boost the convergence significantly, is a better choice

    A global adaptive velocity space for general discrete velocity framework in predictions of rarefied and multi-scale flows

    Full text link
    The rarefied flow and multi-scale flow are crucial for the aerodynamic design of spacecraft, ultra-low orbital vehicles and plumes. By introducing a discrete velocity space, the Boltzmann method, such as the discrete velocity method and unified methods, can capture complex and non-equilibrium velocity distribution functions (VDFs) and describe flow behaviors exactly. However, the extremely steep slope and high concentration of the gas VDFs in a local particle velocity space make it very difficult for the Boltzmann method with structured velocity space to describe high speed flow. Therefore, the adaptive velocity space (AVS) is required for the Boltzmann solvers to be practical in complex rarefied flow and multi-scale flow. This paper makes two improvements to the AVS approach, which is then incorporated into a general discrete velocity framework, such as the unified gas-kinetic scheme. Firstly, a global velocity mesh is used to prevent the interpolation of the VDFs at the physical interface during the calculation of the microscopic fluxes, maintaining the program's high level of parallelism. Secondly, rather than utilizing costly interpolation, the VDFs on a new velocity space were reconstruction using the ``consanguinity" relationship. In other words, a split child node's VDF is the same as its parent's VDF, and a merged parent's VDF is the average of its children's VDFs. Additionally, the discrete deviation of the equilibrium distribution functions is employed to maintain the proposed method's conservation. Moreover, an appropriate set of adaptive parameters is established to enhance the automation of the proposed method. Finally, a number of numerical tests are carried out to validate the proposed method
    • …
    corecore