229,399 research outputs found

    The impact of collarette region-based convolutional neural network for iris recognition

    Get PDF
    Iris recognition is a biometric technique that reliably and quickly recognizes a person by their iris based on unique biological characteristics. Iris has an exceptional structure and it provides very rich feature spaces as freckles, stripes, coronas, zigzag collarette area, etc. It has many features where its growing interest in biometric recognition lies. This paper proposes an improved iris recognition method for person identification based on Convolutional Neural Networks (CNN) with an improved recognition rate based on a contribution on zigzag collarette area - the area surrounding the pupil - recognition. Our work is in the field of biometrics especially iris recognition; the iris recognition rate using the full circle of the zigzag collarette was compared with the detection rate using the lower semicircle of the zigzag collarette. The classification of the collarette is based on the Alex-Net model to learn this feature, the use of the couple (collarette/CNN) allows for noiseless and more targeted characterization and also an automatic extraction of the lower semicircle of the collarette region, finally, the SVM training model is used for classification using grayscale eye image data taken from (CASIA-iris-V4) database. The experimental results show that our contribution proves to be the best accurate, because the CNN can effectively extract the image features with higher classification accuracy and because our new method, which uses the lower semicircle of the collarette region, achieved the highest recognition accuracy compared with the old methods that use the full circle of collarette region

    Glycosylases and AP-cleaving enzymes as a general tool for probe-directed cleavage of ssDNA targets

    Get PDF
    The current arsenal of molecular tools for site-directed cleavage of single-stranded DNA (ssDNA) is limited. Here, we describe a method for targeted DNA cleavage that requires only the presence of an A nucleotide at the target position. The procedure involves hybridization of a complementary oligonucleotide probe to the target sequence. The probe is designed to create a deliberate G:A mismatch at the desired position of cleavage. The DNA repair enzyme MutY glycosylase recognizes the mismatch structure and selectively removes the mispaired A from the duplex to create an abasic site in the target strand. Addition of an AP-endonuclease, such as Endonuclease IV, subsequently cleaves the backbone dividing the DNA strand into two fragments. With an appropriate choice of an AP-cleaving enzyme, the 3ā€²- and 5ā€²-ends of the cleaved DNA are suitable to take part in subsequent enzymatic reactions such as priming for polymerization or joining by DNA ligation. We define suitable standard reaction conditions for glycosylase/AP-cleaving enzyme (G/AP) cleavage, and demonstrate the use of the method in an improved scheme for in situ detection using target-primed rolling-circle amplification of padlock probes

    Circle-based Eye Center Localization (CECL)

    Full text link
    We propose an improved eye center localization method based on the Hough transform, called Circle-based Eye Center Localization (CECL) that is simple, robust, and achieves accuracy on a par with typically more complex state-of-the-art methods. The CECL method relies on color and shape cues that distinguish the iris from other facial structures. The accuracy of the CECL method is demonstrated through a comparison with 15 state-of-the-art eye center localization methods against five error thresholds, as reported in the literature. The CECL method achieved an accuracy of 80.8% to 99.4% and ranked first for 2 of the 5 thresholds. It is concluded that the CECL method offers an attractive alternative to existing methods for automatic eye center localization.Comment: Published and presented at The 14th IAPR International Conference on Machine Vision Applications, 2015. http://www.mva-org.jp/mva2015

    Three-Dimensional Spectral-Domain Optical Coherence Tomography Data Analysis for Glaucoma Detection

    Get PDF
    Purpose: To develop a new three-dimensional (3D) spectral-domain optical coherence tomography (SD-OCT) data analysis method using a machine learning technique based on variable-size super pixel segmentation that efficiently utilizes full 3D dataset to improve the discrimination between early glaucomatous and healthy eyes. Methods: 192 eyes of 96 subjects (44 healthy, 59 glaucoma suspect and 89 glaucomatous eyes) were scanned with SD-OCT. Each SD-OCT cube dataset was first converted into 2D feature map based on retinal nerve fiber layer (RNFL) segmentation and then divided into various number of super pixels. Unlike the conventional super pixel having a fixed number of points, this newly developed variable-size super pixel is defined as a cluster of homogeneous adjacent pixels with variable size, shape and number. Features of super pixel map were extracted and used as inputs to machine classifier (LogitBoost adaptive boosting) to automatically identify diseased eyes. For discriminating performance assessment, area under the curve (AUC) of the receiver operating characteristics of the machine classifier outputs were compared with the conventional circumpapillary RNFL (cpRNFL) thickness measurements. Results: The super pixel analysis showed statistically significantly higher AUC than the cpRNFL (0.855 vs. 0.707, respectively, p = 0.031, Jackknife test) when glaucoma suspects were discriminated from healthy, while no significant difference was found when confirmed glaucoma eyes were discriminated from healthy eyes. Conclusions: A novel 3D OCT analysis technique performed at least as well as the cpRNFL in glaucoma discrimination and even better at glaucoma suspect discrimination. This new method has the potential to improve early detection of glaucomatous damage. Ā© 2013 Xu et al

    Fast and Accurate Algorithm for Eye Localization for Gaze Tracking in Low Resolution Images

    Full text link
    Iris centre localization in low-resolution visible images is a challenging problem in computer vision community due to noise, shadows, occlusions, pose variations, eye blinks, etc. This paper proposes an efficient method for determining iris centre in low-resolution images in the visible spectrum. Even low-cost consumer-grade webcams can be used for gaze tracking without any additional hardware. A two-stage algorithm is proposed for iris centre localization. The proposed method uses geometrical characteristics of the eye. In the first stage, a fast convolution based approach is used for obtaining the coarse location of iris centre (IC). The IC location is further refined in the second stage using boundary tracing and ellipse fitting. The algorithm has been evaluated in public databases like BioID, Gi4E and is found to outperform the state of the art methods.Comment: 12 pages, 10 figures, IET Computer Vision, 201
    • ā€¦
    corecore