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a b s t r a c t 

In the study of rarefied gas dynamics, the discrete velocity method (DVM) has been widely employed 

to solve the gas kinetic equations. Although various versions of DVM have been developed, their perfor- 

mance, in terms of modeling accuracy and computational efficiency, is yet to be comprehensively studied 

in all the flow regimes. Here, the traditional third-order time-implicit Godunov DVM (GDVM) and the 

recently developed discrete unified gas-kinetic scheme (DUGKS) are analysed in finding steady-state so- 

lutions of the low-speed force-driven Poiseuille and lid-driven cavity flows. With the molecular collision 

and free streaming being treated simultaneously, the DUGKS preserves the second-order accuracy in the 

spatial and temporal discretizations in all flow regimes. Towards the hydrodynamic flow regime, not only 

is the DUGKS faster than the GDVM when using the same spatial mesh, but also requires less spatial res- 

olution than that of the GDVM to achieve the same numerical accuracy. From the slip to free molecular 

flow regimes, however, the DUGKS is slower than the GDVM, due to the complicated flux evaluation and 

the restrictive time step which is smaller than the maximum effective time step of the GDVM. There- 

fore, the DUGKS is preferable for problems involving different flow regimes, particularly when the hy- 

drodynamic flow regime is dominant. For highly rarefied gas flows, if the steady-state solution is mainly 

concerned, the implicit GDVM, which can boost the convergence significantly, is a better choice. 

© 2017 The Authors. Published by Elsevier Ltd. 

This is an open access article under the CC BY license. ( http://creativecommons.org/licenses/by/4.0/ ) 

1. Introduction 

Multi-scale flows, where different temporal and spatial scales 

are presented, are often found in nature and engineering, which 

represent a modeling and simulation challenge. The gas flow at 

different scales can be categorized by the Knudsen number ( Kn ), 

defined as the ratio of the mean free path of gas molecules to 

the characteristic length of the flow field. It is well recognized that 

the computational fluid dynamics based on the Navier-Stokes (NS) 

equations and the direct simulation Monte Carlo (DSMC) method 

[1] are two dominant methods for the efficient and accurate sim- 

ulation of the hydrodynamic ( Kn < 10 −3 ) and rarefied gas (tran- 

sition, 0.1 < Kn < 10; free molecular, Kn > 10) flows, respectively. 

However, in the slip regime ( 10 −3 < Kn < 0 . 1 ), the NS solvers and 

the DSMC method become either inaccurate or inefficient: the NS 

equations are inappropriate to describe rarefied (non-equilibrium) 

gas flows because they are derived based upon the near equilib- 

rium hypothesis, while the particle nature of the DSMC method 

∗ Corresponding author. 
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restricts its application in near hydrodynamic regime [2] , as the 

temporal and spatial resolutions must be smaller than the molec- 

ular collision time and mean free path, respectively. Therefore, for 

multi-scale gas flows, it is intuitive to use continuum-particle hy- 

brid methods that solve the flow fields in different regimes by ap- 

propriate solvers [3–6] . However, hybrid methods may encounter 

great difficulties for flows with a continuous and complex varia- 

tion of flow physics [7] . 

The Boltzmann equation is a fundamental model for dilute gas 

flows in all the flow regimes, which uses single-particle veloc- 

ity distribution function defined in a six-dimensional phase space 

to describe the system state. Near the hydrodynamic regime, the 

NS equations can be derived through the Chapman–Enskog ex- 

pansion. However, the numerical solution of the Boltzmann equa- 

tion remains a research challenge. In the past two decades, de- 

terministic numerical methods have been developed to solve the 

Boltzmann equation [8] , most of which are based on the discrete 

velocity method (DVM) [9–13] that approximates the continuous 

molecular velocity space by discrete velocity points, so that the re- 

sulting equations can be solved numerically [10] . Many full Boltz- 

mann solvers [14–19] , especially the fast spectral method [19–21] , 

https://doi.org/10.1016/j.compfluid.2017.11.006 
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provide accurate numerical results, which can serve as the refer- 

ence solutions. However, the high computational cost in calculat- 

ing the complicated collision operator makes them impractical for 

many applications [8] . Therefore, the Boltzmann equation is usu- 

ally replaced by simplified kinetic model equations, such as the 

Bhatnagar–Gross–Krook (BGK) [22] , ellipsoidal statistical (ES) [23] , 

and Shakhov [24] models. And most of DVMs are developed for 

these Boltzmann model equations. 

In the traditional DVM, the Boltzmann model equation is ex- 

plicitly solved through the operator splitting method [15] , where 

the time step and cell size are limited by the mean collision time 

and mean free path of gas molecules, respectively. Consequently, 

like the DSMC method, the DVM works well for highly rarefied gas 

flows, but encounters great difficulties for near-continuum flows 

[25,26] . Some semi-implicit and implicit DVMs have been devel- 

oped to remove the restriction of the time step and improve the 

efficiency [10,27,28] . 

In order to develop an efficient DVM for all the flow regimes, 

significant effort has been made recently to develop the asymp- 

totic preserving (AP) schemes [11,27–31] . An AP method is stable 

with respect to Kn , and when Kn is very small, it is consistent with 

the Chapman-Enskog representation in the continuum limit [8,31] . 

Therefore, the AP property is critical to a multi-scale method. Un- 

fortunately, most AP schemes can only recover the Euler solutions 

in the hydrodynamic limit, except for the recently developed uni- 

fied gas-kinetic scheme (UGKS) [25,26,31–33] and the discrete uni- 

fied gas-kinetic scheme (DUGKS) [34–39] , which recover the NS 

solutions. Both the UGKS and DUGKS share the same merit that 

the molecular transport process is coupled with the molecular col- 

lision, so that the time step and mesh size are independent of the 

collision time and the mean free path, respectively [25] . 

The main difference between the UGKS and DUGKS lies in the 

construction of the distribution function across the cell interface: 

the UGKS uses the local integration solution of the kinetic model, 

while the DUGKS adopts its discrete characteristic solution, thereby 

avoids computing the complicated gradients of macroscopic vari- 

ables. Also, owing to auxiliary functions introduced, the DUGKS 

only updates single distribution function in the evolution process, 

while in the UGKS macroscopic variables and distribution function 

are updated within one time step. Therefore, the DUGKS is better 

than the UGKS in terms of simplicity and efficiency, while their 

accuracies are at the same level [40,41] . 

