
QUANTITATIVE DESCRIPTION OF
MICROTUBULE DISORGANISATION

IN NEURODEGENERATIVE
DISEASES:

SOFTWARE DEVELOPMENT AND
IMAGE ANALYSIS

A THESIS SUBMITTED TO THE UNIVERSITY OF MANCHESTER

FOR THE DEGREE OF DOCTOR OF PHILOSOPHY

IN THE FACULTY OF BIOLOGY, MEDICINE AND HEALTH

2021

Beatriz Costa-Gomes

School of Biological Sciences

Contents

Abstract 9

Declaration 10

Copyright 11

Acknowledgements 12

1 Introduction 14
1.1 The nervous system, neurons and axons 14
1.2 The importance of microtubules for axonal physiology 15

1.2.1 Biochemical and physical properties of microtubules 15
1.2.2 Roles of axonal microtubules . 16
1.2.3 Regulation of axonal microtubules 17
1.2.4 Key Problem and Drosophila as a solution 19

1.3 The model of local axon homoeostasis 20
1.3.1 Key Aims . 22

1.4 Available strategies and software packages to analyse axonal MT phe-
notypes . 23

1.5 Aim . 25

2 Languages, external resources and images used 27
2.1 MATLAB . 27

2.1.1 MATLAB Incorporated Functions 27
2.1.2 Functions from Other Sources . 27
2.1.3 Deep Learning Toolbox . 28

2.2 Outsource Software . 28
2.2.1 Ilastik . 28

2.3 Biological Images . 29
2.3.1 Manual Analysis . 30

3 Image Processing 31
3.1 Background and Rationale . 31
3.2 Shape Extraction from Images . 35

2

3.2.1 Identifying a suitable filter . 36

3.2.2 Obtaining binary shapes - Skeletonisation 40

3.3 Identify paths within the shape patterns 44

3.3.1 Existing Software and Methods 44

3.3.2 Implementation . 44

4 Quantitative analysis and description of the binary shape 58
4.1 Background and Rationale . 58

4.2 Length and Straight Segments . 59

4.2.1 Length . 59

4.2.2 Straight Segments . 59

4.3 Curvature . 68

4.3.1 Testing . 73

5 ALFRED: the pipeline and the software 78
5.1 Rationale . 78

5.2 Strategic decisions for software design 79

6 Biological Image Analysis 84
6.1 Description of the Images and Aim . 84

6.2 ALFRED Analysis . 84

7 Machine Learning 97
7.1 Background and Rationale . 97

7.2 Methods . 98

7.2.1 Data Clean-Up and Augmentation 98

7.2.2 Classification . 101

7.3 Classification Results . 105

8 Conclusions, discussion and future 107
8.1 Main Outcomes . 107

8.1.1 Aim of the Thesis . 107

8.1.2 Image Processing and Analysis 107

8.1.3 ALFRED . 112

8.1.4 Biological Interpretations from ALFRED 113

8.1.5 Machine Learning . 116

8.1.6 Final Remarks . 117

A ALFRED: Software Implementation and User Manual 128
A.0.1 Loading Window layout and functionality 128

A.0.2 Main Window layout and functionality 129

A.0.3 ROI Window . 131

3

A.0.4 Microscope Specifications Window 133
A.0.5 Analysis and Calculations . 133

Word Count:32917

4

List of Tables

1.1 Software Comparison . 24

3.1 Skeletonisation: Time performance . 42

4.1 Straight Segments: Testing . 76
4.2 Theoretical Curvatures . 77
4.3 Root Mean Square Error of Radius Calculations 77

6.1 Average Radius Measured . 88

7.1 Data Augmentation Ranges . 100
7.2 Network Parameters Explored . 106

5

List of Figures

1.1 Simplified Neuron . 14

1.2 Representation of a microtubule end . 16

1.3 Neuronal microtubule organisation . 16

1.4 Diagram of an axon swelling. 17

1.5 Primary Drosophila neurons stained for microtubules. 21

1.6 Microtubule disorganisation in Drosophila primary neurons. 22

1.7 CellProfiler Analysis of Circles . 25

3.1 Inital Image vs Computer-Readable Format 31

3.2 Concept Illustration . 33

3.3 Filter Explanation . 34

3.4 Image transformation flowchart. 35

3.5 Applying mask without any filters . 36

3.6 Examples of image processing into binary images 37

3.7 Vesselness and mask applied to channel 49

3.8 Comparison of masks . 50

3.9 Vesselness of Disorganisation . 50

3.10 Neighbourhood definition . 50

3.11 Medial Axis Definition . 51

3.12 Fast Marching Method: First steps . 51

3.13 Skeletonisation of Sample Image . 52

3.14 Skeletonisation: Boxplot of timed perfomance 53

3.15 Skeletonisation of Images . 54

3.16 Path Finding: From Binary to Graph . 54

3.17 Path Finding: From Skeleton to Path . 55

3.18 Path Finding . 56

3.19 Path Finding: Adding Points . 57

3.20 Path Finding: Gaps . 57

4.1 Parameter extraction from neuronal images. 58

4.2 Straight Segments: Euclidean Difference 60

4.3 Straight Segments: Example . 61

4.4 Hough Transform: ρ and θ definition. 61

6

4.5 Hough Transform: Application. 62
4.6 Hough Transform: Plot of ρ, θ. 63
4.7 Hough Transform: Implementation Flowchart 64
4.8 Hough Transform: Overlap Example . 65
4.9 Hough Transform: Testing Iteration . 65
4.10 Hough Transform: Testing Images . 67
4.11 Curvature: Mathematical Definition . 68
4.12 Curvature: Pixel Angles . 69
4.13 Curvature: Pattern Fitting . 70
4.14 Curvature: Function Fitting . 70
4.15 Curvature: Gaussian Windows . 72
4.16 Curvature: Smoothing Spline Fitting . 72
4.17 Curvature Testing examples . 73
4.18 Curvature Comparison . 74
4.19 Curvature: Skeleton treatment . 75

5.1 Experiment diagram . 80
5.2 ALFRED Pipeline . 81
5.3 Example of overlapping bounding boxes. 82

6.1 Manual axon length measurement . 85
6.2 Axonal Length Comparison . 89
6.3 Relative Axonal Length - Analysis . 90
6.4 Manual disorganisation measurement 91
6.5 Axonal Disorganisation Area Comparison 92
6.6 Relative Disorganisation Area Analysis 93
6.7 Microtubule Disorganisation Index Comparison 94
6.8 Manual approximate radius measurements. Red circles denote the ap-

parent loops, with the respective radius in nm in white. Adapted from
Dr. Simon Pearce’s work [99]. 94

6.9 Curvature Comparison . 95
6.10 Straightness Comparison . 96

7.1 Data Clean-Up Pipeline . 98
7.2 Microtubule Channel without clean-up 99
7.3 Image Processing with Ilastik . 100
7.4 Example of an incomplete cleaning of the image. 101
7.5 Classification Architecture . 102
7.6 Neural Network Architecture . 103
7.7 Deep Neural Network Architecture . 103
7.8 VGG16 Architecture . 104
7.9 ResNet18 Building Block . 104

7

7.10 Deep Learning Toolbox Interface . 105

A.1 ALFRED: Load Window . 136
A.2 ALFRED: Main Image Window . 137
A.3 ALFRED: Channel Options . 138
A.4 Bounding box tools . 138
A.5 ALFRED: Highlighted Regions . 139
A.6 ALFRED: ROI Window . 140
A.7 ALFRED: Region Detection . 141
A.8 ALFRED: Microscope Specifications Window 142
A.9 Scaling Factors . 142
A.10 Saving options . 142
A.11 Image Labelling . 143

8

Abstract

Axons are the long, cable-like processes of neurons which form the nerves that wire our
bodies. The maintenance of these delicate structures requires continuous parallel bundles of
filamentous polymers called microtubules, which run all along the axonal core. In ageing
and neurodegeneration, axonal microtubules often become curled and disorganised, causing
detrimental accumulations of organelles and vesicles. The hypothesis of Local Axon Home-
ostasis suggests that the disorganisation of axon bundles is caused by the constant mechanical
stress from the activity of motor proteins performing life-sustaining axonal cargo transport.
In healthy axons, microtubule-regulating proteins prevent this from happening. If such pro-
teins are dysfunctional, microtubules have a heightened probability of becoming disorgan-
ised. In this scenario, we would expect that microtubule phenotypes should appear similar,
regardless of which microtubule regulatory proteins are absent; their images seem to sug-
gest this. Therefore, my task was to develop objective parametric analyses to describe and
compare microtubule phenotypes of different genetic conditions.

First, I tested a number of existing software packages (Imaris, CellProfiler, NeuronJ, Fib-
erApp), none of which proved suitable for a number of reasons. Especially curvature de-
scriptions of the curled microtubules were impossible with any of these software packages.
I therefore investigated different algorithms that would allow such analyses, and chose the
Smoothing Spline Fitting method, which I turned into computational code in MATLAB. Tests
of these algorithms using spirals and ellipses of defined parameters revealed a fairly stable
reproduction of their curvatures. In addition, I used Hough Transforms to establish tools to
identify and analyse straight lines. In my validation tests using sample images, these per-
formed better than classic metrics.

In the next step, I designed ALFRED (Advanced Labelling, Fitting, Recognition and En-
hancement of Data) as user-friendly software in which the above algorithms can be applied.
The development of ALFRED included strategies for image processing (from reduction of
background noise to skeletonisation), ROI selection (with the help of MATLAB user interface
tools) and path recognition (skeletons transformed into graphs and the shortest path algo-
rithm is applied).

When using ALFRED to analyse biological images of neurons, length and area measure-
ments were matching closely with manual analyses. Curvature and straightness analyses
of neurons of different genotype revealed a clear distinction between normal and mutant
neurons, and different mutant conditions revealed similar valued, as is consistent with the
hypothesis. The software is now available for wider application.

As a complementary approach, I attempted to compare different phenotypes using ma-

chine learning. Data clean-up of neuron images was performed with Ilastik, but no accu-

rate outcomes were achieved in the time available. Two pre-trained classification networks

(VGG16 and ResNet18) were used to classify different genotypes, but results were inconclu-

sive, likely also due to the insufficient data clean-up of images.

9

Declaration

No portion of the work referred to in this thesis has
been submitted in support of an application for an-
other degree or qualification of this or any other uni-
versity or other institute of learning.

10

Copyright

i. The author of this thesis (including any appendices and/or schedules to this
thesis) owns certain copyright or related rights in it (the Copyright) and s/he
has given the University of Manchester certain rights to use such Copyright,
including for administrative purposes.

ii. Copies of this thesis, either in full or in extracts and whether in hard or elec-
tronic copy, may be made only in accordance with the Copyright, Designs and
Patents Act 1988 (as amended) and regulations issued under it or, where appro-
priate, in accordance with licensing agreements which the University has from
time to time. This page must form part of any such copies made.

iii. The ownership of certain Copyright, patents, designs, trademarks and other in-
tellectual property (the “Intellectual Property”) and any reproductions of copy-
right works in the thesis, for example graphs and tables (“Reproductions”),
which may be described in this thesis, may not be owned by the author and
may be owned by third parties. Such Intellectual Property and Reproductions
cannot and must not be made available for use without the prior written per-
mission of the owner(s) of the relevant Intellectual Property and/or Reproduc-
tions.

iv. Further information on the conditions under which disclosure, publication
and commercialisation of this thesis, the Copyright and any Intellectual Prop-
erty and/or Reproductions described in it may take place is available in
the University IP Policy (see http://documents.manchester.ac.uk/

DocuInfo.aspx?DocID=24420), in any relevant Thesis restriction declara-
tions deposited in the University Library, the University Librarys regulations
(see http://www.library.manchester.ac.uk/about/regulations/)
and in the Universitys policy on Presentation of Theses.

11

Acknowledgements

If I were to mention every person that has contributed to this PhD, that would put
the size of the thesis to shame. As such, I will try to make it brief:

First and foremost, I want to thank the people without whom there would have
been no project, my supervisors Andreas and Matthias. Thank you for letting me
derail so much from the original plan and still staying with me through it all!

I want to thank Andre, the best postdoc any student could ask for, and who made
sure I got to the end. Thank you for everything, really - there was no way I’d get here
without your help.

In terms of collaboration, I want to thank both Nuno, who helped with the curva-
ture despite everything, and Iain, who supervised me through the Turing times! A
very important acknowledgement goes to Rita, who drew the ALFRED logo.

Now, on a more personal and mental health level: thank you Ines for being the
role model, Cristina for being the best dementor, Jill for being the best deskmate and
Jo and Alex for the irl and virtual coffee breaks! To Liz and Rob for the wonder-
ful breakfasts. To Alessio for all the games and incredibly horrible-yet-magnificent
movies. To all the guys at the Turing for a great 6 months (plus extra covid time!)
during my final year, as well as my London family who was stuck with me for a
while! And to Mauricio, who’s always been close even at a distance.

A very important acknowledgement from my heart, to the people that helped me
at the most difficult of times: to Basilio and Paula, for making me feel part of the
family when I was the most isolated in the world.

To the best mate with the worst face in the world, Jordie, thank you for the im-
mense amount of patience and coffee.

Thank you, mum and dad (Isabel and Manuel, in case there are any questions),
and everyone in my family who has been with me, for making me who I am, and
helping me get here!

Maria, Piolhovski, Piolhoshka, thank you for being an inspiration and such a
bright light in my life. You are my most favourite person in the whole world.

12

13

Chapter 1

Introduction

1.1 The nervous system, neurons and axons

Animals are complex organisms with complex behaviours that have to be coordi-
nated and adapt to the needs of the body in response to the environment. This coor-
dination is performed by the nervous system. Much work is dedicated to the study
of its development, maintenance and disorders. This requires investigations at all
levels of complexity, including the cellular and subcellular levels.

The key cell types contributing to nervous system function are glia cells and neu-
rons. Neurons are very special cells. First of all, their shape is singular: Tree-branch
like extensions extending from the cell body act as receivers of information (Den-
drites, Figure 1.1). Long slender cable-like processes (Axons, Figure 1.1) are respon-
sible for the transmission of information in form of action potentials along the body,
either from the periphery to the brain or in reverse.

