1,142 research outputs found

    A* Orthogonal Matching Pursuit: Best-First Search for Compressed Sensing Signal Recovery

    Full text link
    Compressed sensing is a developing field aiming at reconstruction of sparse signals acquired in reduced dimensions, which make the recovery process under-determined. The required solution is the one with minimum â„“0\ell_0 norm due to sparsity, however it is not practical to solve the â„“0\ell_0 minimization problem. Commonly used techniques include â„“1\ell_1 minimization, such as Basis Pursuit (BP) and greedy pursuit algorithms such as Orthogonal Matching Pursuit (OMP) and Subspace Pursuit (SP). This manuscript proposes a novel semi-greedy recovery approach, namely A* Orthogonal Matching Pursuit (A*OMP). A*OMP performs A* search to look for the sparsest solution on a tree whose paths grow similar to the Orthogonal Matching Pursuit (OMP) algorithm. Paths on the tree are evaluated according to a cost function, which should compensate for different path lengths. For this purpose, three different auxiliary structures are defined, including novel dynamic ones. A*OMP also incorporates pruning techniques which enable practical applications of the algorithm. Moreover, the adjustable search parameters provide means for a complexity-accuracy trade-off. We demonstrate the reconstruction ability of the proposed scheme on both synthetically generated data and images using Gaussian and Bernoulli observation matrices, where A*OMP yields less reconstruction error and higher exact recovery frequency than BP, OMP and SP. Results also indicate that novel dynamic cost functions provide improved results as compared to a conventional choice.Comment: accepted for publication in Digital Signal Processin

    Multiple pattern classification by sparse subspace decomposition

    Full text link
    A robust classification method is developed on the basis of sparse subspace decomposition. This method tries to decompose a mixture of subspaces of unlabeled data (queries) into class subspaces as few as possible. Each query is classified into the class whose subspace significantly contributes to the decomposed subspace. Multiple queries from different classes can be simultaneously classified into their respective classes. A practical greedy algorithm of the sparse subspace decomposition is designed for the classification. The present method achieves high recognition rate and robust performance exploiting joint sparsity.Comment: 8 pages, 3 figures, 2nd IEEE International Workshop on Subspace Methods, Workshop Proceedings of ICCV 200

    Sparsity Enhanced Decision Feedback Equalization

    Full text link
    For single-carrier systems with frequency domain equalization, decision feedback equalization (DFE) performs better than linear equalization and has much lower computational complexity than sequence maximum likelihood detection. The main challenge in DFE is the feedback symbol selection rule. In this paper, we give a theoretical framework for a simple, sparsity based thresholding algorithm. We feed back multiple symbols in each iteration, so the algorithm converges fast and has a low computational cost. We show how the initial solution can be obtained via convex relaxation instead of linear equalization, and illustrate the impact that the choice of the initial solution has on the bit error rate performance of our algorithm. The algorithm is applicable in several existing wireless communication systems (SC-FDMA, MC-CDMA, MIMO-OFDM). Numerical results illustrate significant performance improvement in terms of bit error rate compared to the MMSE solution

    Proceedings of the second "international Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST'14)

    Get PDF
    The implicit objective of the biennial "international - Traveling Workshop on Interactions between Sparse models and Technology" (iTWIST) is to foster collaboration between international scientific teams by disseminating ideas through both specific oral/poster presentations and free discussions. For its second edition, the iTWIST workshop took place in the medieval and picturesque town of Namur in Belgium, from Wednesday August 27th till Friday August 29th, 2014. The workshop was conveniently located in "The Arsenal" building within walking distance of both hotels and town center. iTWIST'14 has gathered about 70 international participants and has featured 9 invited talks, 10 oral presentations, and 14 posters on the following themes, all related to the theory, application and generalization of the "sparsity paradigm": Sparsity-driven data sensing and processing; Union of low dimensional subspaces; Beyond linear and convex inverse problem; Matrix/manifold/graph sensing/processing; Blind inverse problems and dictionary learning; Sparsity and computational neuroscience; Information theory, geometry and randomness; Complexity/accuracy tradeoffs in numerical methods; Sparsity? What's next?; Sparse machine learning and inference.Comment: 69 pages, 24 extended abstracts, iTWIST'14 website: http://sites.google.com/site/itwist1
    • …
    corecore