So far, the DVM can be roughly classified into two types: the 

traditional DVM and new AP DVM. The detailed comparison of 

these two methods will provide essential information for users to 

choose the appropriate one for applications. In this paper, we will 

perform a comparative study of these two type DVMs in all the 

flow regimes, aiming to clarify their applicability for different flow 

problems. It is usually recognized that it is not easy for a second- 

order accurate traditional DVM to simulate the continuum flow 

due to the limitations of mesh size and time step, hence a third- 

order accurate time-implicit Godunov DVM (GDVM) [10] is adopted 

here in all the flow regimes including the hydrodynamic regime. 

On the other hand, it has been demonstrated that the DUGKS, as 

a newly developed AP DVM, can dynamically describe flows from 

the free molecular to hydrodynamic regimes and simultaneously 

preserve a second-order accuracy in both the spatial and tempo- 

ral spaces [36,40,42] . Although the two methods are derived from 

the same model equation, different algorithms will lead to solution 

discrepancy. In this work, we will analyze these two typical DVMs 

in terms of accuracy and efficiency. 

The remaining part of this paper is organized as follows. We 

first make a brief introduction of the time-implicit GDVM and 

DUGKS, as well as an analysis of both methods in Section 2 . 

The detailed comparison of these two methods regarding accu- 

racy and efficiency is given in Section 3 , followed by conclusions 

in Section 4 . 

2. Numerical methods 

In this section, the GDVM [10] and DUGKS [35] are used to 

solve the Shakhov model equation for monatomic gases [24] . 

2.1. The Shakhov model 

In the absence of external force, the Shakhov kinetic model 

equation can be written as 

∂ f 

∂t 
+ ξ · ∇ f = −

1 

τ

[

f − f S 
]

, (1) 

where f = f (x , ξ, t) is the velocity distribution function of gas 

molecules with the molecular velocity ξ = (ξx , ξy , ξz ) at the po- 
sition x = (x, y, z) and the time t , and f S is the reference equilib- 

rium distribution function expressed by the Maxwellian distribu- 

tion function f eq and a heat flux correction term: 

f S = f eq 
[

1 + (1 − Pr ) 
c · q 
5 pRT 

(

c 2 

RT 
− 5) 

)]

= f eq + f Pr , (2) 

where Pr is the Prandtl number, c = ξ −U is the peculiar velocity 

with U being the macroscopic flow velocity, q = 
1 
2 

∫ 
cc 2 f d ξ is the 

heat flux, R is the specific gas constant, and T is the temperature 

of the gas. The collision time τ in Eq. (1) is related to the dynamic 

viscosity μ and pressure p by τ = μ/p. The Maxwellian distribu- 

tion function f eq is given by 

f eq = 
ρ

(2 πRT ) 3 / 2 
exp 

(

−
c 2 

2 RT 

)

, (3) 

where ρ is the gas density. 

The conservative variables W ≡ ( ρ , ρU , ρE ) T are calculated from 

the velocity moments of the distribution function: 

W = 

∫ 

ψ f d ξ, (4) 

where ψ = 
(

1 , ξ, 1 2 ξ
2 
)T 

and ρE = 
1 
2 ρU 2 + 

3 
2 ρRT is the total energy. 

Since only two-dimensional (2D) problem is considered in this 

work, two reduced velocity distribution functions are introduced to 

cast the three-dimensional molecular velocity space into 2D [10] : 

g = 

∫ 

f (x , ξ, t) d ξz , (5a) 

h = 

∫ 

ξ 2 
z f (x , ξ, t) d ξz . (5b) 

For convenience, in what follows we denote ξ = (ξx , ξy ) and 
x = (x, y ) . Thus, based on g and h , we can compute macroscopic 

variables by 

ρ = 

∫ 

g d ξ, ρU = 

∫ 

ξg d ξ, ρE = 
1 

2 

∫ 

(ξ 2 g + h ) d ξ, 

q = 
1 

2 

∫ 

c(c 2 g + h ) d ξ. (6) 

The governing equations for the two reduced distribution func- 

tions can be deduced from Eq. (1) as 

∂g 

∂t 
+ ξ · ∇g = �g = −

1 

τ

[

g − g S 
]

, (7a) 

∂h 

∂t 
+ ξ · ∇h = �h = −

1 

τ

[

h − h S 
]

, (7b) 
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where the reduced reference distribution functions g S and h S are 

g S (x , ξ, t) = 

∫ 

f S (x , ξ, ξz , t) d ξz = g eq + g Pr , (8a) 

h S (x , ξ, t) = 

∫ 

ξ 2 
z f 

S (x , ξ, ξz , t) d ξz = h eq + h Pr , (8b) 

with 

g eq = 
ρ

2 πRT 
exp 

[

−
c 2 

2 RT 

]

, (9a) 

h eq = RT g eq , (9b) 

g Pr = (1 − Pr ) 
c · q 
5 pRT 

[

c 2 

RT 
− 4 

]

g eq , (9c) 

h Pr = (1 − Pr ) 
c · q 
5 pRT 

[

c 2 

RT 
− 2 

]

h eq . (9d) 

It is clear that the updating rules for g and h in Eq. (8) have the 

same structure 

∂φ

∂t 
+ ξ · ∇φ = � = −

1 

τ

[

φ − φS 
]

, (10) 

where the generic symbol φ is used to denote g or h . 

Note that the dynamic viscosity μ for the hard-sphere (HS) or 

variable hard-sphere model (VHS) is 

μ = μre f 

(

T 

T re f 

)ω 

, (11) 

where μref is the reference viscosity at the reference temperature 

T ref , ω is the index related to the HS or VHS model, and μref is 

related to the mean free path λref as 

λre f = 
μre f 

p 

√ 

πRT re f 

2 
. (12) 

Using the Knudsen number ( Kn ), Mach number ( Ma ) and Reynolds 

number ( Re ), which are respectively defined as 

Kn = 
λre f 

L re f 
, Ma = 

U re f 
√ 

γ RT re f 
, Re = 

ρre f U re f L re f 

μre f 
, (13) 

and they are related by 

Kn = 

√ 
πγ

2 

Ma 

Re 
, (14) 

where γ is the specific heat ratio, L ref , U ref and ρref are the refer- 

ence length, velocity and density, respectively. 