Axon

Cell body and Nucleus

Dendrites
Axon terminals

Figure 1.1: A simplified schematic of a neuron. The main parts are indicated
by arrows: cell body, dendrites and axon, with the nucleus shown in blue.

Secondly, neurons are very delicate structures. To wire the human body, axons
can be up to 1m long and only up to 15 µ m in diameter [1].

Finally, neurons usually do not undergo turnover and have to survive for a life-
time, i.e. a century in humans: if neurons die or lose their axons irretrievably (e.g.

14

1.2. THE IMPORTANCE OF MICROTUBULES FOR AXONAL PHYSIOLOGY 15

upon axon degeneration), their connections have to be taken over by other neurons
in their surroundings; otherwise these connections are irreparably lost.

Even during healthy ageing, the human brain can lose up to 50% of axons [2], and
still has to maintain its normal functionality. This axon decay is further enhanced in
the presence of neurodegenerative diseases [3], particularly the group of premature
axon decay - axonopathies [4].

These diseases can be of different types: either acquired, such as trauma [5, 6] or
inherited, such as Charcot-Marie-Tooth [7] or Amyotrophic Lateral Sclerosis (ALS)
[8]. Axon decay can either be a primary driver of neurodegenerative diseases or a
symptom, i.e. dysfunction of axons can be potential cause or consequence of neu-
rodegeneration.

Given their particular shape and lifetime, some questions can be posed to further
understand axons:

• How can axons develop and then be maintained over such long periods of time?

• What mechanisms underlie axon maintenance?

• How do these mechanisms go wrong in ageing and disease?

1.2 The importance of microtubules for axonal physiol-

ogy

An essential factor underlying their growth and maintenance of axons is the cy-
toskeleton (as the name indicates, skeleton of the cell). It comprises actin, intermedi-
ate filaments and microtubules. The focus of this work is on microtubules.

1.2.1 Biochemical and physical properties of microtubules

Microtubules are polymers formed by heterodimers of α- and β-tubulin (Figure 1.2).
These heterodimers align in a head-to-tail conformation into protofilaments, so that
microtubules have polarity: one end has α-tubulin (minus end, blue in Figure 1.2)
while the other has β-tubulin (plus end, orange in Figure 1.2) [9]. Usually, 13 protofil-
aments align in parallel, forming a sheath that closes into a hollow tube of about 25
nm outer diameter ([10, 11]). In vitro, microtubules polymerise in the absence of aid-
ing proteins. Polymerisation can happen also at the minus end, but at a much slower
rate than at the plus end.

Microtubules are not stable structures, particularly at the plus end, where they
are in a constant state of dynamic instability [12]. Balancing between two reactions
(endothermic polymerisation and exothermic depolymerisation), there are three dif-
ferent conversions: pause, when the reaction happening comes to a halt; catastrophe,

16 CHAPTER 1. INTRODUCTION

minus end plus end

Figure 1.2: Representation of a microtubule end, with α- (blue) and β- (or-
ange) tubulin. The plus end is the polymerisation site, where new tubulin
dimers are added.

when the polymerisation or the pause turn into depolymerisation; rescue, when the
reaction goes from depolymerisation to one of the other states. The dynamics are
tightly controlled by different classes of microtubule binding proteins (MTBPs) [13,
14]. Although there is some knowledge regarding their molecular functions, it is
little understood how the different MTBPs are orchestrated to regulate microtubule
dynamics in meaningful ways. It is, however, important to note that many have ge-
netic links to developmental or neurodegenerative diseases [15].

1.2.2 Roles of axonal microtubules

Figure 1.3: Neuronal microtubules organised in a discontinued, parallel bun-
dle along the axon.

Microtubules act as a structural backbone in axons. Thus, microtubules (Figure
1.3) are organised in parallel bundles in axons, in that all microtubules have their
plus-end towards the axon terminals. In contrast, microtubule bundles in dendrites
are anti-parallel, i.e. have mixed orientation. Microtubule orientation is a vital feature
for one of their most important functions in neurons: axonal and dendritic transport,

1.2. THE IMPORTANCE OF MICROTUBULES FOR AXONAL PHYSIOLOGY 17

driven by molecular motors that have a tendency to move towards or against the
plus end.

Microtubule bundles have a significant role throughout the lifetime of the axon:
through extension at the leading tips or forming off-track daughter bundles they
drive axon growth and branching, and their destabilisation correlates with axon re-
traction [16]. As the axon becomes mature, the functional importance of microtubules
is not reduced: they are crucial architectural components and fundamental for axonal
transport, sustaining axonal physiology and providing materials and signalling pro-
cesses essential for axonal maintenance [4].

Microtubules are essential during axon regeneration. It was shown that the sta-
bilization of microtubules promotes regeneration in vivo [17] as shown by studies of
microtubule stabilizing drugs in spinal cord injury of rodents [8, 18]. Axonal trans-
port is also fundamental for a proper regeneration. For example, in Drosophila, it was
shown that molecular motor kinesin-1 is involved [19].

Notably, in both ageing and some forms of neurodegeneration, axons can develop
pathological swellings. In these swellings, microtubule bundles have been reported
to become disorganised (Figure 1.4) which can correlate with the functional defi-
ciency of certain MTBPs [20–22].

x*

*

Figure 1.4: Diagram of an axon swelling. The zoomed image shows micro-
tubules (blue) in bundled conformation in healthy areas of the axon (aster-
isk), and taking on disorganisation within a swelling (cross).

As will be explained in the next section, there are new and improved means to
explain such disorders, and with the molecular knowledge we have about these pro-
teins, we can have a deeper understanding of the machinery that regulates the micro-
tubule network in neurons, explaining also how areas of disorganisation can form.

1.2.3 Regulation of axonal microtubules

In vitro, microtubules are stiff rods with a very high persistence length in the or-
der of millimetres. However, when observing microtubule in gliding assays in vitro,

18 CHAPTER 1. INTRODUCTION

where microtubules move freely on carpets formed by microtubule-associated pro-
teins, there are conditions (e.g. high microtubule density), where they show a fre-
quent tendency to curl with diameters in the lower micrometre range [23]. These
in vitro conditions might provide mechanistic explanations as to why microtubules
might fail to keep their straight bundle formation in axons: high densities of kinesins
might impose a constant bias for microtubules to take on curled conformations.

In vivo, however, there are different types of MTBPs that bind microtubules in
different places, regulating microtubules in ways that prevent curling. As it would
be extensive to cover all of them, this section will focus on three examples that are
best studied and relevant to the content of this thesis.

Even though microtubules are very dynamic all throughout their structure, the
main focus of dynamics is at the tip where microtubules extend through polymeri-
sation and where this extension needs to be regulated with respect to speed and di-
rectionality. As such, it is a large field to study, as many proteins are involved in the
processes occurring. Plus end proteins, or +tips, have a self-explanatory name: they
are the proteins that track and attach to the plus end of microtubules. They belong
to a complicated machinery responsible for different aspects in a microtubule’s life,
either by promoting or inhibiting their polymerisation or guidance. The main idea of
the Polymerisation Chaperone Hypothesis [24] is the existence of functional redun-
dancy within a network of proteins that interact with each other to form a protein
superstructure that regulates the plus end. Due to the redundance within this su-
perstructure, the loss of single proteins does not necessarily have much impact [14].
However, there are some types of proteins which have a more central role in the ma-
chinery than others, such as end-binding proteins (EB), spectraplakins or XMAP215.

Of these, XMAP215 acts as a polymerase localising to the microtubule plus end,
where it promotes polymerisation [5]. Through driving polymerisation, XMAP215
facilitates the binding of EB proteins ([25] and references therein). EB proteins in
turn recruit large cytoskeleton-interacting proteins called spectraplakins [26]. Whilst
binding to EB proteins at the tip of polymerising microtubules with one end, spec-
traplakins can bind actin at the axonal surface with the other. In that way, they can
guide extending microtubules in parallel to the axonal surface into well-aligned bun-
dles [26, 27].

Furthermore, microtubules and the bundles they form need to be stabilised. Ac-
cording to Voelzmann et al [14], there are different types of microtubule stabilisation
that might occur in the axons. One mode is to cross-link microtubules into bundles
through proteins such as tau, MAP2 or MAP1B (reviewed in [1, 11]), another is to
stabilise them by protecting against the action of depolymerases or microtubule sev-
ering proteins [28]. These comprise severers such as katanin, spastin or fidgetin [29],
or they can be specialised molecular motor that can drive depolymerisation, includ-
ing proteins from the kinesin-13, kinesin-8 or kinesin-14 families [30, 31]. But there

1.2. THE IMPORTANCE OF MICROTUBULES FOR AXONAL PHYSIOLOGY 19

are also kinesins, such as members of the kinesin-4 family, which decrease the micro-
tubule turnover at the plus end.

Another important function of axonal microtubule bundles, is to provide the
highway for transport inside the cell. Molecular motors are the proteins respon-
sible for the transport along axonal microtubules, which can happen over long
distances. There are two families of microtubule-binding molecular motors, kinesins
and dynein/dynactin, whereas myosins drive transport or movement along actin
filaments [32]. Dyneins move along microtubules in the retrograde direction (from
the plus to the minus end, i.e. from the axon terminals to the cell body), whereas ki-
nesins move anterogradely. Their functions in axons are not only about the transport
of cargo. For example, dyneins also bind to the membrane cytoskeleton, and might
be responsible for microtubule movement along axons [32].

The kinesin superfamily consists of fourteen subfamilies [15]. Kinesin families
have several interesting properties and functions in axonal microtubules that make
this molecular motor a particular focus of study to understand their regulation
throughout the lifetime of the cell. Members of the kinesin-1, -2, -3 and -4 families
are involved in axonal transport towards the plus end of microtubules, whereas oth-
ers play roles in microtubule stabilisation or depolymerisation (see above). During
this thesis, I will use functional data relating to kinesin-1. The kinesin-1 family is
of importance since its dysfunction leads to different inherited pathologies such as
Charcot-Marie-Tooth disease or spastic paraplegia type 10 [33]. Mutations in its mo-
tor domains inhibit microtubule-dependent transport [34], revealing one potential
mechanism underpinning its roles in pathology.

Kinesin-1 also plays roles during axonal growth, and their impairment correlates
with reduced growth [35, 36]. Since they have the important task of transporting
essential cellular components to the growing tips, this likely interferes with the pro-
vision of materials (e.g. tubulins or membrane lipids) or important mitochondria
providing the energy to drive growth processes.

1.2.4 Key Problem and Drosophila as a solution

It is rather clear that understanding how these mechanisms jointly regulate micro-
tubules is an important but difficult task, given how complicated it is to study in-
tracellular components. An important strategy is provided through using the model
organism Drosophila melanogaster for studies of axonal microtubule regulation.

Work with Drosophila is cost-effective, it is easy to keep the flies, and they have
a short generation cycle, speeding up project work. Their efficiency is uncontested,
consequently having a rapid research progression [37–39]. Compared to higher or-
ganisms, Drosophila genes are there in lower copy numbers, it is highly efficient to

20 CHAPTER 1. INTRODUCTION

combine mutations or transgenic constructs in the same flies to study functional over-
lap and cooperation (referred to as combinatorial genetics) [40], and there is the possi-
bility of performing unbiased screens for genes that are involved in certain biological
processes. Notably, 75% of human genes that are connected to diseases are believed
to have a fly homologue [41, 42], so that biological processes studied in the fly often
translate into understanding in higher organisms including humans (thus explaining
that 9, arguably 10, Nobel laureates were awarded for their work in Drosophila [39]).

Importantly, there is already a large number of available resources and knowl-
edge, which is organized in large databases. With these resources, it becomes easy
to genetically manipulate the organisms, as almost every gene can be mutated and
fly lines are already largely available that can be used to manipulate almost every
Drosophila gene. The experimental studies in Drosophila can be done both in vivo and
within cell cultures, which allows complementary experimental approaches [27].

All of the aforementioned characteristics make Drosophila a useful research tool,
especially for neuronal studies. For example, due to their genetic manipulations and
high sequence conservation of the microtubule binding proteins with their mam-
malian genes, some important mechanisms were uncovered regarding guidance,
nerve branching and axonal transport, among others [11]. Importantly, the genetic
redundancy of some of the MTBPs mentioned above is particularly low, which facil-
itates the study and understanding of these proteins [6]. These studies can either be
done via systemic readouts such as axonal length achieved over a certain period, or
with live imaging of the cytoskeletal dynamics which is particularly facilitated by the
cell cultures mentioned above [28]. In the following section I will discuss important
concepts that were deduced from work with Drosophila.

1.3 The model of local axon homoeostasis

As mentioned before, the parallel microtubule bundles in axons can often be dis-
organised (Figure 1.5). This disorganisation is likely to cause traffic jam of cellular
components (such as mitochondria), but may also influence the proper propagation
of action potentials, as the diameter changes ([43, 44] and references within).

Using Drosophila as a model, my host group has found many MTBPs that, when
mutated, can cause microtubule disorganisation in the axons of primary neurons [28,
45, 46]. Based on a wealth of data, the group has come up with a hypothesis to explain
the occurrence: the model of Local Axon Homoeostasis [11, 14], which will be briefly
explained here.

As described before, microtubules are highly dynamic polymers and suffer con-
stant turnover by displaying constant events of polymerisation, depolymerisation
and severing.

1.3. THE MODEL OF LOCAL AXON HOMOEOSTASIS 21

*

(a) wild-type

*

(b) Mutant

Figure 1.5: Primary Drosophila neurons stained for microtubules, showing
a higher level of disorganisation in the mutant. (a) wild-type neuron, (b)
mutant neuron. Asterisk denotes the cell body, arrows point to one of the
disorganised areas in each neuron. Shown area of width 24.6µm.

