394 research outputs found

    Parsing Thai Social Data: A New Challenge for Thai NLP

    Full text link
    Dependency parsing (DP) is a task that analyzes text for syntactic structure and relationship between words. DP is widely used to improve natural language processing (NLP) applications in many languages such as English. Previous works on DP are generally applicable to formally written languages. However, they do not apply to informal languages such as the ones used in social networks. Therefore, DP has to be researched and explored with such social network data. In this paper, we explore and identify a DP model that is suitable for Thai social network data. After that, we will identify the appropriate linguistic unit as an input. The result showed that, the transition based model called, improve Elkared dependency parser outperform the others at UAS of 81.42%.Comment: 7 Pages, 8 figures, to be published in The 14th International Joint Symposium on Artificial Intelligence and Natural Language Processing (iSAI-NLP 2019

    LFG without C-structures

    Get PDF
    We explore the use of two dependency parsers, Malt and MST, in a Lexical Functional Grammar parsing pipeline. We compare this to the traditional LFG parsing pipeline which uses constituency parsers. We train the dependency parsers not on classical LFG f-structures but rather on modified dependency-tree versions of these in which all words in the input sentence are represented and multiple heads are removed. For the purposes of comparison, we also modify the existing CFG-based LFG parsing pipeline so that these "LFG-inspired" dependency trees are produced. We find that the differences in parsing accuracy over the various parsing architectures is small

    An improved neural network model for joint POS tagging and dependency parsing

    Full text link
    We propose a novel neural network model for joint part-of-speech (POS) tagging and dependency parsing. Our model extends the well-known BIST graph-based dependency parser (Kiperwasser and Goldberg, 2016) by incorporating a BiLSTM-based tagging component to produce automatically predicted POS tags for the parser. On the benchmark English Penn treebank, our model obtains strong UAS and LAS scores at 94.51% and 92.87%, respectively, producing 1.5+% absolute improvements to the BIST graph-based parser, and also obtaining a state-of-the-art POS tagging accuracy at 97.97%. Furthermore, experimental results on parsing 61 "big" Universal Dependencies treebanks from raw texts show that our model outperforms the baseline UDPipe (Straka and Strakov\'a, 2017) with 0.8% higher average POS tagging score and 3.6% higher average LAS score. In addition, with our model, we also obtain state-of-the-art downstream task scores for biomedical event extraction and opinion analysis applications. Our code is available together with all pre-trained models at: https://github.com/datquocnguyen/jPTDPComment: 11 pages; In Proceedings of the CoNLL 2018 Shared Task: Multilingual Parsing from Raw Text to Universal Dependencies, to appea

    A Novel Neural Network Model for Joint POS Tagging and Graph-based Dependency Parsing

    Full text link
    We present a novel neural network model that learns POS tagging and graph-based dependency parsing jointly. Our model uses bidirectional LSTMs to learn feature representations shared for both POS tagging and dependency parsing tasks, thus handling the feature-engineering problem. Our extensive experiments, on 19 languages from the Universal Dependencies project, show that our model outperforms the state-of-the-art neural network-based Stack-propagation model for joint POS tagging and transition-based dependency parsing, resulting in a new state of the art. Our code is open-source and available together with pre-trained models at: https://github.com/datquocnguyen/jPTDPComment: v2: also include universal POS tagging, UAS and LAS accuracies w.r.t gold-standard segmentation on Universal Dependencies 2.0 - CoNLL 2017 shared task test data; in CoNLL 201
    corecore