2.2. The traditional discrete velocity method 

The traditional DVM we adopt here is also based on 

Eq. (10) which is discretized in time by the fully time-implicit 

Godunov-type scheme [10,43] : 
(

1 

�t n 
+ ξ · ∇ + 

1 

τ n 

)

�φn = RHS n , 

RHS n = 
1 

τ n 

(

φS,n − φn 
)

− ξ · ∇φn , 

(15) 

where �φn = φn +1 − φn needs to be determined at each time step. 

The right-hand side RHS n of Eq. (15) is the explicit part, where 

the spatial derivative is approximated by the third-order upwind 

scheme. In this work, the derivative with respect to the mesh point 

x = x j is evaluated by 

∂φn 

∂x 

∣

∣

∣

∣

j 

= 

⎧ 

⎨ 

⎩ 

2 φn 
j+1 +3 φn 

j −6 φn 
j−1 + φ

n 
j−2 

6�x , ξx > 0 

−2 φn 
j−1 −3 φn 

j +6 φn 
j+1 −φn 

j+2 
6�x , ξx < 0 

. (16) 

On the other hand, the left-hand side of Eq. (15) is the implicit 

part, where the spatial derivative is approximated by the first- 

order upwind scheme. By marching in appropriate direction, e.g. 

increasing x in the case of ξ x > 0, the unknown �φn can be ob- 

tained directly without iterations. 

Note that �t in Eq. (15) is a pseudo-time step that is de- 

fined by the Courant–Friedrichs–Lewy (CFL) condition i.e., �t = 

η�x min /ξmax , where η is the CFL number, �x min is minimum grid 

spacing, and ξmax is the maximum discrete velocity. However, here 

the CFL number η can be smaller than 1 to capture the transient 

behavior, it can also be set as large as 10 4 for steady-state flow 

problems. 

2.3. Discrete unified gas-kinetic scheme 

The DUGKS is an explicit finite-volume method to solve 

Eq. (10) . The computational domain is first divided into some con- 

trol cells; then integrating Eq. (10) in a cell V j (centered at x j ) 

from time t n to t n +1 (�t = t n +1 − t n ) , and using the trapezoidal 

and middle-point rules for the time integration of the collision and 

convection terms, respectively, we can obtain the evolution equa- 

tion of DUGKS: 

˜ φn +1 
j = ˜ φ+ ,n 

j 
−

�t 

| V j | 
F 

n +1 / 2 
j 

, (17) 

where 

˜ φ = φ −
�t 

2 
� = 

2 τ + �t 

2 τ
φ −

�t 

2 τ
φS , (18a) 

˜ φ+ = φ + 
�t 

2 
� = 

2 τ − �t 

2 τ + �t 
˜ φ + 

2�t 

2 τ + �t 
φS , (18b) 

are two auxiliary distribution functions, and 

F 
n +1 / 2 = 

∫ 

∂V j 

(

ξ · n 
)

φ
(

x , ξ, t n +1 / 2 

)

dS (19) 

is the micro-flux across cell interface, here | V j | and ∂V j are the vol- 
ume and surface of the cell V j , n is the outward unit vector normal 

to the cell interface. 

Based on the conservative property of collision operators: 
∫ 

�g dξ = 0 , 
∫ 

ξ�g dξ = 0 , and 
∫ 

(ξ 2 �g + �h ) dξ = 0 , we can com- 

pute the macroscopic variables from 

ρ = 

∫ 

˜ g d ξ, ρU = 

∫ 

ξ ˜ g d ξ, ρE = 
1 

2 

∫ 

(ξ 2 ˜ g + ̃  h ) d ξ, (20) 

and the heat flux from 

q = 
2 τ

2 τ + �t Pr 
˜ q , with ˜ q = 

1 

2 

∫ 

c(c 2 ˜ g + ̃  h ) d ξ. (21) 

Therefore, in actual implementation, the evolution of ˜ φ is tracked 

according to Eq. (17) , instead of the original distribution functions 

φ, to avoid implicit computations. 

The key procedure in updating ˜ φ is to evaluate the micro-flux 

F , which is solely determined by the gas distribution function 

φn +1 / 2 (x f , ξ) on the cell interface x f and at the half time step 

t n +1 / 2 . To do so, in the DUGKS, Eq. (10) is integrated along the 

characteristic line within a half time step s = �t/ 2 , 

φn +1 / 2 (x f , ξ) − φn (x f − ξs, ξ) 

= 
s 

2 

[

�n +1 / 2 (x f , ξ) + �n (x f − ξs, ξ) 
]

, (22) 
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Fig. 1. The velocity profiles (normalized by ξ 0 ) along the channel cross-section at (a) Kn = 10 , G = 0 . 01 (b) Kn = 1 , G = 0 . 01 (c) Kn = 0 . 1 , G = 0 . 01 and (d) Kn = 10 −3 , 

G = 10 −4 obtained from the DUGKS and GDVM simulations with different spatial discretizations. M10, M20 and M100 represent the results with 10, 20 and 100 grid points 

along the channel cross section, respectively. The same notations are also used in the following figures. 

where time integration of the collision term is approximated by 

the trapezoidal rule. Again, in order to remove the implicity of 

Eq. (22) , two distribution functions are introduced 

φ̄ = φ −
s 

2 
� = 

2 τ + s 

2 τ
φ −

s 

2 τ
φS , (23a) 

φ̄+ = φ + 
s 

2 
� = 

2 τ − s 

2 τ + s 
φ̄ −

2 s 

2 τ + s 
φS . (23b) 

Then Eq. (22) is expressed explicitly as 

φ̄n +1 / 2 (x f , ξ) = φ̄+ ,n (x f − ξs, ξ) , (24) 

where φ̄+ ,n is constructed as 

φ̄+ ,n (x f −ξs, ξ) = φ̄+ ,n (x j , ξ) + (x f − x j −ξs ) · σ j , (x f − ξs ) ∈ V j , 

(25) 

where σ j is the slope of φ̄
+ in the cell j which is computed by the 

central difference method. Note that σ j can also be approximated 

by using some numerical limiters for discontinuous problems [40] . 