As mentioned previously, in vitro studies show that, under certain conditions, dy-
namic microtubules can curl up rather than form the usual straight rods [23]. Axons
display conditions that favour microtubule curling, such as high density of micro-
tubules, high density of kinesins, and the presence of physical barriers in the con-
fined space of axons. This might explain why microtubule disorganisation is found
in axons but far less frequent in other cell types. The assumption therefore is that, by
default, microtubules in axons tend to obtain a disorganised state. In order to keep
the organised bundles in axons, microtubules rely on their regulators.

The taming of microtubules into bundles can happen by several mechanisms, for
example through cross-linking them via MAPs or tau, or guiding their extension via
EB proteins and spectraplakins (see Section 1.2.3). In the absence of this function, as
is the case in the shot3 mutation, microtubule curling is observed (Figure 1.6a). An-
other mechanism is the elimination of off-track microtubules that leave the bundle
and approach the axonal surface. Such a surface associated microtubule inhibitor is
efa6ko which also causes curling when absent (Figure 1.6b). Surprisingly, also loss of
the transport motor kinesin-1 (called Kinesin heavy chain/Khc in Drosophila) shows
the curling phenotype (khc27/27 in Figure 1.6c). Although kinesin-1 is expected to be
one of the motors damaging and curling microtubules through its transport activity,
its absence does surprisingly not relieve microtubules but causes damage. To explain
this, experiments suggest that loss of kinesin-1-mediated transport depletes axons

22 CHAPTER 1. INTRODUCTION

(a) (b) (c)

Figure 1.6: Microtubule disorganisation in Drosophila primary neurons of
three genotypes with mutations on different proteins: (a) shot3 (a spec-
traplakin), (b) efa6ko (a surface associated microtubule inhibitor) and (c)
khc27(kinesin-1). Albeit the mutations occur on different pathways, the re-
sulting disorganisation appears to be similar between them. Staining for
microtubules. Scale bar 10µm.

of important materials and physiological conditions that are needed to maintain mi-
crotubule bundles, whilst other kinesins are still performing transport activities that
continue to damage and curl the bundles (for details see [4]). Although these three
mechanisms are independent from each other, mutations to each of their genes in
Drosophila causes a similar disorganisation phenotype (Figure 1.6). If the disorgan-
ised microtubules are objectively similar in all phenotypes, then it is a strong indica-
tion that the curling is driven by the microtubules in response to the specific axonal
environment. It is not caused by deregulation of MTBPs, which merely function to
antagonise microtubule curling.

1.3.1 Key Aims

My aim was to test the hypothesis that biased behaviours of axonal microtubules are
the common cause for their disorganisation across the various mutant conditions of
MTBPs identified so far to display this phenotype. I would predict that the patterns
of microtubule curling are qualitatively similar between these mutant conditions. My
aim was therefore to obtain unbiased descriptions of axonal microtubule disorgani-
sation in neurons using unbiased image analysis strategies and a range of descriptive
parameters. Several parameters are being considered: axon length, disorganisation
area and the shapes that microtubules form in these areas for example regarding the
shape of their curvature. I focused on the following key questions:

• Can the image analysis become automated, i.e. more objective and less user-
dependent?

• Can we retrieve important parameters from the images, such as straightness or
curvature of axons and their microtubules?

1.4. AVAILABLE STRATEGIES AND SOFTWARE PACKAGES TO ANALYSE AXONAL MT PHENOTYPES23

• Are the phenotypes qualitatively similar between the mutant conditions of the
different MTBPs?

1.4 Available strategies and software packages to anal-

yse axonal MT phenotypes

When analysing the images, there are some basic observed properties for the dis-
organisation: there is the presence of loops, with occasionally straight lines within.
However, microtubules are not individually distinguishable, only in bundles. Fur-
thermore, resolution is quite low and due to the nature of the fluorescence imaging,
there is no 3D information provided.

As such, microtubule bundles have to be described as two-dimensional line ob-
jects in an image.

Current Approach

The analysis previously done within our group has been based on two key parame-
ters analysed: the axonal length and the absolute areas of disorganised regions. The
main metric to compare phenotypes is the ratio between the combined areas of dis-
organisation in an axon per its length.

The measurements are performed manually using Fiji/ImageJ [47], with person-
alised macros to ease and uniform the analysis by all users in the group. The conver-
sions and calculations are then performed on a spreadsheet and statistically analysed
with Graphpad Prism [48]. The full methodology is detailed in Section 2.3.1.

This analysis does not provide, however, any insights into shape characteristics
of the disorganised regions - whether they have a higher or lower incidence of loops,
or straight segments.

State of the Art Software

There are a plethora of image analysis software available with different purposes
and goals. Table 1.1 is the overview of bioimage analysis software for 2D fluores-
cence images, available for users at the School of Biological Sciences, University of
Manchester.

Imaris is a multifaceted software for image analysis. Particularly, there are differ-
ent packages available for the users, according to the type of analysis needed. The
one mentioned here is Imaris for Neuroscientists, as it allows specific features for
neurons. The software is very good for videos and measurements of processes along
the neurons, particularly with the automated filament recognition. The software has

24 CHAPTER 1. INTRODUCTION

Table 1.1: Feature comparison between the most widely used bioimage anal-
ysis software. Checkmark indicates presence of the feature. Question mark
refers to not enough information available to determine presence of feature.
Availability corresponds to where can the user analyse their images, either
on their individual computer, at the bioimaging facility local computers or
both. When the software is not free, the price widely varies with the needed
modules.

Software Features Availability Free Open
Source

Length Curvature Straightness Automated Detection Own Computer Imaging Facility
Imaris [49] X (?) X X X

CellProfiler [50] X (?) (?) (?) (?) X X X
FiberApp [51] X X (?) (?) X (?) X X

Fiji/ImageJ [47] X (?) X X X X
Fiji/NeuronJ [52] X X X X X

a straightness calculation for each segment recognised (axons or other processes of
the cell). In addition, it finds and selects closed circular loops that approach a perfect
circle in filaments but does not provide any type of curvature. This is, however, a paid
software - and only recently provided a conditional satellite license for users (i.e., al-
low individual users to access the software from their computers rather than using
the ones provided by the local bioimaging facility). Furthermore, an extra package
is necessary if one intends to add their own analysis in programming languages like
MATLAB or Python.

CellProfiller allows the user to build pipelines to analyse images in bulk. How-
ever, it was designed for volumetric cells, or with a recognisable geometrical shape.
In the case of filaments, it underperforms and does not identify correctly the rele-
vant parts of the image. While it does not compute curvature, it provides two shape
descriptors: eccentricity (distance of the shape to a circle) and form factor (calcu-
lated as 4πArea

Perimeter2 .). Each of these show the proximity of the shapes to a circle. Going
through the pipeline using digitally created circles (Figure 1.7a) the program detected
98 shapes in the image, rather than the 16 circles. Furthermore, it provides largely di-
vergent values than the expected - 0 for eccentricity, 1 for form factor - as seen in
Figure 1.7b.

The software that seemed most suitable for the intended analyses was FiberApp.
This software identifies fibres and calculates morphological features, which includes
curvature. However, the detection of each fibre is either done manually (the user has
to click all along the fibre, including all the small curves) or it will lose information.
Our images require fine calculation and the inclusion of small curvatures that would
otherwise be ignored by FiberApp. As it was the only option that retrieved curvature,
the results from the analysis are further discussed in Section 4.3.

Finally, the current software used by our group also provides a plug-in built for
neuronal images, NeuronJ. However, the path recognition (even though automated)

1.5. AIM 25

(a) (b)

Figure 1.7: Testing Cellprofiler software on digitally created circles (a) and
their measurements of eccentricity and form factor (b). The number of sec-
tions analysed was 98. The circles should have 1 section each, form factor of
1 and eccentricity of 0.

is time consuming and needs user supervision to guarantee a successful result. Fur-
thermore, it does not provide any curvature calculations or recognition of dense re-
gions as disorganised microtubules.

1.5 Aim

As is suggested by the model of local axon homoeostasis, understanding the nature
of microtubule disorganisation will contribute to our understanding of how axons
are maintained throughout the lifetime of an organism. Furthermore, insights into
how similar the regions are between different genotypes provide a better idea as to
whether microtubules are the culprits of the disorganisation, or whether the malfunc-
tioning of the MTBP networks regulating them actively impose these non-customary
shapes within the axons.

My task was then to develop ways to neutrally describe the microtubule disor-
ganisation phenotypes and compare them. Furthermore, I aimed to develop more
efficient ways to speed up data analysis as a strategy to further obtain a larger data
pool on the basis of which to refine the hypothesis.

On this project I developed a user-friendly software package to efficiently import
and analyse images of microtubule disorganisation phenotypes, allowing a neutral
parametric description of neurons and, particularly, the microtubule disorganisation
regions. Additionally, I aimed to assess whether classification across different genetic
and experimental conditions is possible with the available datasets already acquired,
either using parameter retrieval-based approaches or machine learning.

Before continuing, it is important to highlight the overall structure of the thesis. In
the next chapter (Chapter 2), I begin by describing all software versions used and the
existing methods of acquisition and analysis of the biological images. It is important

26 CHAPTER 1. INTRODUCTION

to first process the images, as described in Chapter 3. The next chapter (Chapter 4) de-
scribes how to retrieve the quantitative information from the processed images. The
software that wraps all the previous processing and analysis is described in Chap-
ter 5. Next, using the software, the biological images are analysed in Chapter 6. In
the following chapter (Chapter 7), machine learning methods are applied to a bio-
logical image dataset. Finally, in Chapter 8, the final discussion and conclusions are
explored.

Chapter 2

Languages, external resources and
images used

Before starting the description of the processing and analysis, it is important to de-
scribe the common methods for all the proceeding chapters, both software and bio-
logical images.

2.1 MATLAB

While the first versions of the software were developed with MATLAB version
R2017a, the final adjustments and deep learning were done with version R2019b. All
tests were done on Windows.

2.1.1 MATLAB Incorporated Functions

The user interface (UI) was developed using MATLAB GUIDE [53], an integrated de-
velopment environment (IDE) for user interfaces that automatically creates functions
for each of the visual components, such as the buttons or sliders present in the UI.

Whenever there is a performance assessment, time is measured with tic toc

[54, 55].

2.1.2 Functions from Other Sources

Bioformat

Version used: [56]
This is a standalone Java library that allows importing a large number of common

image format acquired by biology experimentation devices. In addition to loading
the files, it can interpret and handles the metadata available with the images, i.e.,
the information that arrives associated with the image definition at acquisition point,
such as pixel resolution among other important features.

27

28 CHAPTER 2. LANGUAGES, EXTERNAL RESOURCES AND IMAGES USED

Image Graphs

Retrieved from [57]
In order to do most of the calculations to retrieve parameters from images, it was

necessary to convert them into graphs. This function converts a binary image into
a graph using neighbour relationships, i.e., each pixel of value 1 is a node and the
edges are connections to the 8 neighbours that it possesses.

Other functions from the same package were used, particularly checkConnectiv-
ity, that finds all of the connected components in a graph.

Vesselness 2D

Version used: [58]
Key function for the recognition of structural features in images. Allows a very

quick recognition of the structures in the images, which we found to be particularly
relevant in neuronal microtubule stainings, for example. With the application of a
series of filters within the function, a monoscale image is retrieved which can be
quickly converted into binary using a simple threshold. Further explanation is done
in Section 3.2.1.

2.1.3 Deep Learning Toolbox

The methods performed in Chapter 7 were done using the Deep Learning Toolbox,
from MATLAB [59].

Image augmentation was done using the function augmentedImageDatastore,
with imageDataAugmenter.

The overall training of the different neural network algorithms was done us-
ing trainNetwork, personalised with trainingOptions for the exploratory data
analysis. Each network used (VGG16 and ResNet18) was pre-trained with the Ima-
geNet dataset[60]. The classification layers were trained on the microscopy dataset
obtained within the group. Further explanation in Chapter 7.

2.2 Outsource Software

2.2.1 Ilastik

The software Ilastik[61] was used to perform the segmentation of the images 7. The
aim was to select the relevant sections (neurons of interest) from the background and
other cells.

The Pixel Classification workflow [62, 63] allows an interactive segmentation
training, with results shown in real-time. As such, it allows the tuning of the training
as each new image is manually labelled.

2.3. BIOLOGICAL IMAGES 29

Feature Selection was done with edge and texture 2D options selected - it is time
consuming but the intricacy of the microscopy images demanded an attention to all
details. The colour option was overlooked as the images of interest were grayscale.
After the training with a few images and manual selection of the regions of interest,
batch processing was performed to the remaining images.

2.3 Biological Images

Fly Stocks

Fly stocks were maintained on standard food vials with yeast supplementation [64].
The Oregon R strain was used as the wild-type control to all mutant strains.

The following mutants were used:

• khc8 [65]

• khc27 [66]

• efa6ko [67]

• shot3 [68]

Blue genotype was used only for the Machine learning, red genotypes were used
for the ALFRED vs Manual comparison and orange genotype was used in both.

Cell culture protocol and Imaging

Primary neurons were generated following procedures described in [40, 64, 69]. Neu-
ronal cell cultures were generated from stage 11 Drosophila embryos, and incubated
at 26◦C for varying time points depending on the experiment.

For the images analysed in Section 6.2, the cultures were grown for 1 day and then
fixed in 4% Paraformaldehyde in 0.1 M sodiumphosphate buffer pH 7.2. Cells were
subsequently washed three times with 0.3% PBT (TX-100) and incubate for 1 hour
with mouse-derived anti-tubulin antibody (DM1A, 1:1000) at room temperature. Af-
ter 3 washes with 0.3% PBT (TX-100), cells were incubated with anti-mouse Alexa 488
antibodies (1:200) and Phalloidin-TRITC (1:1000) to label microtubules with Alexa
488 and Actin with Phalloidin-TRITC.

Alexa488-signal (microtubules) were saved in the green image channel, Phalloidin-
TRITC (Actin) signal in the red image channel.

The experiments were performed and images acquired by Dr. André Voelzmann.
For the images used in the machine learning methods, primary neurons were cul-

tured for 5 days. Cells were fixed in 4% Paraformaldehyde in 0.1 M sodiumphos-
phate buffer and stained for alpha-tubulin (blue image channel) and nuclear neuron

30 CHAPTER 2. LANGUAGES, EXTERNAL RESOURCES AND IMAGES USED

specific protein elav (green channel). The images were acquired using an AxioCam
MR5m, 100x objective, 1 optovar and 2x2 binning. Experiments and imaging were
performed by Dr. Yuting Liew.