Once φ̄+ ,n is given, the original distribution function across the cell 

interface can be calculated from Eq. (23) : 

φn +1 / 2 (x f , ξ) = 
2 τ

2 τ + s 
φ̄n +1 / 2 (x f , ξ) + 

s 

2 τ + s 
φS,n +1 / 2 (x f , ξ) , 

(26) 

where φS,n +1 / 2 (x b , ξ) is determined by the conserved variables and 

the heat flux on the cell interface x b and at the half time step 

t n +1 / 2 , which can be evaluated as 

ρ = 

∫ 

ḡ dξ, ρu = 

∫ 

ξḡ dξ, ρE = 
1 

2 

∫ 

(ξ 2 ḡ + ̄h ) dξ, (27) 

and 

q = 
2 τ

2 τ + s Pr 
q̄ , with q̄ = 

1 

2 

∫ 

c (c 2 ḡ + ̄h ) d ξ. (28) 

Then the micro-flux can be computed by Eq. (26) . Finally ˜ φ at the 

cell center can be updated according to Eq. (17) . Note that the time 

step in the DUGKS is solely determined by the CFL condition. 

Both the GDVM and DUGKS presented above are based on con- 

tinuous velocity space for convenience. In actual implementation, 

the continuous velocity space is discretized into a finite discrete 

velocity set { ξi } the same as that of the traditional DVM [10] . 

For example, in the DUGKS, the distribution functions i.e., ˜ g and 
˜ h are approximated at these discrete velocity points as ˜ g i and 
˜ h i . Proper quadrature rule, such as the Newton-Cotes and Gauss- 

Hermite quadratures, are adopted to approximate the moments, 

ρ = 

∑ 

i 

̟ i ̃  g i , ρU = 

∑ 

i 

̟ i ξi ̃  g i , ρE = 
1 

2 

∑ 

i 

̟ i 

[

ξ 2 
i ˜ g i + ̃  h i 

]

, 

(29) 
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Fig. 2. Apparent gas permeability (normalized by GH 2 ) in the Poiseuille flow at different Kn : ( a ) 0.1 ≤Kn ≤10, ( b ) 10 −4 ≤ Kn ≤ 0 . 1 . 

where ϖi is the weight coefficients for the corresponding quadra- 

ture rule. 

2.4. Analysis of the DUGKS and GDVM 

Both the DUGKS and GDVM are derived from the same Boltz- 

mann model equation, but different considerations in their algo- 

rithms determine their distinctive behaviors in flow simulations. 

In the DUGKS, the flux is solely determined by molecular dis- 

tribution functions across the cell interfaces, which is constructed 

on basis of the discrete characteristic solution of the kinetic model. 

Based on Eqs. (23) , (24) and (26) , it can be rewritten as 

φn +1 / 2 (x f , ξ) = 
2 τ

2 τ + s 
φ̄+ ,n (x f − ξs, ξ) + 

s 

2 τ + s 
φS,n +1 / 2 (x f , ξ) 

= 
2 τ − s 

2 τ + s 
φn (x f − ξs, ξ) 

+ 
s 

2 τ +s 

[

φS,n (x f −ξs, ξ)+φS,n +1 / 2 (x f , ξ) 
]

. (30) 

At the right-hand side of Eq. (30) , the first and second terms rep- 

resent the kinetic and hydrodynamic contributions, respectively. 

It indicates that the molecular transport process is coupled with 

molecular collisions when evaluating flux across the cell inter- 

face. In the continuum and near continuum flow regions, �t / τ ≫1, 

thus, the flux computed from Eq. (30) is mainly contributed from 

the hydrodynamic scale solution; however, in highly rarefied flow 

regime, the molecular free transport mechanism will play an im- 

portant role due to �t / τ ≪1; in the transition regime, the time 

step �t is comparable to τ , thereby both the kinetic and hydrody- 
namic physics are important. Therefore, with variation of the ratio 

of �t / τ , the DUGKS can dynamically describe the flow from the 

free molecular to hydrodynamic regimes. It also has been demon- 

strated that with the coupled treatment of molecular transport 

and collision processes, the numerical dissipation in DUGKS is at 

O (�x 2 ) + O (�t 2 ) [38] . 

In contrast, in the GDVM, the model equation is directly solved 

using the implicit finite-difference method, and the convection 

term is approximated by the upwind scheme, which means that 

molecules transport across two grid points freely. Therefore, for 

flow regimes in which mesh size is much larger than the mean 

free path, the use of upwind scheme is obviously inappropriate, 

since molecules will physically encounter many collisions when 

they transport such a long distance in a mesh size scale. Thus, the 

GDVM requires much finer mesh to resolve the flow in the near 

continuum regimes [26] . Note that the adoption of the third-order 

upwind approximation Eq. (16) for the convection term in the ex- 

plicit part of Eq. (15) may improve the GDVM’s performance in 

Fig. 3. Iteration steps required to reach the stead-state defined by Eq. (33) at dif- 

ferent Kn and meshes. Note that the convergence criteria for implicit GDVM is esti- 

mated for one time step. 

the continuum and near-continuum regimes. It is also noted that 

this finite-difference DVM com putes less equilibrium state distri- 

bution functions than the DUGKS with a finite-volume formula- 

tion, thus, with the same CFL number, the GDVM should be faster 

than DUGKS for each iteration. In addition, it should be bear in 

mind that the GDVM becomes an implicit method when using a 

larger CFL number ( η ≫1), and it will lead to fast convergence of 

the GDVM. 

Therefore, the DUGKS may work well in all the flow regimes, 

and the GDVM is preferable for highly rarefied flows, but may 

encounter great difficulty in the continuum and near continuum 

regimes. It should be noted that although the time step �t in these 

two methods are both determined by the CFL condition, for GDVM, 

�t is a pseudo-time step and has no contribution to the numerical 

error, thereby the results obtained by the GDVM with small CFL 

number and the implicit GDVM with larger CFL number have the 

same accuracy. The above points will be verified in the following 

simulations. 

3. Numerical results and discussions 

3.1. Force-driven Poiseuille flow 

The performance of the GDVM and DUGKS is first evaluated by 

simulating the one-dimensional (1D) force-driven Poiseuille flow 

between two parallel plates with temperature T w , which are lo- 

cated at y = 0 and y = H. An external force is applied in the x - 
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Fig. 4. Comparison of the apparent gas permeability of the Poiseuille flow driven 

by a force and a pressure gradient. The mesh points of 20 and 10 are applied in the 

GDVM and DUGKS simulations, respectively, in which the mesh independent results 

are obtained. 

direction, so that the Shakhov model Eq. (10) becomes 

∂φ

∂t 
+ ξy 

∂φ

∂y 
= � + F x , (31) 

where F x is the force term. Suppose the magnitude of the external 

acceleration G is very small, the force term can be approximated 

by 

F x = −G 
∂φ

∂ξx 
≈ −G 

∂φeq 

∂ξx 
, (32) 

where φeq is formed in Eqs. (9a) and (9b) . 