2.3.1 Manual Analysis

Up to date, image analyses and measurements were performed using FIJI/ImageJ
[47]. The two values retrieved from each neuron are axon length and disorganisation
area.

Axon length is measured by longest neuronal protrusion, measuring micro-
tubules from the edge of the cell body to the most distal tip of axonal microtubules.
This is done in FIJI using the segmented line tool by clicking along the axon and cal-
culating the sum of straight distances between each point. Furthermore, FIJI allows
the conversion from pixels to micrometres.

The disorganisation area is calculated as the sum of all areas of disorganisation
along the axon, manually marked with the freehand selection tool.

Statistical analyses were performed using GraphPad Prism software, version 9.0.0
[48]. The data of measured parameters was non-parametric (i.e., a model was not de-
fined a priori and is determined from the data), and did not follow a normal distribu-
tion, so the Dunn’s Multiple Comparison test (in a Kruskal Wallis test) was applied.
The null hypothesis states that, for any pair of values retrieved from two sets respec-
tively, there is the same probability of either being the larger value. A low p-value
indicates that there is a higher chance of one of the datasets having numbers larger
than the other.

In the dataset used in this project, the p-value is the probability of obtaining the
observed difference in the outcome measure given that no difference exists between
treatments in the population. In other words, low p-value indicates that the observed
difference does not come from cell populations which do not have any difference due
to their treatment but is rather due to a real difference between the control and the
mutation datasets.

Chapter 3

Image Processing: The steps from
acquisition to binary shape

3.1 Background and Rationale

(a) Initial Image (b) Computer-readable

Figure 3.1: Example of a processed image of a neuron. (a) RGB image of a
Drosophila primary neuron acquired on a fluorescence microscope, stained
for actin (red), tubulin (green) and nuclear Elav (blue). (b) mask of the green
channel, i.e., of the microtubule networks in this neuron. Image acquired by
Dr. Yu Ting Liew. Shown area of width 43.6µm.

The first step towards computer-based image analysis is the translation of the
original images (Figure 3.1a) into formats that allow a user-independent quantifica-
tion of parameters (Figure 3.1b). The aim of this chapter is to outline the methods
used to obtain a final image that represents the experimentally obtained images as
accurately as possible, to be used as a template for computational interpretation and
quantification.

Before delving into the algorithms, it is important to briefly review some concepts.
The term image in this thesis usually refers to fluorescent microscopy images of

primary neurons of the fruit fly Drosophila in cell culture (Figure 3.1a). Images ac-
quired in the group are either monoscale, with only one channel (Figure 3.2a) or have
multiple channels. The most common type of multi channel images is RGB (Figure
3.2b), composed of three channels (red, green and blue, Figure 3.2 c-e).

31

32 CHAPTER 3. IMAGE PROCESSING

In computational terms, this means there are three overlapping matrices of size
M ×N that represent what can be actually seen, i.e., an image is an M ×N × 3 matrix
of double precision values that give intensity of the colour in that spacial position.

Each pixel of an image is its basic element of spacial precision, whose intensity is
stored in a matrix with M ×N pixels. In the most common type, an 8 bit image, this
means that any pixel will have an intensity value between 0 and 255 for each of the
channels1 (Figure 3.2 f-h). For example, the middle pixel on Figure 3.2b (highlighted
in yellow) has the RGB value of (0, 0, 255), which corresponds to null intensity in the
red and green channels, and maximum in the blue channel, producing the colour
blue.

The way biological images are acquired using fluorescence microscopy usually
implies that each colour channel corresponds to a different component of the cell.
For example, the microscopic image presented in Figure 3.1 shows an antibody stain-
ing for tubulin highlighting the neuronal microtubule networks (one particular cy-
toskeleton componet of neurons) in the green channnel, an antibody staining for the
cell nucleus in blue and a third staining for the F-actin network (a further cytoskele-
ton component of neurons) in red. Although images are represented of three super-
imposed matrices, we only need to focus on one at a time (Figure 3.2 b versus c-e). As
one complication, images will frequently show some level of background noise and
artefacts that could potentially skew the results of measurements.

When an image is described as binary, it is composed of only one matrix and the
pixels have one of two values, generally 0 or 1. Two types of binary images will be
used:

A mask (Figure 3.2, Binary: Mask) is a binary image where each pixel is logical:
either belongs to the shape we are interested in or not. For example, getting a mask
for the neuronal images would mean each pixel would either be a neuronal compo-
nent (True or 1) or background (False or 0). One way to approach the background
problem is to apply a threshold, where all pixels of the image with a value above
the threshold will be considered 1, whilst everything else will be 0. For the masks in
Figure 3.2, the threshold applied was 100.

A shape will be the pixel-wide contour, or skeleton, of the objects in images (Fig-
ure 3.2, Binary: Skeleton, where the skeletons were obtained considering 4 neigh-
bours). In the skeleton, each pixel will only have a maximum of two neighbours
in their vicinity. Whether considering 4-neighbour or 8-neighbour depends on the
type of image and the algorithm. Furthermore, the decision on which pixel to choose
is also an important point of the algorithm. This considerations will be taken into
account further along in section 3.2.2.

The first step therefore relies on finding suitable algorithms that will not only
enhance the important features of a channel for meaningful translation into a binary

1In an 8 bit image, each pixel is represented by one byte, i.e., 8-bits. This means a range of 28

numbers, i.e., from 0 to 255.

3.1. BACKGROUND AND RATIONALE 33

(a) Monoscale Image (b) RGB Image

(c) (d) (e)

(f)

255

255

255

255

255

255

0

0

0

0

0

0

0

0

0

100

100

100

100

0

0

0

255

255

0

(g)

255

255

255

0

0

0

255

255

255

255

0

0

0

0

0

100

100

100

100

255

255

255

0

0

0

(h)

255

0

0

0

0

0

0

0

0

0

255

255

255

255

255

100

100

100

100

255

255

255

255

255

0

(i) (j) (k)

(l) (m) (n)

Figure 3.2: Schematics of digital images. Images are either monoscale (a) or
colourful/RGB (b). The latter can be split into three channels (c red, d green,
e blue), also shown as numerical matrices (f, g, h), where the highlighted
pixel has the RGB value of (0,0,255) and appears blue in the composite image
(b). There are the corresponding binary masks obtained with a threshold
of ≥ 100 (i, j, k) and a possible skeleton for these (l, m, n). In (i-n), the
relevant pixels are white on black background. The dashed line represents
the separation of pixels.

.

34 CHAPTER 3. IMAGE PROCESSING

mask, but potentially reduce any noise without losing information as judged by the
experimentalist. These will be further explained in Section 3.2.

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0

∗

1 0 1

0 1 0

1 0 1

 =

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

Image Kernel Filtered Image

×1 ×0 ×1

×0 ×1 ×0

×1 ×0 ×1

0 1 1 1 0 0 0

0 0 1 1 1 0 0

0 0 0 1 1 1 0

0 0 0 1 1 0 0

0 0 1 1 0 0 0

0 1 1 0 0 0 0

1 1 0 0 0 0 0

∗

1 0 1

0 1 0

1 0 1

 =

1 4 3 4 1

1 2 4 3 3

1 2 3 4 1

1 3 3 1 1

3 3 1 1 0

Image Kernel Filtered Image

Figure 3.3: Example of a smoothing filter applied to a binary image, in ma-
trix form. The red square on the image matrix corresponds to the pixels that
will be multiplied by the filter matrix (or kernel). The sum of these multipli-
cations will give the new value in the filtered image.

In addition to setting a threshold, other methods of filtering can be applied, for
example smoothing filters (Figure 3.3). These filters apply a simple computational
convolution: addition of each element of the image to its local neighbours, weighted
(or multiplied) by the kernel. I.e., each element on the kernel will multiply each
element of the image section, and the sum of all these values is the new filtered value.

On the top example, the new value would be:

(0 × 1) + (1 × 0) + (1 × 1) + (0 × 0) + (0 × 1) + (1 × 0) + (0 × 1) + (0 × 0) + (0 × 1) = 1 (3.1)

The filter acts as a window that will go through all of the pixels in which all the
image neighbours contribute to the multiplication. Note that the neighbourhood cal-
culation is done with the values of the pre-filtered image, and the newly calculated
values are stored in a new matrix.

3.2. SHAPE EXTRACTION FROM IMAGES 35

3.2 Shape Extraction from Images

In this section, the steps in Figure 3.4 from the colour image in the top into a skeleton,
conserving as much relevant information as possible, will be detailed.

Section 3.2.1

Section 3.2.2

Original

Red Channel Green Channel Blue Channel

Enhanced

Mask

Skeleton

Figure 3.4: Flowchart of the shape extraction process, from the original RGB
image to the skeleton. As the main focus is on microtubule networks, further
processing in this case occurs only in the green channel. Green fields denote
the procedures referred in Section 3.2.1, and blue fields the procedures re-
ferred to in Section 3.2.2.

As the work is based on the quantification of microtubule networks, the colour
channel chosen will be in accordance. So, in the case of Figure 3.4, we are interested
in the microtubule channel (green), which will be dealt with in the following two sec-
tions, describing the implementation of mask (Section 3.2.1) and skeleton generation
algorithms (Section 3.2.2).

36 CHAPTER 3. IMAGE PROCESSING

3.2.1 Identifying a suitable filter

In this project, filters have to be applied for two main reasons. First, the resolution
of microscopic images is usually limited: in some cases, there are not enough pixels
in the camera to describe the details, consequently merging information into a sin-
gle pixel, regardless of the magnification. Furthermore, even when the number of
pixels is sufficient, there are components of the cells that are even smaller than the
wavelength of the fluorescent light.

Second, images may have very low levels of contrast, as well as background in-
tensity values not completely distinguishable from the relevant components. When
applying a threshold mask to the original images (as in Figure 3.5), a lot of informa-
tion could either be lost, or too many background pixels would be included in the
image analysis.

(a) Green channel (b) Mask

Figure 3.5: Applying a simple threshold mask to a channel. (a) Green chan-
nel of an original microscopic image of a Drosophila primary neuron. (b)
Mask applied at a threshold of 30 to the green channel without any enhance-
ments. Arrows denote parts of the axon where there is a gap in the mask,
but visible lines exist in the original image.

In order to tackle the range of problems, a multi-filter approach needs to be con-
sidered, as contrast and resolution are different characteristics of the images. It is
necessary to have a pipeline - a sequence of filters and functions applied to the initial
image to provide a single outcome. In this case, the outcome is a binary mask ob-
tained from a monoscale image. Since this processing of the images is an important
step, it has been studied in-depth [70].

Microtubules in a cell can be understood as networks similar to capillaries in the
eye in the context of retinopathies (Figure 3.6a), branch detection of roses for a har-
vesting robot (Figure 3.6b) to the study of spatial trajectory data in a city (Figure
3.6c). The first and second example are particularly striking as they obtain a binary
mask and consequently a skeleton albeit with a very different starting image. All of
the initial images are quite different from each other, however one type resembles
the microtubule networks. Here for the first time, I use these network recognition
approaches to recognise microtubules.

3.2. SHAPE EXTRACTION FROM IMAGES 37

(a) Capillary Eye Network

(b) Rose Branch

(c) City Trajectories

Figure 3.6: Examples of image processing into binary images, in different
scales and fields. (a) Grayscale image of the inner lining of an eye, and the
detected lines (adapted from [71]). (b) Rose branch detection with a binary
mask, and subsequent skeletonisation (adapted from [72]). (c) City trajecto-
ries on a map of Beijing, with a processed close up (adapted from [73]).

The analysis of blood vessel patterns in the eye has been subject to extensive stud-
ies on how to improve these images for analysis [71]. As the main focus of the work
in this thesis relies on the quantitative analysis of images, and consequent retrieval of
parameters, the methods chosen for the processing were among the state-of-the-art.
Furthermore, as the project pipeline was in MATLAB, searching for functions written
in this language was pivotal for the integration into the existing pipeline. The most
fitting programme found was vesselness2D ([74], see section 2.1.2), a 2D implementa-
tion of an improvement from the widely used Frangi filter for 3D images.

The basis of this function is calculating local tubularity, or the local probability of
a certain point belonging to a tube. It calculates the eigenvalues2 of a local matrix of
second-order partial derivatives, Hessian matrix.

2Eigenvalues and their corresponding eigenvectors are the result of a decomposition of a matrix, showing information about their functional properties. In this case,
it’s the spatial properties of the points, i.e., their referential. Knowing these values enables the stretch of space in desired directions.[75]

38 CHAPTER 3. IMAGE PROCESSING

The common procedure is to consider the convolution of an image with a Gaus-
sian function to be taking its first derivative, i.e, ∂(f ∗ G) = f ∗ ∂G. This is done by
transforming the image into the Gaussian scale space by convolving with a Gaussian
function:

G(x, y) =
1√

2πσ2
e
x2+y2

2σ2 =

(
1√

2πσ2
e
x2

2σ2

)(
1√

2πσ2
e
y2

2σ2

)
= G(x)G(y), (3.2)

where σ is the standard deviation. This function is continuous but images are
represented by discrete grids. As such, when sampling the function onto a grid,
the resulting matrix has the maximum value in the centre pixel, with symmetrical
decrease in values to the borders:

1

256

1 4 6 4 1

4 16 24 16 4

6 24 36 24 6

4 16 24 16 4

1 4 6 4 1

 (3.3)

As it has symmetry in both directions, one of the most important properties of a
Gaussian function is the separability of dimensions, as shown in Equation (3.2). On a
discrete level and with only one dimension needed for the calculation, the neighbours
considered are along each axis, reducing the number of neighbours per calculation to
one vector.

The Hessian is further calculated by convolution of the image at a scale σ for the
partial derivative ofG for each dimension. From the resulting matrix, the eigenvalues
λi are calculated and ordered by magnitude, where |λi| ≤ |λi+1| ; i = 1, ..., D − 1 with
D the image dimension. The sign and amplitude of these eigenvalues provides the
local structure of a pixel, independently of their orientation.