In the GDVM, Eq. (31) is directly solved by considering F x as 

a source term, while in the DUGKS, the Strang splitting method 

is used [44] : at the beginning of each time step, the distribution 

function ˜ φn is updated within a half time step by ∂ t ˜ φ = �tF x / 2 , 

and then the procedure of DUGKS is executed followed by updat- 

ing ˜ φn +1 within a half time step in the same way as that at the 

beginning of each iteration. 

In our simulations, we use 10, 20, and 100 uniform mesh points 

between two parallel plates with the distance H = 1 . The gas flow 

from the highly rarefied to the hydrodynamic regimes (the Knud- 

sen number from 10 to 10 −4 ) is simulated by varying the gas 

pressure. The diffuse boundary condition is applied on both the 

plates. The hard-sphere gas is considered, where the exponent ω in 

Eq. (11) is 0.5. As a matter of fact, when the magnitude of external 

force is small, the flow is nearly isothermal, so that the mass flow 

rate is not affected by the temperature-dependence of the shear 

viscosity. Our simulations start from a global equilibrium state. The 

convergence criterion for the steady-state is defined by 

E(t) = 

∑ | u (t) − u (t − 100�t) | 
∑ | u ( t) | < 10 −6 . (33) 

The discretization of the molecular velocity space depends on 

the rarefaction level of the gas flow. In this study, we focus on 

Fig. 5. The results of the cavity flow at Kn = 10 : ( a ) U -velocity along the vertical centerline, ( b ) V -velocity along the horizontal centerline, ( c ) the heat flux Qx along the 

vertical centerline and ( d ) the heat flux Qy along the horizontal centerline. 
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Fig. 6. The results of the cavity flow at Kn = 1 : ( a ) U -velocity along the vertical centerline, ( b ) V -velocity along the horizontal centerline, ( c ) the heat flux Qx along the 

vertical centerline and ( d ) the heat flux Qy along the horizontal centerline. 

the low-speed flows, so for the near hydrodynamic regime, the 

highly accurate Gauss–Hermite integration with fewer discrete ve- 

locity points is usually applied, while the Newton–Cotes formu- 

las with more discrete velocity points could be adopted to cap- 

ture discontinuities in the distribution function in highly rarefied 

regime. Therefore, for the cases of 1 ≤Kn ≤10 and 0.1 ≤Kn < 1, we, 

respectively, use the 100 ×100 and 50 ×50 non-uniform discrete 

velocity points [19] at finite range of [ −4 , 4] × [ −4 , 4] to approxi- 

mate the continuous molecular velocity space, while for the cases 

of 0.01 ≤Kn < 0.1 and 10 −4 ≤ Kn < 0 . 01 , the 28 ×28 and 8 ×8 half- 

range Gauss-Hermit discrete velocity points are applied, respec- 

tively. Note that all the parameters presented in this paper are di- 

mensionless, where the spatial length and molecular velocity are 

scaled by H and ξ0 = 
√ 
2 RT w , respectively. 

The velocity profiles along the channel cross section at Kn = 10 , 

1, 0.1, and 10 −3 are plotted in Fig. 1 . The numerical results of the 

DUGKS with grid points of 100 can be regarded as the reference 

solutions. It is found that the DUGKS can give adequately accu- 

rate results with just 10 grid points in all the flows, while for 

the GDVM, 20 and 100 mesh points are respectively required in 

highly rarefied and near-continuum regimes. For example, when 

Kn = 10 −3 , the GDVM with 20 mesh points underpredicts the ve- 

locity in the channel center by 16%, while that of the DUGKS is 

only 2% even with a coarser mesh of 10, see Fig. 1 (d). 

We then compare the apparent gas permeability κ predicted by 

the GDVM and DUGKS, which is defined by [48] 

κ = 
2 Kn 

√ 
πGH 2 

∫ H 

0 
u (y ) dy. (34) 

Fig. 2 shows the permeability at different Knudsen numbers. For 

highly rarefied flows ( Fig. 2 (a)), the results obtained from the 

GDVM and DUGKS agree well with each other for the given 

meshes. However, when the flow approaches the slip and hydro- 

dynamic regimes ( Fig. 2 (b)), in order to obtain accurate results, the 

GDVM requires the spatial mesh that is about one order of mag- 

nitude finer than that of the DUGKS. Note that when Kn = 10 −4 , 

the permeability obtained from the GDVM with 100 mesh points 

is not presented in Fig. 2 (b), which is time consuming to compute. 

The above comparisons demonstrate superiority of the DUGKS 

over the GDVM in terms of the mesh requirement. However, the 

computational efficiency is another important issue. To this end, 

we study the time needed for each iteration, as well as the it- 

eration numbers needed to reach the convergence. The CPU time 

cost for each iteration is assessed when both codes are executed 

on the same workstation (Dual Intel Xeon CPU E5-2630 v3 @ 

2.4 GHz with 64Gb of RAM memory). It is found that for the case 

of Kn = 10 with 100 mesh points, the DUGKS needs 0.0593 s for 

each iteration, which is about twice as much as the GDVM. Iter- 

ation steps of the GDVM and DUGKS to achieve the steady-state 

defined by Eq. (33) are also given in Fig. 3 . With the same CFL 

number η = 0 . 5 , both methods have the similar convergency rate 

in the highly rarefied regime, while in the near continuum regime, 

the DUGKS convergents much faster than the GDVM. When us- 

ing a larger CFL number up to 10 6 , the convergence rate of the 

implicit GDVM turns to be about two orders of magnitude faster 

than the explicit DUGKS when Kn > 1, however, although using 
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Fig. 7. The results of the cavity flow at Kn = 0 . 1 : ( a ) U -velocity along the vertical centerline, ( b ) V -velocity along the horizontal centerline, ( c ) the heat flux Qx along the 

vertical centerline and ( d ) the heat flux Qy along the horizontal centerline. 