Choosing the correct eigenvalues then is a matter of choosing how they relate. An
analysis of structures based on their Hessian values has been performed [76], and
for 3D tubular structures, the first eigenvalue would be close to zero, and the next
two would have a high positive value. However, given the 2D microtubule images,
there would only be one λ given that there exist two dimensions in these images.
Microtubules themselves are 3D tubes and the approximation λ2 ≈ λ3 ∧ |λ2,3| �
0∧λ1 ≈ 0 works for both 2D and 3D images of 3D tubular structures (as seen in [77]).
The vesselness for a 2D tube can be described, therefore, with only two eigenvalues:
λ2 and λ3

The enhanced filter function νP proposed by Jerman et al. is

3.2. SHAPE EXTRACTION FROM IMAGES 39

νP =

0 if λ2 > 0 ∧ λ3 > 0,

λ2
2 (λρ − λ2)

(
3

λ2+λρ

)3

if λ2 ≤ λρ/2,

1 otherwise,

(3.4)

where λ2, λ3 are the Hessian eigenvalues, and λρ a regularisation of λ3 by

λρ =

λ3 if λ3 < τ minx λ3(x),

τ minx λ3(x, s) otherwise,
(3.5)

where τ is a cutoff threshold between zero and one, x is the coordinate vector.
The choice of τ will influence the difference between the magnitudes of λ2, λ3 for
structures with low contrast. For each pixel, the value of the function is calculated,
and in the end, the image will be normalised into values between 0 and 1.

While initially the value for τ is predefined as 1, the user has the freedom to choose
the most appropriate for each individual image: lower quality images might need a
different value to enhance the tubularity of microtubules present in the image.

Even though it seems the difference between Figure 3.7a and Figure 3.7b is not
substantial, the tubular parts (microtubule network) got enhanced while others seem
to have lost information (nucleus). This confirms the choice of eigenvalues based on
the distinction of tubular structures in the images. Now, upon applying the same
threshold as Figure 3.5, the difference in consistency of the axon is apparent (Figure
3.8).

This, however, poses the question on disorganisation, as they are generally parts
of the image which, similar to the nucleus, are denser and have a higher number of
lines, albeit tubular. After applying it to images presenting higher levels of disorgan-
isation, as highlighted in Figure 3.9, it shows a comprehensive level of lines, even in
higher density.

As such, due to its effectiveness in maintaining and recognising the tubularity of
the microtubule bundles, vesselness is the function chosen in the pipeline to initially
process the images, allowing a better grasp and understanding of the microtubule
networks. However, the name itself did not make sense for the users in a context
for microtubule networks. Therefore, the nomenclature used is virtualisation, as it
the process is similar to the digitalising of the image into a computer-comprehensible
matrix.

Not all image artefacts are addressed: by definition of the biological images, there
might be parts of the networks that are not marked with the fluorescence protein.
It will need, therefore, extra steps after the extraction of the skeleton. Furthermore,
even with binary masks, there are some quantitative values that cannot be obtained,
such as geometrical or topological characteristics as branching or curvature.

40 CHAPTER 3. IMAGE PROCESSING

3.2.2 Obtaining binary shapes - Skeletonisation

A skeleton is the representation of the original image as the composition of one-pixel-
wide lines. This is important because it allows a topological description of the image,
and a comparison less dependent on resolution as it is does not rely on either inten-
sity or even thickness. The aim of this section is to describe how the binary masks
obtained in the previous section can be translated into skeletons, a process referred
to as skeletonisation of the image.

A good skeleton has to meet a number of conditions. First, it is important that
the one-pixel-wide line is equidistant from the boundaries of the shape it represents,
i.e. forming the centreline of the shape. This is an important step, in terms of repro-
ducibility, as the centreline will probably be the same regardless of the thickness of
the shapes.

Second, it is important to preserve the Euler number of the image. The Euler
number is a topological invariant: for example, a straight line has the Euler number
of 1 (one object, zero holes), while a circle has the Euler number of 0, and these values
stay the same regardless of any way the image might morphologically transformed
(for example, bent or stretched). If the skeleton maintains the Euler number of the
mask it represents, this would mean that the skeletonisation did not produce or erase
any major features.

To implement skeletonisation, it is important to decide which type of neighbour-
hood will be considered: either 4-connectivity (only considering the horizontal and
vertical adjacent pixels, north east lines in Figure 3.10) or 8-connectivity (considering
all adjacent pixels, north east lines in Figure 3.10). This will affect how the skeleton
is built, as one-pixel-wide has different definitions in the two types of skeletonisa-
tion. With 4-connectivity, diagonal neighbours are not considered, which could lead
to a loss of branches. On the other hand, 8-connectivity might produce artefacts, and
would potentially be slower as it considers double the pixels per calculation.

For this work, two skeletonisation functions were studied: the bwmorph (8-
connectivity, released in the version R2006a [78]) and bwskel functions (4-connectivity,
released in version R2018a [79]) provided through MATLAB, as well as a processing
function published previously [80].

The two MATLAB functions accept binary images as input, and use the same ”me-
dial axis transform” algorithm to calculate the skeleton. It is based on the principle
that the medial axis of an object is the set of points on which if a circle with a centre
in the point, and a radius tangent to the boundary will be a tangent in other points of
the object (Figure 3.11), without crossing the boundary.

However, bwskel and bwmorph differ in other aspects as will be explained in the
following:

The bwskel function uses 4-connectivity to calculate the medial axis. This function
is often used for the deletion of branches in the skeleton, i.e., the removal of parts

3.2. SHAPE EXTRACTION FROM IMAGES 41

that have a smaller number of pixels (the way a branch is smaller than the trunk of
the tree). In larger scale images, these sometimes are artefacts of the process, rather
than features of the original image. The minimum length needed for any line in the
skeleton to be considered a branch and, consequently, not erased can be provided
as an input to the function. Even though the skeleton calculation is done with 4-
connectivity, the branch length calculation is done with 8-connectivity.

The second MATLAB function, bwmorph, is used for a variety of morphological
transformations, one of which is the skeletonisation, calculated with 8-connectivity.
In this function, the number of iterations of the algorithm is one of the inputs, which
means that one can choose to iterate until the image does not change from one it-
eration to the next. As skeletonisation is only an option, the function can also be
applied to the skeleton itself to retrieve other values and features, such as branch
points (skeleton parts where a branch is connected).

There are several user-built functions in the community. For a more extensive test
and comparison, one such function was chosen as a reduction step before skeletoni-
sation, and further reduction to one pixel wide is done with bwmorph.

The skeletonisation function by Howe [80] is MATLAB implemented from a C++
function, based off on the method by Telea [81]. It implements a simple Augmented
Fast Marching Method, before the last reduction to skeleton. After arbitrarily choos-
ing a point in the boundary to start, each pixel on the outline of is attributed a
unique, consecutive number, counter-clockwise until it completes the perimeter (Fig-
ure 3.12a). The numbered pixels are then considered background for the next itera-
tion, i.e., the boundary ”marches” forward one pixel (Figure 3.12b). The uncounted
pixels will be numbered according to the closest outer number.

After iterating until all the pixels in the object have been numbered, the centre will
present several pixels with a big discrepancy (i.e., difference) to their neighbours,
as highlighted in Figure 3.12c. This discrepancy is important because, apart from
the difference between initial and final pixels, it represents the interface of numbers
originated from distant parts of the perimeter.

Reduction to the skeleton can then be performed. Even though ”fast” is part of the
name, this is a slow process that allows an independent comparison of the MATLAB
methods with and without further pre-processing.

These processing steps will be part of a software pipeline, so performance is an
important factor. The running time measurements were done by executing the MAT-
LAB tictoc routine, which records the time points (toc) after the starter point tic.

To access whether the functions produce a reliable skeleton by maintaining the
Euler characteristic, this was calculated in both binary images using the function
bweuler [82].

42 CHAPTER 3. IMAGE PROCESSING

Testing

For the first comparison of methods, the image used is the one suggested in the MAT-
LAB documentation for bwskel (Figure 3.13a). In order to reproduce the results, MAT-
LAB provides an adapted function that calculates the binary mask threshold with
basis on the image itself, imbinarize [83], as it provides the optimal binary mask for
these images. The resulting mask is shown in Figure 3.13b, on which all three meth-
ods described above were applied. Each method was timed with the MATLAB tictoc
routine.

The default functionalities were used. For bwskel (Figure 3.13c), no minimum
branch value was provided, so all were considered in the final skeleton. For both
applications of bwmorph (Figure 3.13e,f), the number of iterations was declared as
Infinite, i.e., function was applied to the image until the result did not change from
one iteration to the next.

The Howe distances (Figure 3.13d), where the colour represents the pixels with
the higher discrepancies to their neighbours, provide a non-binary mask. To be able
to apply bwmorph, it is transformed into binary by choosing as one all the values
above 35, i.e., with a discrepancy higher than 35.

The three resulting skeletons are objectively different, as evidenced by the zoomed
in section. At a first glance, it is possible to see that the most artefacts are with bw-
morph, as it creates branches at the extremities. On the other hand, bwskel has lost
information. Without further information, the pre-processing with the Howe func-
tion appears to provide the best skeleton from the available information.

Regarding the time performance, as there were slight variances to the time each
function was taking, the statistical approach was to run the code 1000 times and see
the distribution of such values (Figure 3.14).

Even though all of these values are in the order of seconds, which appears to be a
non noticeable difference, when taking into account that the whole analysis process
is of hundreds if not thousands of images, then the difference becomes large. For
example, as shown in Table 3.1, the Howe method has a total time for all the iterations
of 3042 seconds, or roughly 51 minutes, having into account that it is followed by
bwmorph.

Table 3.1: Summary of skeletonisation time performance in seconds for each
of the functions presented in Figure 3.14.

bwskel bwmorph Howe bwmorph with Howe
Minimum (s) 0.2 0.07 2.8 0.003

Median (s) 0.3 0.1 3 0.004
Maximum (s) 1.4 0.6 6.2 0.06
Total time (s) 268.3 104.4 3042.1 4.7

3.2. SHAPE EXTRACTION FROM IMAGES 43

The minimum time taken by the Howe pre-processing is already longer than ei-
ther maximum of the other two functions, which needs to further add the skeletoni-
sation time. The fastest method is bwmorph, by at least one order of magnitude, which
results in less than half the time of bwskel.

The next testing step is the performance of the methods on microtubule network
images already used in the previous section, post-vesselness (Figures 3.7c and 3.9).
For this, the images are converted into binary masks (with the threshold of 30), and
consequently skeletonised. The results are presented on Figure 3.15.

From the start, the function after Howe processing can be discarded as it does not
maintain the Euler characteristic of the mask. On the other hand, even though the two
MATLAB functions produce different skeletons, both maintain the characteristic.

In these samples, bwskel has the most faithful representation of the mask, while
bwmorph creates several small artefacts (branches). However, whenever there is a gap
of very few pixels on the mask, the skeleton produced by bwmorph bridges between
lines, giving a more cohesive final result. This can be explained with the type of
connectivity used: as bwmorph considers diagonals, it is more permissive when two
objects are in close proximity.

Conclusions

In the beginning of this section, it was mentioned which characteristics were needed
for an appropriate skeletonisation function: conservation of Euler number, time per-
formance and preservation of the microtubule disorganisation. Particularly when
taken with fluorescence microscopes, these biological images tend to be blurry
around the disorganisation. Even with the vesselness filters, which captures most of
the perceived lines, the variation in thickness of the tubes can influence the skeleton-
isation: thinner lines might not always be considered relevant for the contour.

Even though Howe function provides a skeleton with much less branches, it takes
ten times longer to perform, and loses a lot of information when looking at thin struc-
tures, such as the axon. Furthermore, the Euler characteristic of the mask is not main-
tained.

On the test image, perhaps the bwskel would appear more suitable as it provides
the cleanest skeleton when comparing to the mask. However, even without a mini-
mum branch length determined, it accentuates the gaps in the original image.

Finally, bwmorph is not only the fastest, but is also the most conservative as it
establishes connections between parts of the mask that are not picked up by the other
function. It does create artefacts in the final skeletons, but these can be dealt with by
using other of its functionalities. In the final pipeline, these artefacts can be dealt
by splitting the image per branch points (places in the skeleton with more than two
neighbours) and eliminating the ones with very little amount of pixels.

The disorganisation images present a number of artefacts that get propagate

44 CHAPTER 3. IMAGE PROCESSING

through the pipeline. If part of the image has low intensity, it can be lost even when
using enhancement filters such as vesselness. However, some gaps still persist, so if
one of the skeletonisation functions increases the space in these gaps, it would only
further replicate the artefact. As such, the function chosen for this step is bwmorph.

3.3 Identify paths within the shape patterns

After extracting the skeleton, the following step is its analysis. An important feature
of the neurons that is affected in many mutants underlying neurodevelopmental or
neurodegenerative diseases is the length of the axon. In some phenotypes, the axon
is shorter. As such, retrieving and identifying the axon within the skeleton is pivotal.
To do so, a path is established between the cell body and the axon terminal.

3.3.1 Existing Software and Methods

The analysis of paths has been implemented in different ways in a number of soft-
wares for image analysis. It does fall short to what is needed for the purposes of this
project, and the implementation into the pipeline would be morose.

First, in case of Cell Profiler, the software is analysing volumetric shapes in the
images, i.e., cells or organelles that are well defined and within a region. As such,
it does not have a good pipeline to analyse fibrous structures, such as microtubules.
The software does not have implemented a path calculation algorithm.

Both NeuronJ (the enhancement of ImageJ for neurons) and Fiberapp, on the other
hand, are specifically for fibrous structures.

NeuronJ does present two options for path finding: either automated or click-
based. The first one is done by intensity search. From each pixel, it chooses the path
according to the neighbour with the closes intensity value. However, it is not only
slow, but ambiguous and performance heavy. Furthermore, it still needs the user to
check whether the path is correct in each individual image.

The other option is the one also present in Fiberapp: a click-base approach that
requires the user to trace the path with clicks. The path corresponds to the straight
lines between each of these points, so the nuances of the axon (such as small curva-
ture changes) are lost.

The aim of this section is to make path determination quick and integrated with
the pipeline, while maintaining minimum user input.

3.3.2 Implementation

Traditional path recognition in images is slow: it consists of the searching of neigh-
bours in 8-connectivity. Even though it can be done with a normal image, by moving
on to the next pixel based on maximum intensity, it is computationally heavy with

3.3. IDENTIFY PATHS WITHIN THE SHAPE PATTERNS 45

scaling. If each pixel has to search its neighbours, even by discarding the pixels al-
ready visited, it leaves a computation of up to 7 neighbours. In a path of 1000 pixels,
that would be 7000 searches.

This method could be simplified with the introduction of a skeleton, as it is not
about the intensity but rather the existence of 1-numbered pixels in the image. How-
ever, how could the path discern between two neighbouring pixels in a branch? The
simplest solution would go by the path search from both ends of the path, and find-
ing a common pixel. This, however, is still computationally heavy.

Mathematically, there is a type of structure to quickly establish a connection of
neighbours: a graph. By considering each pixel as a node of the graph, connected to
its spacial neighbours by edges, the skeleton becomes a network of points where a
path between two is easily identified. An example can be seen in Figure 3.16. What is
stored is the node and its neighbours, so the connection search in the skeleton is far
quicker as each node would have a maximum of 4 connections.

The transformation from binary images into graphs is already available on the
MATLAB community, in the package BinaryImageToGraph ([84] see Section 2.1.2). This
function converts each pixel valued 1 into a node, and the edges are the connections
to every neighbour, considering 8-connectivity. Even though edges might have dif-
ferent weights in a normal graph, in this case they are homogeneous, as proximity is
the same between all nodes.

For example purposes, the transformation of Figure 3.17(a) to graph is a simpli-
fied version, only considering the line segment changes as nodes. Numbering was
arbitrary.

The only pivotal input of the user is at this stage, and only to determine where are
the endpoints of the path. In Figure 3.17b, the path should be found between nodes
1 and 4.

As all edges have the same weight, the method used to find the shortest path in a
graph was Dijkstra’s algorithm, or Shortest Path First (SPF):

• Starting at the source point (first user input, node 4 in Figure 3.17b), all the other
points are marked as at an infinite distance.

• The algorithm will move to all its non-visited neighbours and register the small-
est distance from the source to that point.

– As only one neighbour is available for both node 4 and 3, so it is always
the same step (Figure 3.17 c and d).

• Nodes are marked as visited and do not account for any future neighbouring
calculations and the algorithm moves to the next node.

• Upon reaching node 8, there are now two neighbours, and so these would po-
tentially originate a different path. The difference relies on node 6. It calculates

46 CHAPTER 3. IMAGE PROCESSING

two possible distances to the source:

– 3 nodes (Figure 3.17c) and 4 nodes (Figure 3.17d). At this point, it will
register the shortest difference.

• The algorithm then expands until the target point (second user input, node 1)
is found.

In the biological images with disorganisation patterns, the shortest path will gen-
erally go through the disorganised region. In Figure 3.18, the path finding algorithm
was applied to the bwmorph skeletons in the section above.

Sometimes the shortest path is not the correct one. For example, if there are neu-
rites in the image: these tend to have a much lower intensity than the axon, which
makes it perceivable in the channel image. However, intensity is not a factor in the
graph. As such, the first addition to the algorithm was the possibility of adding ex-
tra points that should be included in the path. This way, the graph will produce the
shortest possible path including all three (or more) nodes.

Using the practical example of Figure 3.19, it is discernible in the channel image
(Figure 3.19a) where the axon is, as per intensity. Once it is skeletonised in Figure
3.19b, it appears line a normal path. As such, after marking the initial and end points
of an axon (in yellow), the shortest path will invariably be through the cell body and
neurite (Figure 3.19c). By adding the third point (in green, Figure 3.19d), the path is
corrected.

The order of the points chosen is irrelevant. The algorithm is built in a way that,
starting from the first input, it will choose the shortest path to any of the other points.
The algorithm moves on to the next node and measures the shortest path to all the
remaining points that have not been visited. This way, no point is visited twice, the
choice is always the shortest path between the nodes and the minimum input is two.

The algorithm works seamlessly for graphs that are fully connected, i.e., there is
at least one possible path between any two nodes. As mentioned in the previous
sections, the skeletons are not always complete, and can present artefacts such as
gaps. In the existing softwares, either the gap would be clicked over or would stop
the algorithm without reaching the end of the axon.

The algorithm to search for the shortest path in this project accounts for these
gaps. If initially no connected path can be found between the two initial points (Fig-
ure 3.20), there are at least two groups of connected components, one to each input
node (in this case, nodes 4 and 1). The program will ask for a third point, on the
extremity (node with just one neighbour) of one of the groups. From that third input,
the algorithm scans within a certain radius (that can be tuned by the user) for the
closest point connected to the other group.

In practical terms: the user can either choose the end of the first group (node
8, Figure 3.20a) or the beginning of the next (node 7, Figure 3.20b). With the first

3.3. IDENTIFY PATHS WITHIN THE SHAPE PATTERNS 47

option, the algorithm will try to find the point connected to node 1 that is the closest
to node 8. In this case, it would be node 5. On the other hand, by choosing node 7
and searching for the closest connected component of node 4, it would establish the
connection with node 8.

When the algorithm finds the node at the closest distance, it creates a straight
line (shortest distance of two points) between them, and establishes the path. In this
particular case, the choice of the extremity would influence the final path. In Figure
3.20a, nodes 6 and 7 would not be part of the path.

The user can add as many points as necessary to establish the path. There is also
the chance of directly adding a line to the path in cases where there is a part of the
axon with a lot of gaps. Furthermore, the algorithm can always revert to the path
before adding any points, even the initial ones.

The path is saved as the matrix coordinates of the points. It can easily be trans-
formed into a binary matrix by defining those points as 1 and everything else as
background.

Conclusion

The tested software did not provide an appropriate way of quickly and indepen-
dently obtaining the axon of the neuronal images. Given that so much of the pre-
processing was already done in a pipeline, it was important to find a method to find
the path in a timely manner.

With graphs, the user only needs two points to start searching for a path, and it
will work for the greater percentage of images. Besides, the method is built in a way
that allows the user to add or remove points at any time. As there are two strategies
to overcome gaps, it allows the length calculation in situations where the quality of
the image is inferior: one point at a time, or by adding complete lines to overcome a
part of the image. This method allows the user to obtain the path with a minimum
amount of clicks.

It is not completely user independent, and automation could perhaps be obtained
with Machine Learning techniques. For example, training a network to classify parts
of the cell as axon, cell body, disorganisation. However, this is not completely feasible
with the number of images available (this will be further discussed in Chapter 7).

There could be potential ways to enhance the path finding technique. As of the
current version, when creating the graph, each edge is given the same weight be-
tween neighbours. One potential way to circumvent examples as Figure 3.19 could
be by weighing the edges with the difference in intensity between pixels. Pixels with
similar intensity would have a stronger chance of being a path than otherwise.

Regarding the gap finding, it still needs an extra input of the user and, ideally, the
program would be able to find the path independently. However, as of this project,

48 CHAPTER 3. IMAGE PROCESSING

there would not be an appropriate way to determine what is path, and what is back-
ground. Instead of the risk of having parts of the background being considered as
parts of the path, which would influence the calculations, it is better to give the con-
trol instead to the user.

After all the pre-processing, the calculations can now be performed.

3.3. IDENTIFY PATHS WITHIN THE SHAPE PATTERNS 49

(a) Green channel

(b) Enhanced with Vesselness

(c) Mask

Figure 3.7: Applying vesselness and a subsequent threshold mask to the
channel. (a) The original image (see Figure 3.5a); (b) the same image after
applying the vesselness function with σ = 3 and τ = 1; (c) subsequent mask
with the threshold of 30.

50 CHAPTER 3. IMAGE PROCESSING

(a) Mask without Enhancement (b) Mask with Enhancement

Figure 3.8: Comparison of masks with and without filtering the images by
applying vesselness. Arrows denote parts of the axon where there is a gap
in the mask without enhancement.

Figure 3.9: Vesselness applied to disorganisation sites of Drosophila primary
neurons, with a mutation. RGB images on the left, the resulting monoscale
image on the right. Images acquired by Dr. Yu Ting Liew. Shown areas of
width: 13.2µm, 9µm, 10.5µm respectively.

Figure 3.10: Schematics on the definition of neighbourhood. Highlighted is
the focused pixel. North west lines represent 8-connectivity, north east lines
represent 4-connectivity.

3.3. IDENTIFY PATHS WITHIN THE SHAPE PATTERNS 51

Figure 3.11: Medial Axis (orange) of an ellipse (gray). The
blue dots are points in the medial axis, and the respective
dashed circles are the distance to the boundary. In green
are points that do not belong to the medial axis but have a
circle tangent to the boundary.

(a) (b)

(c)

Figure 3.12: Fast Marching Method exemplified. (a) Initial boundary number
assignment; (b) first iteration of the advancing boundary, where grey repre-
sents the already numbered pixels; (c) final iteration. Highlighted in yellow
are the pixels that have a discrepancy to their neighbours above 8, and less
that the maximum.

52 CHAPTER 3. IMAGE PROCESSING

(a) Original (b) Mask

(c) bwskel (d) Howe Distances

(e) bwmorph (f) bwmorph with Howe

Figure 3.13: Skeletonisation of sample image
”threads.png”, available in MATLAB, using the differ-
ent methods. (a) Original Image, (b) Mask obtained with
imbinarize (c) Skeleton obtained with bwskel. (d) Distances
calculated with Howe’s function, colourbar represents the
distances. The skeletons originated by bwmorph before (e)
and after (f) cleaning with Howe distances. The skeletons
are represented as the one pixel cyan lines, overlayed on
the original image.

3.3. IDENTIFY PATHS WITHIN THE SHAPE PATTERNS 53

Figure 3.14: Boxplot of the time (in seconds) for each func-
tion call, for the original image in Figure 3.13. Each point
represents the time each function took individually. The
process involving bwmorph with Howe processing would
take the added time of the last two columns. Blue repre-
sents the interquartile range, red the outliers. N = 1000.

54 CHAPTER 3. IMAGE PROCESSING

Mask bwskel bwmorph bwmorph + Howe

(a) e = 20 (b) e = 20 (c) e = 20 (d) e = 0

(e) e = −30 (f) e = −30 (g) e = −30 (h) e = −77

(i) e = −12 (j) e = −12 (k) e = −12 (l) e = −23

(m) e = −12 (n) e = −12 (o) e = −12 (p) e = −27

Figure 3.15: Skeletonisation of microtubule network images, presented in
Figure 3.9. (a,e,i,m) masks calculated from the vesselness images in the pre-
vious sections; (b,f,j,n) skeletonisation of masks with bwskel, without any
branch length; (c,g,k,o) skeletonisation of masks with bwmorph; (d,h,l,p) bw-
morph was applied after Howe. Under is the respective Euler characteristic,
calculated with bweuler.

(a)

1

2

3 4 5

6

7

8

9

(b)

Figure 3.16: Transforming a binary image into a graph. Each white pixel on
the image (a) correspond to a node in (b), and is connected by an edge to its
adjacent pixels.

3.3. IDENTIFY PATHS WITHIN THE SHAPE PATTERNS 55

(a)
1

2

34

5

6

7

8

(b)

1

2

34

5

6

7

8
1

2

3

4
5

6

(c)

1

2

34

5

6

7

8
1

2
3

4
5

6
7

(d)

Figure 3.17: Schematics of an algorithm from skeleton to path. For simplicity,
only the line changes in (a) correspond to pixels. Those points become nodes
in (b), and each connection becomes an edge. The numbering is arbitrary. For
the path finding, in (b) the user input is reduced to two clicks: the endpoints,
nodes in orange surrounded by the dashed line (nodes 1 and 4). (c) and (d)
are the two possible paths. The dashed arrows represent a step between two
nodes, and the adjacent numbers represent the distance between the node at
the end of the jump and the source, with black the shortest route and grey
the longest.

56 CHAPTER 3. IMAGE PROCESSING

(a) (b)

(c) (d)

Figure 3.18: Path finding for the skeletons obtained in the previous section.
Yellow dots represent end points, green represents the shortest path between
them.

3.3. IDENTIFY PATHS WITHIN THE SHAPE PATTERNS 57

(a) (b)

(c) (d)

Figure 3.19: Example of the correction of the path by adding extra points.
Channel image (a) with its skeleton (b), after vesselness and mask threshold
of 10. Zoomed is a junction that is not connected in the intensity images, but
is connected in the skeleton. (c) shows the shortest path in green, (d) path
after adding the extra point on the axon. Yellow dots represent initial points,
blue dot represents the correction. Shown area of width: 39.2µm.

1

2

34

5

6

7

8 ≈
2.33

≈
2
.1
5

(a) Inputs: 1,4,8

1

2

34

5

6

7

8 ≈
2.33

(b) Inputs: 1,4,7

Figure 3.20: Finding paths in graphs with gaps. The initial inputs are the
same in all three images: 1 and 4. Blue are the components connected to
4, orange the components connected to 1. Dashed circles denote the input
nodes. Dashed edges are the distances between nodes, with dark grey the
optimal, and light grey the longest. In (a), nodes 6 and 7 would not be a part
of the final path.

Chapter 4

Quantitative analysis and description
of the binary shape

4.1 Background and Rationale

After shape extraction, the quantitative analysis can be performed using a set of dif-
ferent parameters, including axon length, straightness, curvature and areas (Figure
4.1), as will be detailed below.

Figure 4.1: Regions of the skeleton with relevant shape information for ex-
traction: axonal length (orange), straight segments (blue), microtubule dis-
organisation curvature and density (red).