Table 1 

The total CPU time costs (in second) of the implicit GDVM 

and DUGKS when the results are in reasonable accuracy. 

The convergency criteria for implicit GDVM is measured at 

one time step. 

Kn 0.001 0.1 1 10 

t DUGKS 12.61 17.39 43.22 183 

t implicit GDVM 1485 3.79 3.53 1.25 

t DUGKS / t implicit GDVM 0.0068 4.59 12.24 146.4 

such large CFL number, the GDVM is still about one order of mag- 

nitude slower than the DUGKS in the hydrodynamic regime, i.e., 

Kn < 0.001. 

Moreover, as shown in Figs. 1 and 2 , in order to obtain the same 

accurate results, for the cases of Kn ≤0.1 and Kn ≥1, the GDVM 

needs 100 and 20 grid points, respectively, while the DUGKS only 

requires 10 mesh points in the whole regime. So to produce rea- 

sonably accurate results, the DUGKS requires fewer mesh points 

than the GDVM. As a result, the efficiency of DUGKS can be signif- 

icantly improved. The total CPU time costs of the implicit GDVM 

and DUGKS are presented in Table 1 . It is found that the DUGKS 

is about two orders of magnitude faster than the implicit GDVM 

in near hydrodynamic regime, while as Kn increases, the implicit 

GDVM turns out to be about two orders of magnitude faster than 

the DUGKS in the highly rarefied regime. 

It should be emphasized that for the Poiseuille flow in a 

straight infinite channel, the flow driven by an external force and 

a pressure gradient are equivalent, which is confirmed by the re- 

sults of the apparent gas permeability at 0.1 ≤Kn ≤10 as shown 

in Fig. 4 . It is found that, the mesh independent results for the 

force-driven and pressure-driven flows obtained from the GDVM 

and DUGKS are in excellent agreement. 

3.2. Lid-driven cavity flow 

In addition to the force-driven Poiseuille flow, the compara- 

tive study between the GDVM and DUGKS is also performed on a 

2D lid-driven cavity flow, which is a standard benchmark problem 

to validate numerical accuracy and efficiency [26,34,36,45] . Here, 

the Knudsen number is chosen to be Kn = 10 , 1, 0.1, 0.0259, and 

6 . 47 × 10 −4 , so that the flows vary from the free molecular to hy- 

drodynamic regimes. For the cases of Kn = 0 . 0259 and 6 . 47 × 10 −4 , 

the corresponding Reynolds numbers are Re = 10 and 400, respec- 

tively. The length and height of the cavity are both set to be 1. The 

Mach number defined by the velocity of the top-wall U w is 0.16, 

while the other three walls are stationary. The temperature of all 

the walls is fixed at T w = 1 , and the diffuse boundary condition 

[34] is used. 

In the simulations, when Kn = 10 and 1, we use 100 ×100 non- 

uniform discrete velocity points [19] in a finite range [ −4 , 4] ×
[ −4 , 4] , while when Kn = 0 . 1 , 0 . 0259 and 6 . 47 × 10 −4 , we apply 

28 ×28, 8 ×8 and 4 ×4 half-range Gauss-Hermit discrete velocity 
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Fig. 8. The results of the cavity flow at Kn = 0 . 0259 ( Re = 10 ): ( a ) U-velocity along the vertical centerline, ( b ) V -velocity along the horizontal centerline, ( c ) the heat flux Qx 

along the vertical centerline and ( d ) the heat flux Qy along the horizontal centerline. 

points, respectively. Independence of results with respect to the 

number of discrete velocity point is already validated. The CFL 

number η in both methods are set to be 0.5 unless otherwise 

stated. It should be noted that in what follows the “resolved” re- 

sult means the solution is mesh independent; the velocity and heat 

flux presented are normalized by U w and p 0 U w , respectively, where 

p 0 is the initial pressure. 

Figs. 5–7 show the velocity and heat flux profiles along the hor- 

izontal and vertical centerlines of the cavity when Kn = 10 , 1 and 

0.1, respectively. In order to compare accuracy of these two meth- 

ods, the results on different mesh resolutions are presented, and 

with a mesh of 64 2 the results are already well-resolved. The re- 

sults of the full Boltzmann equation solved by the fast spectral 

method (FSM) are also included for comparison [18,19] . As we can 

see, the resolved velocity profiles agree well with those from the 

FSM, however, discrepancies are observed for the heat flux, despite 

that the resolved results of the GDVM and DUGKS agree well with 

each other. This can be attributed to that the GDVM and DUGKS 

are obtained based on the simplified Boltzmann model equation, 

while the FSM solves the full Boltzmann model. In addition, the 

heat flux, a high-order moment of the velocity distribution func- 

tion, is more sensitive to the collision model than low-order ones. 

In addition, as shown in Figs. 5 (d), 6 (d) and 7 (d), the GDVM 

with 32 ×32 grid points underestimates the peak value of the ver- 

tical heat flux Qy adjacent to the right wall, while the DUGKS re- 

sults with the same coarse mesh are in reasonable agreement with 

those of the fine mesh of 64 2 . For instance, for the case of GDVM 

at Kn = 10 with the mesh of 32 ×32, the maximum relative error 

of Qy is about 38.2% compared with the resolved results, while it is 

about 11.1% for the DUGKS counterpart. Additionally, it is interest- 

ing to note that there is no such clear discrepancy for the horizon- 

tal heat flux Qx . This is because the variation of Qy along the hori- 

zontal direction is more intensive than that of Qx along the vertical 

direction. With such coarse mesh in non-smooth region, the third- 

order accurate upwind scheme in which the numerical stencil ex- 

pands to large distance, may produce large error. The second-order 

accurate upwind scheme is also tested with coarse mesh of 32 2 

and it captures this Qy peak much better than the high order one 

with the same mesh, but the results of the high-order GDVM is 

still overall better than those of the second-order one. 

Fig. 8 shows the velocity and heat flux along centerlines of the 

cavity for Kn = 0 . 0259 ( Re = 10 ) in the early slip regime. It is usu- 

ally recognized that it is difficult for the traditional DVM in this 

regime due to requirement of fine meshes. However, we note that 

the resolved results of the GDVM and DUGKS with the fine mesh 

of 64 2 are in excellent agreement with each other, although visi- 

ble deviations from the FSM results are still observed for the high- 

order moment, i.e., the heat flux. This indicates that the mesh re- 

quirement of the GDVM in such regime is acceptable due to the 

use of high-order approximation. In addition, with a coarse mesh 

of 32 2 , the vertical velocity V and the heat flux Qy computed by 

the DUGKS are slightly better than those from the GDVM. The 
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Fig. 9. The results of the cavity flow at Kn = 6 . 47 × 10 −4 ( Re = 400 ): ( a ) U -velocity along the vertical centerline, ( b ) V -velocity along the horizontal centerline, ( c ) U -velocity 

contour and ( d ) V -velocity contour. In the figures ( c ) and ( d ): background: the DUGKS results with the mesh of 128 2 ; the black solid line: the DUGKS results with the mesh 

64 2 ; the white dash-double-dotted line: the GDVM results with the mesh of 128 2 ; the rose red dash-dotted line: the GDVM results with the mesh 64 2 . 

same conclusion can be drawn for the flows in the transition and 

free molecular regimes. 

The results at Kn = 6 . 47 × 10 −4 ( Re = 400 ) in the hydrodynamic 

regime are also presented, where the benchmark NS solutions are 

available [46] . Figs. 9 (a) and (b) show the horizontal and vertical 

velocity profiles along the centerlines of the cavity. It is found that 

with the coarse mesh, the results of DUGKS are much better than 

those of the GDVM. For example, as shown in Fig. 9 (a), with the 

mesh of 32 2 , the GDVM underestimates the U -velocity boundary 

layer adjacent to the top wall, whereas the DUGKS can accurately 

capture this velocity boundary layer with such coarse resolution. 

This indicates that the GDVM is more dissipative than the DUGKS. 

In addition, we also observe that the DUGKS is not so sensitive to 

mesh resolutions as the GDVM. This is because that even in this 

regime DUGKS still preserves the second-order spatial accuracy 

[34,35] . Similar observations can be obtained from Figs. 9 (c) and 

(d). In these two figures, we, respectively, plot the U and V veloc- 

ity distributions on different mesh resolutions; the well-resolved 

results of DUGKS with the finest mesh of 128 2 are regarded as the 

reference solutions. It is observed that the results of GDVM with 

a mesh of 64 2 clearly deviate from the reference solutions, par- 

ticularly around the cavity corners and vortex centers, while the 

DUGKS with the same mesh can adequately resolve the flow field. 

This is consistent with the analysis in Section 2.4 that the DUGKS 

is more accurate than the GDVM in the continuum regime. 

Fig. 10 gives the grid independent results of the U -velocity 

along the vertical centerline and the V -velocity along the horizon- 

tal centerline, obtained from the GDVM and DUGKS simulations. 

The results are validated by the DSMC data [45] for rarefied flow 

(Kn = 10 , 1 , 0 . 1) and the high resolution NS data [46] for contin- 

uum flow (Re = 400) . It is clearly found that, with sufficient grids, 

the results of GDVM and DUGKS are in excellent agreement with 

the benchmark solutions, and the number of grid points required 

by the DUGKS is only half of that for the GDVM. 

It is usually recognized that, for highly rarefied flows, with few 

collisions between gas molecules, the mean free path is larger than 

the flow characteristic length, while in the near hydrodynamic 

regime, frequent molecular collisions occur, so the flow character- 

istic length is much larger than the mean free path. Therefore, the 

mesh size could be smaller than the mean free path in the highly 

rarefied regime, and vice versa in the near hydrodynamic regimes. 

Since the mean free path λ = KnH, and the mesh size �x = H/N, 

where H is the characteristic length, and N is the grid points in 

one direction, so the ratio of gas mean free path and the mesh 

size is δ = KnN. Therefore, for a given Kn , larger δ suggests that the 

method requires finer mesh to resolve the flow field. Table 2 gives 

the value of δ at different Knudsen numbers. It is clearly found 
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Fig. 10. The grid independent results of U -velocity along the vertical centerline and V -velocity along the horizontal centerline: ( a ) Kn = 10 , ( b ) Kn = 1 , ( c ) Kn = 0 . 1 and ( d ) 

Kn = 6 . 47 × 10 −4 ( Re = 400 ). The benchmark results from the DSMC data [45] for rarefied flow and the high resolution NS data given by Ghia et al. [46] for continuum flow 

are also included for comparison. 

Table 2 

The ratio of the gas mean free path λ and the resolved 

grid size �x which gives mesh independent results, de- 

noted by δ = λ/ �x , at different Knudsen numbers. 

Kn 6 . 47 × 10 −4 0.0259 0.1 1 10 

δDUGKS 0.042 0.83 3.2 32 320 

δGDVM 0.084 1.66 6.4 64 320 

that the relations between resolved mesh size and gas mean free 

path in different flow regimes are consistent with the above anal- 

ysis. Also, it is noted that the DUGKS indeed requires fewer grid 

points to resolve the given flow field. 

Distinct algorithm design of the GDVM and DUGKS may lead 

to different convergent processes. Fig. 11 depicts evolution of the 

relative global error defined by Eq. (33) at different Knudsen num- 

bers. In addition to the results with the same CFL number, the re- 

sults of GDVM with a large CFL number up to η = 10 4 , say implicit 

GDVM, are also included. As we can see from Figs. 11 (a) and (b), 

error evolution of both methods in the transition and free molec- 

ular regimes are almost identical to each other. However, when 

approaching to the slip and hydrodynamic regimes, as shown in 

Figs. 11 (c) and (d), the convergence rate of DUGKS is apparently 

faster than that of the GDVM. Furthermore, we also note that the 

implicit GDVM converges about two orders of magnitude faster 

than the GDVM and DUGKS in highly rarefied regime, while in the 

continuum region, as shown in Fig. 11 (d), the convergence rate of 

DUGKS turns to be two times faster than that of GDVM as well as 

the implicit GDVM. 

In addition to accuracy, the computational efficiencies of GDVM 

and DUGKS are also measured. Firstly, we compare the CPU time 

cost of each iteration. For a fair comparison, the time step is set 

to be identical in the GDVM and DUGKS. For the case of Kn = 0 . 1 

with 64 2 mesh points, the CPU time costs within one time step 

are 0.1283 s and 0.2965 s for the GDVM and DUGKS simulations, 

respectively, which indicates that the GDVM is about one time 

faster than the DUGKS for each iteration. According to our anal- 

ysis in Section 2.4 , this result is not surprising as the DUGKS with 

a finite-volume formulation computes more equilibrium state func- 

tions than the finite-difference GDVM. 