• Axonal Length is defined as the distance between the cell body and the axon
tip (orange in Figure 4.1). It is a function of age and health, with axons growing
shorter or longer upon certain genetic or chemical manipulations. This parame-
ter is also applied to calculate the microtubule disorganisation index where the
area of microtubule disorganisation is assessed relative to axon length [28]. Fur-
thermore, length changes of microtubules within axons may indicate potential
aberrations, e.g., when microtubules become fragmented.

• Straightness is the ratio between the N longest straight elements (Figure 4.1,
blue) of an image per axonal length. Straightness can help describe axonal mor-
phology as a function of its original growth path (i.e., whether the extending
axon grew along a direct path or performed turns) and/or the tension it is un-
der. Straightness can also be used to describe microtubule organisation, e.g.,
informing whether microtubules are arranged into bundles or form areas of
disorganisation.

58

4.2. LENGTH AND STRAIGHT SEGMENTS 59

• Curvature indicates how much a line deviates from being straight. Curvature
provides a quantitative way of measuring and comparing looped microtubules
in areas of disorganisation (Figure 4.1, red).

• Areas in the context of the image analysis of neurons are important to quan-
tify axonal swellings and the amount of microtubules in them, as a means to
calculate their density (area of microtubules per area of swelling).

Most parameters are straightforward characteristics of geometrical shapes, such
as areas and number of segments. These are directly extracted from the skeleton,
and no further calculation is needed (Section A.0.5). However, for the measurement
of straightness and curvature there are no reliable methods or precise enough soft-
ware solutions available, which therefore need extra consideration. My aim was to
find methods to assess straightness and curvature to be used as parameters for the
analysis of neuronal microtubule phenotypes.

4.2 Length and Straight Segments

4.2.1 Length

The retrieval of length from the image could be just defined as the difference between
the beginning and end points of the object. While this is true for completely straight
objects, axons are more intricate.

The length of the axon can be calculated from the first axonal point next to the
cell body to the axon terminal. These calculations are based on the path recognition
method used in each individual software. For example, in ImageJ, the user clicks
along the object where different clicks are connected by straight lines, forming seg-
ments. The total length is the sum of the lengths of all segments.

In the pipeline describe in this thesis, the path recognition algorithm (Section 3.3)
is applied between the endpoints of the axon. As the path is saved as a graph, the
axonal length becomes the number of nodes between the points, which, given the
used shortest path algorithm, provides the smallest possible length between the two
ends of the axon.

4.2.2 Straight Segments

Of the various shapes that can be considered in image analysis, the simplest is a
straight line. Generally, the existing software packages available for image analysis
(see Section 1.4) do not measure straight segments explicitly: at most, they may pro-
vide some measurements of angles and directions between lines (angle α in Figure
4.2a). Furthermore, the concept of straightness is usually assessed as the ratio of the
shortest possible path between two points (their Euclidean distance) and the actual

60CHAPTER 4. QUANTITATIVE ANALYSIS AND DESCRIPTION OF THE BINARY SHAPE

length of the path. However, this doesn’t consider the shape of the actual path, for
example, if it is composed of straight or curved segments (see Figure 4.2).

α

A

B

(a)

A

B

(b)

Figure 4.2: Classic definition of straightness considering Euclidean distance.
Two examples of different paths (grey lines) between points A and B that
have the same Euclidean distance (orange, dashed lines). The grey lines are
fundamentally different: (a) is composed of straight segments while (b) is a
curve.

In this thesis, straightness S is defined as the ratio between the sum of the length
li of the N straightest segments of a selected path and the length L of the path, as in
Equation (4.1).

S =

∑N
i li
L

(4.1)

We found this to be a helpful measure to describe certain subtle differences in
images, which can have important applications. For example, it provides us with
an additional parameter to describe the shape of axons or of microtubules in areas
of microtubule disorganisation regions (Figure 4.3): in the context of the axon, areas
of straightness may indicate the degree of local tension or reflect the growth history
of the axon. When observing microtubule disorganisation, it can indicate whether
all microtubules are looped or whether there is a fraction that has kept its original
straight conformation, thus quantifying the degree of disorganisation in a given area.

Hough Transform

A straight line can be described by only two parameters (m, b) as the relationship
between the Cartesian coordinates (x, y) of every point on the line is y = mx + b.
However, the calculation of the slope m = ∆y

∆x
= y2−y1

x2−x1 becomes a problem in the case
of a vertical line, where ∆x = 0. This can be solved with a Hough Transform, by
instead having the implicit representation of (x, y) with the Hesse normal form, thus
describing a line in R2 as

ρ = x cos θ + y sin θ. (4.2)

This technique represents straight lines in the parameter space of (ρ, θ), where ρ
is the normal distance from the origin to the line, and θ is the angle of the normal to

4.2. LENGTH AND STRAIGHT SEGMENTS 61

(a) (b)

(c) (d)

Figure 4.3: Applications of straightness values to synthetic images of inter-
est. Examples of axons (a, b) or disorganised microtubules (c, d), showing
only curvature (left) or only straight segments (right). Both images in the
first row would score similarly with the Euclidean metric: 92.72% for (a) and
95.15% for (b).

the line to the x-axis (Figure 4.4).

θ

ρ

x

y

Figure 4.4: Definition of the parameters in the transform space. ρ represents
the distance of the perpendicular of the line to the origin (blue), and θ the
angle of the line to the x-axis (orange).

To understand how the Hough transform can be used to identify straight lines, let
us have Figure 4.5a as the input image. First, select any point of the relevant pixels
in the image (i.e., not the background). Here, we consider three on the vertical line
(blue, orange and red dots in Figure 4.5b). Using their coordinates (xi, yi), we then
calculate the possible ρi, i ∈ {1, 2, 3} from equation 4.2 by sampling a few values of θ,
as illustrated for θ ∈ {0◦, 45◦, 90◦} (Figure 4.5, c-e). In simpler terms, we calculate the
possible straight lines that go through each point i for certain values of θ.

Then, ρi is plotted against θ for the entire collection of straight lines considered per
point (Figure 4.6a). Each point will produce one ρi(θ) line, for a discrete range of θ. If
we collapse this onto a grid, the number of ρi(θ) per grid square (bin) can be counted.
Points lying on the same line will intersect in the same (ρ, θ) grid square, increasing its
count (as evidenced by ρi(0◦)), which then implies that the longest straight segments
will be the grid points with the highest number of intersections. If this is done for all

62CHAPTER 4. QUANTITATIVE ANALYSIS AND DESCRIPTION OF THE BINARY SHAPE

(a)

1

2

3

(b)

θ

ρ
1

ρ
2

ρ
3

(c) θ = 90◦

θ

ρ 1

ρ 2

ρ 3

(d) θ = 45◦

ρ

(e) θ = 0◦

Figure 4.5: Example of how the Hough transform can be applied to identify
two straight lines. (a) Input image of the two lines (grey), and we pick any
point. (b) Three random points (1, 2, 3) from the same line were chosen. Plot-
ting the possible straight lines (dashed) that include the three points selected
for certain values of θ, in this case, for θ (c) 90◦, (d) 45◦and (e) 0◦.

the points in the image that are not background while considering a large number of
θ, a graph such as the one shown in Figure 4.6b will be generated.

In order to identify the lines in Cartesian coordinates, we can calculate the re-
verse transform and retrieving the possible (x, y) pairs that belong to the image from
(ρ, θ). Plotting them back on the image confirms that the correct straight lines were
identified (Figure 4.6c).

In conclusion, the Hough Transform provides a fast means to identify straight
lines in an image; to obtain the N straightest lines in any given image, one just needs
to retrieve the (ρ, θ) pairs for the N bins with the highest count.

Limitations

The efficiency of the method is expected to be a function of the image quality, as a
low quality (for example, due to low resolution of the images) will cause consider-
able noise around the bins with the highest count, given that the edges of the shape
would not be sharp. However, applying the method to a binary skeleton reduces
the background noise influence on the results. Regarding pixel robustness, if there’s
a significant alteration in the angle between several points, then it won’t count as
a long straight segment but rather a collection of smaller ones. The rotation of the

4.2. LENGTH AND STRAIGHT SEGMENTS 63

0◦ 45◦ 90◦

θ

ρ
ρ1(θ)

ρ2(θ)

ρ3(θ)

(a)

θ

ρ

(b) (c)

Figure 4.6: Plotting ρ and θ in a cumulative graph. (a) Plot for the example of
Figure 4.5, each colour corresponding to the equivalent point; arrow denotes
the overlap for θ = 0◦, (b) Full calculated plot for the example image in
Figure 4.5 (a), each circle denoting a high count bin. The θ-axis has been
shifted to the right (so that the origin is not for θ = 0◦) for clarity, as one of
the high count points would have been on the ρ-axis, as evidenced in (a). (c)
Plot of the detected straight lines (dashed) after converting back to Cartesian
coordinates. Pink and green refer to the corresponding coloured circle in (b).

digital image can also cause different results: a diagonal will have a ladder of small
straight segments rather than a long one. Nevertheless, small pixel fluctuations will
not influence the overall results, as both the function used and the pipeline have le-
niency.

The transform described here only comprises two parameters. This can be ampli-
fied to any number of parameters in order to recognise other shapes, but this would
increase the complexity of the transform. For example, with one more parameter, we
could potentially use the Transform to find circles in the image, and therefore obtain
the curvatures. As we do not know the target radius that we would be searching, this
would be computationally expensive as it would have to search for all the possible
circles, or an arbitrary number of those. Any other shape could be found by increas-
ing the number of parameters but this, in turn, becomes increasingly prohibitive, as
the more parameters present, the harder it would be to obtain a bin with a high count
in the (ρ, θ) referential.

MATLAB Implementation and Software Incorporation

Having decided on the Hough Transform strategy, I chose to implement it using
MATLAB, as it already provided some of the tools needed to quickly calculate ρ and
θ (hough [85]), as well as their peaks in the transform space (the bins with the high-
est counts, obtained with houghpeaks [86]) and the consequent lines (which will
represent the longest straight segments detected, obtained with houghlines [87]).
This implementation was done as a function houghTest, represented in Figure 4.7).

64CHAPTER 4. QUANTITATIVE ANALYSIS AND DESCRIPTION OF THE BINARY SHAPE

hough

houghpeaksSelected Path

houghlines

Checkpoint:
Valid lines?
Maximum
Reached?

Straightness
Calculation

path selection

matrix

ρ, θ

peaks

linesno

yes

skeleton

Figure 4.7: Implementation of the Hough Transform, as per the file
houghTest.m. After the user has selected the path, the one-pixel wide co-
ordinates are the input for the hough function, which will output the val-
ues of ρ, θ and the parameter matrix where these are represented in rows
and columns, i.e., the bin count matrix. This matrix is then the input for
houghpeaks, that will retrieve the N highest count bins. Finally, with the
skeleton, the values of ρ and θ and the N peaks, houghlines will select
the merged lines in the path that correspond to the values of ρ and θ for the
peaks. There is a checkpoint for saturation: validity of the lines, number
of peaks reached, entirety of the lines covered. In each iteration, the cho-
sen lines are removed from the selected path. If any of these are met, the
program will then calculate the straightness.

Furthermore, the implementation has an end user in mind, with the main goal be-
ing the seamless calculation of the transform, while allowing for adjustments to be
considered.

It is integrated on the pipeline (further explained in Chapter 5) after the selection
of the path made by the user, which is passed into the function as the skeleton of the
desired region (and no other background). This means that all of the non-zero values
that are selected in the region parsed to calculate the straightness are relevant. An
important remark is that while the calculation is done in the (x, y) space, the graph
of the image is also considered for the validity of the nodes.

Even though MATLAB provides the tools for the retrieval of the lines, it doesn’t
check their validity. As such, a quality control has to be implemented.

Given the list of the lines chosen, the first consideration relies on checking whether
there is an overlap between any of the lines. As mentioned, if the quality of the image
is sub par, the surrounding bins of the true highest count would also be selected as
peaks, which would result in the overlap of lines (Figure 4.8). To overcome this, using
the graph nodes, the program checks whether there is an overlap of over 10% of the
shortest of the two lines.

After the lines have been confirmed, there are two extra steps to check whether
the program can stop the calculation of the longest straight lines:

Has the intended number of peaks N been reached? As the program doesn’t

4.2. LENGTH AND STRAIGHT SEGMENTS 65

Figure 4.8: Example of how an overlap could occur while performing a
Hough transform. Without the quality control, the Hough transform func-
tion would recognise the end points of both dashed lines (in red and blue)
as they have different start points and a slightly skewed angle, which would
make the function consider as a different (ρ, θ) pairing.

(a) (b) (c)

Figure 4.9: Iterative sequence of the file houghTest.m applied to a skeleton..
(a) is the first step while (c) is the last. In each iteration, the longest straight
segments (red) are changed from one to zero so that the next set of longest
straight segments can be chosen.

automatically search for all the possible straight lines, the user has to determine a
maximum value. Even though there is a limitation because that means we are cap-
ping the number of peaks to be found, it’s balancing the computational power that
it would potentially require if it were to exhaust the number of lines available in a
given image, for example high density of independent curved lines.

Have we covered the entirety of the desired path? Sometimes, the images com-
prise of only a handful of straight segments. As such, the length saturation, i.e., a
straightness of S = 100% is achieved. This would mean that no other lines can be
found and, therefore, the program can stop running.

If the answer to any of the questions is yes, then the program will exit and proceed
to the calculation of the straightness. However, if both are negative, then a new
temporary skeleton is created where the already selected longest straight lines are
changed from one to zero, and is used in a recursive call of the houghTest function
(Figure 4.9). The application will then either select everything and the temporary
skeleton is a matrix of zeros, or will saturate the number of longest straight lines -
this guarantees that the largest amount of straight segments (i.e. N) can be retrieved
from the path.

The application is written in a way that future users will not see the reiterations,

66CHAPTER 4. QUANTITATIVE ANALYSIS AND DESCRIPTION OF THE BINARY SHAPE

and that any changes made on the selection will result in an automatic update of the
calculations.