However, as shown in Fig. 11 , there are different convergence 

rates for the GDVM and DUGKS in various regimes, which lead to 

different time costs to achieve a converged solution. This assess- 

ment includes not only the time cost of these two methods with a 

same time step, but also the implicit GDVM. Table 3 presents the 

total CPU time costs to attain the steady-state ( Eq. (33) ) solutions 

in the various regimes. Note that for the implicit GDVM, the er- 

ror estimation is performed for each iteration. As expected, in the 

transition and free molecular regimes, the GDVM is about one time 

faster than the DUGKS, whereas as Kn decreases, the GDVM be- 

comes slower than the DUGKS due to the faster convergence rate 
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Fig. 11. Error evolution defined by Eq. (33) at different Knudsen numbers: ( a ) Kn = 10 , ( b ) Kn = 0 . 1 , ( c ) Kn = 2 . 59 × 10 −2 (Re = 10) and ( d ) Kn = 6 . 47 × 10 −4 (Re = 400) . 

Note that for the implicit GDVM, the error is estimated at one time step. 

Table 3 

The total CPU time costs (in minute) of the GDVM and DUGKS when the re- 

sults satisfy the stead-state criterion given by Eq. (33) on the mesh of 64 2 . 

The results of the implicit GDVM are also included. Note that the convergency 

criteria for the implicit GDVM is measured at one time step. 

Kn 6 . 47 × 10 −4 0.0259 0.1 1 10 

t DUGKS 6.06 2.35 41.52 272.93 503.31 

t GDVM 13.35 1.51 18.4 121.35 236.15 

t implicit GDVM 11.92 0.20 0.35 1.2 4.01 

t DUGKS / t GDVM 0.51 1.55 2.25 2.24 2.13 

t DUGKS / t implicit GDVM 0.46 11.75 118.62 227.43 125.51 

of DUGKS. Moreover, it is interesting to note that although the ef- 

ficiency of implicit GDVM is improved by two orders of magnitude 

in highly rarefied regime, it is still about one time slower than the 

DUGKS in the hydrodynamic regime. 

It should be noted that the above efficiency comparisons are 

based on the same mesh for the two methods. As shown, the 

GDVM requires 64 2 mesh points to obtain the resolved results for 

the flows from early slip to highly rarefied regime, while for the 

DUGKS, it only needs a coarser mesh of 32 2 . Likewise, for the con- 

tinuum flow, the mesh requirements for the GDVM and DUGKS are 

128 2 and 64 2 , respectively. Therefore, the DUGKS can achieve ac- 

curate results with coarser meshes in comparison with the GDVM. 

Consequently, as shown in Table 4 , to achieve the well-resolved 

results, the DUGKS is about one order of magnitude faster than 

Table 4 

The total CPU time costs (in minute) of the implicit GDVM and DUGKS when the re- 

sults are well resolved. The convergency criteria for the implicit GDVM is measured 

at one time step. 

Kn 6 . 47 × 10 −4 0.0259 0.1 1 10 

t DUGKS 6.06 0.31 6.17 35.7 58.38 

t implicit GDVM 4 8.6 8 0.20 0.35 1.2 4.01 

t DUGKS / t implicit GDVM 0.12 1.55 17.63 29.75 14.56 

the implicit GDVM in the continuum region, and vice versa in the 

highly rarefied regime. We must emphasize that although the uni- 

form mesh is used in the above simulations, non-uniform meshes 

can be easily implemented in the finite-difference GDVM and the 

finite-volume DUGKS [36] . In addition, the unstructured meshes 

have already been used for the DUGKS simulations [40] . It has 

been demonstrated that with nonuniform meshes, the efficiency 

of DUGKS can be improved dramatically to allow large simulations 

[36,47] . 

In addition, regarding the parallel computation, it is straight- 

forward for both the GDVM and DUGKS to decompose molecular 

velocity space. However, if the physical domain decomposition is 

of interest, the parallel implementation of this implicit GDVM is 

considerably more challenging than the DUGKS counterpart. 
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4. Conclusions 

The main objective of this work is to quantify the compu- 

tational performance of different DVMs, so that researchers may 

choose the most appropriate method for their applications. Our re- 

sults show that both the GDVM and DUGKS can accurately repro- 

duce the results in all the flow regimes, provided that the mesh 

resolution is sufficient. Meanwhile, it is found that the DUGKS is 

less dissipative and consequently requires a much smaller num- 

ber of grid points than the GDVM, especially in the continuum and 

near-continuum regimes. For the GDVM, the convection term of 

the kinetic model is approximated by the upwind scheme with the 

underlying assumption of molecular free streaming between two 

grid points, while in the DUGKS the collision and transport pro- 

cesses are coupled physically by using the discrete characteristic 

solution of the kinetic equation. Therefore, even with a third-order 

discretization, the GDVM is not as accurate as the second-order 

DUGKS, particularly in near hydrodynamic regimes. 

The efficiency and convergence rate of the GDVM and DUGKS 

are also compared. Our results show that with the same mesh for 

each iteration, the CPU time cost of the DUGKS is about twice 

that of the GDVM, which is not surprising that the finite-volume 

DUGKS computes more equilibrium state distribution functions 

when compared to the GDVM with a finite-difference formulation. 

In addition, when using the same time step and spatial mesh, the 

GDVM and DUGKS show similar convergence rates for the flows 

ranging from the free molecular to early slip, so that the GDVM 

is about twice as fast as the DUGKS; when using a large time 

step, the implicit GDVM is faster than the explicit DUGKS by about 

two orders of magnitude. However, as the flow approaches to the 

hydrodynamic regime in which molecular collisions dominate, the 

DUGKS converges faster, consequently, it turns out to be twice as 

fast as the implicit GDVM. It should be noted that in order to 

achieve results in reasonable accuracy, the DUGKS requires fewer 

mesh points than the GDVM, therefore, the overall computational 

efficiency of DUGKS can be improved by one order of magnitude. 

In summary, the DUGKS is preferable for flow problems involv- 

ing different flow regimes, while if only the steady-state solution 

of highly rarefied flows is of interest, the implicit GDVM, which can 

boost the GDVM convergence rate by two orders of magnitude, is 

a better choice. 
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