Validation

Before implementing the method and incorporating it into the general pipeline, it is
pivotal that critical points are addressed and tested, as well as guaranteeing a proper
quality control. Given that resolution is one of the key points in the analysis per-
formed, one has to understand what the limits of the application are:

For example, what is the minimum distance (in pixels) that the algorithm recog-
nises as two different lines? What is the minimum angle between two lines for them
to be recognised as distinct? How much does the positioning of a line (i.e. vertical vs
diagonal) influence the end result of the transform?

To answer these, some synthetic images were created to explore the edge cases
of the implementation (Figure 4.10). An important note is that these images were
created as vector graphics (image file that uses mathematical functions to describe the
shapes rather than pixels), but compressed into .png files to emulate a real pixelated
image.

With regards to the resolution limitations, as shown in Figure 4.10, lines are dis-
tinguishable until separated by only one pixel or with minimum angle of 1◦between
them. However, the method does not perform as well with diagonal lines as it detects
far more segments than present.

Curiously, the algorithm recognises the same number of segments for the diago-
nals at 5◦and 1◦. The nature of these recognised segments is different, however, as
in the second case it appears to be consecutive segments in the same diagonal line,
whereas in the first case it recognises the distance between the two lines.

Table 4.1 shows the results of straightness calculation in different test images.
The tests were performed without a cap on minimum or maximum number of seg-
ments detected, which caused a variation between different images. Besides the total
straightness calculation (where the sum of the lengths of segments detected is di-
vided by the total length), two other measurements are present: average segment
straightness (total straightness divided by the number of segments detected) and the
ratio between the Euclidean distance of the end points per the actual length (only
applied to the linear images).

In each of the different types of test images (Neuron, Disorganisation and Lines),
there is a version comprised of curved lines (above) and straight lines (below). The
skeleton is presented for each case, with the extracted segments highlighted in green
(yellow is the start, red is the end).

4.2. LENGTH AND STRAIGHT SEGMENTS 67

(a) (b)

(c) (d)

Figure 4.10: Synthetic images to test some limitations of the Hough Trans-
form. (a) has two lines with an angle from 5◦to 1◦. (b) has two parallel
lines increasingly closer. In (c) and (d) is segment recognition (blue) using
the houghTest function with edge cases. In (c), the function recognises
many straight segments in the rotated line (from left to right, the function
recognises 7, 20, 19, 17, 7 segments on each group), and there is a loss of in-
formation in the overlap area. (d) The function manages to recognise both
segments in all cases except when the lines are separated only by a pixel
(which is lost when compressed into an image file).

The average segment straightness can also be an element of comparison between
shapes, as evidenced by the ”Neuron” section in Table 4.1. In this case, the Euclidean
metric appears to provide a better result but it is not adaptable to any other type of
measured length (i.e. if it has higher angles, as in the ”Line” section, it loses a lot of
information).

When comparing disorganisation images, similar number of straight segments
provides significantly different ratios.

There can be a performance bottleneck: if the segments are a small part of the
image, the ratio will take a long time to be calculated, and the algorithm might not
find all the straight segments in an image.

68CHAPTER 4. QUANTITATIVE ANALYSIS AND DESCRIPTION OF THE BINARY SHAPE

4.3 Curvature

1

To the human eye, one of the most distinguishing characteristics of a disorgan-
ised phenotype are the ”loops” in the microtubules, generally organised into tight
bundles. It is important to quantitatively understand how much microtubules devi-
ate from their usual straight shape. Mathematically, it is the definition of curvature.
There was a pivotal effort into retrieving curvature as a parameter from the disorgan-
isation images.

Mathematical Description of Curvature

Even though curvature can be any number that is roughly related with the shape
of an object, in this project we are interested in the geometric curvature κ, which
describes the rate of change of the slope of the curve [70].

κ =
1

R
(4.3)

It is the reciprocal of the radius R (orange arrow, Figure 4.11) of a circle (blue,
Figure 4.11) that is tangent to the given curve at a specific point. The curvature will
be zero for straight lines, and increase for progressively smaller circles.

R

Figure 4.11: Mathematical definition of radius of curvature (orange), as per
Equation (4.3). Blue dot represents the point where the radius is being ob-
tained, and the dashed line represents the circle with radiusR that is tangent
to the point.

By working with the skeleton, each point in the disorganisation can be described
by their (x, y) coordinates. Suppose the dot in Figure 4.11 moves along the curve at a
constant pace. Mathematically, its position can be described in terms of the position

vector ~p(t) =

[
x(t)

y(t)

]
, where t is the instant of measurement.

The velocity of the dot will therefore be ~p′(t) = d~p
dt

=

[
dx
dt
dy
dt

]
=

[
x′(t)

y′(t)

]
. As the dot

moves at constant pace, the velocity is only influenced by the slope of the object. The

1Acknowledgement: the mathematical theory behind this section was developed in collaboration
with Nuno Nobre.

4.3. CURVATURE 69

rate of change for this velocity is the tangent vector of the curve and represents the
curvature.

κ =
d2~p

dt2
=
|x′y′′ − y′x′′|
(x′2 + y′2)3/2

(4.4)

Setbacks and Theoretical Approaches

Curvature measurements have been historically complex [70, 88]. The greatest prob-
lem with computing the curvature is that we are collapsing the real continuous image
onto a discrete grid (pixels). Unless the capturing of the images was done into vector
graphics (where the image is saved as the description of what is portraying, rather
than the RGB values per pixel), which is not possible for now, continuous lines (e.g.,
microtubules) will be forced onto a discrete shape.

Several approaches have been developed, not without shortcomings. In this sec-
tion, I will briefly explain them and which was chosen for the software.

Pixel Angles and Distances

The simplest approach is by calculation of the curvature using the angles and dis-
tances between the pixels on an image (Figure 4.12).

Figure 4.12: Pixel Angles example: The curvature is calculated by the relation
to the angles between skeleton pixels (in blue), or vectors between the centre
(in orange).

Some estimations can be better than others and although it has improved, the ma-
jor issue relies on resolution dependence: the same real line will have very different
pixel description depending on how many pixels are available. Furthermore, given
the discrete nature of the grid, it adds an artificial straightness to the curvature.

This method of calculating curvature was applied in FiberApp [51], where a dis-
tance of three pixels is used.

70CHAPTER 4. QUANTITATIVE ANALYSIS AND DESCRIPTION OF THE BINARY SHAPE

Pattern Fitting

This method consists in the fitting of an existing pattern (in this case, known and
specified circles) to the image in order to find the curvature values (Figure 4.13). An
example of this would be applying the Hough transform described in Section 4.2 but
with circle detection.

Figure 4.13: Patten Fitting example: The algorithm searches for all of the
lines that will fit the arc for different circle sizes (illustrated in blue and or-
ange, dashed).

It is limited to approximate curvature with the most similar values of the given
patterns. However, it is a brute force approach to find all the curvatures present in
the image, which can have very limiting performance values.

Different implementations have been done by [89–92].

Polynomial Fitting

Like regression in statistics, where a straight line is calculated from the data, a differ-
ent approach to curvature calculation can be fitting a curved function to the lines of
the image (Figure 4.14, blue dashed line on the skeleton).

Figure 4.14: Fitting a function to the lines: the algorithm will try to fit a single
polynomial (blue, dashed) to the entire line (grey), with Equation (4.5).

Curved lines can be described by polynomials, of which the exponent of the vari-
able provides the degree.

f(x) =
d∑

n=0

Cnx
n (4.5)

4.3. CURVATURE 71

For example, a straight line is a polynomial of first degree (n = 1). By having a
function for both axis, the curvature calculation from these polynomials is trivial as
the first derivatives can be easily calculated by:

f ′(x) =
d∑

n=0

nCnx
n−1 (4.6)

and the second:

f ′′(x) =
d∑

n=0

n(n− 1)Cnx
n−2 (4.7)

While it can be a powerful application, there are several setbacks. If the function
has a defined limit for the degree (for example, using quadratic functions), then it will
not work for all types of images. On the other hand, if the degree can change with
each image, it would be very time and computationally consuming. Furthermore, if
the image is intricate and a high degree polynomial is needed, then it might occur
artificial oscillation at the edges of the function, known as Runge’s phenomenon [93]
- which states that increasing the degree higher than a certain level does not increase
accuracy.

This method has been applied on a variety of fields, for example land surface
curvature [94] or agriculture [95].

Fourier Transform

On the same type of approximation, instead of using a polynomial, it would be pos-
sible to use functions that already has a curved shape: sine and cosine. By using a
Fourier transformation, the lines are described as:

f(x) = a0 + a1 cos(ωx) + b1 sin(ωx) (4.8)

The fitted coefficients a0,a1,b1 and the frequency ω are then used on the derivatives
and consequently on the curvature calculation.

It is a general approximation and provides one result for the entire image: when
looking at structures such as microtubule disorganisation this type of curvature cal-
culation will not provide sufficient information. It is used, for example, for damage
detection in 2D images [96].

Gaussian Windows

A different approach is by using Gaussian windows [97]. A window filter (similar to
those mentioned in 3.2.1) of a certain size is applied to each point of the skeleton.

As mentioned in 3.2.1, the convolution of an image with a Gaussian function is
retrieving the first derivative. By using a point to point multiplication with the filter,

72CHAPTER 4. QUANTITATIVE ANALYSIS AND DESCRIPTION OF THE BINARY SHAPE

Figure 4.15: Gaussian Windows example: A window of a certain number of
neighbours around a certain point (orange in one point, blue in another) will
run through the lines, where the line is multiplied point to point with the
filter, and the final sum reduction produces the desired derivatives.

a final sum reduction produces the desired derivatives. Each point provides a cur-
vature: with an adjusted window size, it can work out good approximations for the
local curvatures along the image.

However, having an adaptive window size can be computationally consuming,
and it would have to adjust for each image. Therefore, differences in curvature within
the same image could potentially be missed by this method.

Smoothing Spline Fitting

The method used in this thesis is an improvement from fitting polynomials, where
the principles are the same but instead of applying the function to the entire image,
there are knots (orange in Figure 4.16) that split the image into different parts.

Figure 4.16: Smoothing Spline Fitting example: The line is split using knots
(orange, crosses). To each segment is then fit a polynomial (blue, dashed)
that will be, at most, of degree 3 (See Equation (4.9)).

A polynomial of degree three (Equation 4.9) is then fitted to the segments.

f(x) =
3∑

n=0

Cnx
n (4.9)

Using this piecewise polynomial, local curvatures can be calculated for any de-
sired point.

4.3. CURVATURE 73

4.3.1 Testing

Curvature calculations are generally presented as distributions of values. However,
it does not provide locational information, which is necessary for an accuracy assess-
ment and comparison. This can be circumvented if the curvature (or the inverse,
radius) is described as a function of its length (i.e., the cumulative arc-length). Fun-
damentally, the radius is plotted for each point on the shape in order of the sum of
arc-lengths from the origin until said point.

As curvatures can be analytically calculated, the most accurate way to assess our
method is by comparing directly with analytical functions of well-known shapes.
The simplest shape for these comparisons, logarithmic spiral (Figure 4.17a), has the
radius growing linearly with the arc-length. Further, another shape of interest is an
ellipse (Figure 4.17b), with a varying radius along the length (sinusoidal behaviour
with higher values along the smaller axis).

The initial point (arc-length of zero) for the logarithmic spiral is the centre and it
moves outwards. The radius of an ellipse has a periodic behaviour, so the start point
is not relevant.

(a)

(b)

Figure 4.17: (a) Logarithmic spiral as per equation present in Table 4.2. In
this case, a = 1 and b = 2, θ ∈ [8π, 14π]. (b) Ellipse as per equation present in
Table 4.2, rotated 45◦, with a=1, b=2 the small and big axis, respectively.

The analytical functions for these shapes are in Table 4.2, including their curva-
ture, arc-length and the range of angles θ in which the measurements are done (lim-
ited range for the logarithmic spiral as it grows infinitely and one full circle for the
ellipse).

The length is calculated as a cumulative arc-length, i.e., the distance from any
point to the beginning of the measurements is the sum of all the small arc-lengths
calculated for each section of the line.

Figure 4.18 shows the plotted radius as a function of the cumulative arc-length
for the analytical function in black and our results in purple. In order to understand
whether our radius/curvature calculations are more accurate than existing methods,

74CHAPTER 4. QUANTITATIVE ANALYSIS AND DESCRIPTION OF THE BINARY SHAPE

the values obtained with FiberApp are plotted in orange. The grey vertical bars cor-
respond to the total length of the shapes.

(a)

(b)

Figure 4.18: Plotting of radius values per cumulative arc-length for logarith-
mic spiral (a) and ellipse (b). Three different radius values are plotted: black
for the analytical function, orange for the values measured with FiberApp
and purple for our method. The grey vertical lines depict the total length
measured.

To analyse the performance of both methods, the MATLAB function immse was
used to calculate the Root Mean Squared error (RMSE) between the calculated values
and the respective expected (or theoretical) counterpart. The results are presented in
Table 4.3.

4.3. CURVATURE 75

When analysing the values for the logarithmic spiral (Figure 4.18a), both calcu-
lations are erratic around the theoretical values. However, while for smaller radius
it seems that the frequencies are similar, the difference becomes evident for higher
radius, where the amplitudes are significantly divergent. This results in a slight de-
crease of the RMSE.

For the ellipse, however, the difference between the two methods is substantial.
While there are some variances for higher radius (and, therefore, for smaller curva-
tures) with our method, it shows a much smoother approximation to the expected
values than the one provided by FiberApp, which is visible in the RMSE values. An
important note is that the RMSE were calculated ignoring the artefacts of the curva-
ture calculations.

The small variance of our values compared to the theoretical ones can be ex-
plained by the discrete description of the shapes on the pixel grid, which provide
artefacts that are not present in the continuous analytical functions. As such, the cur-
vature distributions provided by our method provide an approximation to the local
curvatures in the real images.

Real images contain, however, intersection between different lines and these cre-
ate an artificial curvature (Figure 4.19a). To avoid skewing the results with these,
an intersection removal step is performed before any curvature calculation can be
applied (arrow, Figure 4.19b).

(a) (b)

Figure 4.19: Skeleton treatment for curvature calculation. (a) For any lines
(grey), the first step to obtain curvature relies in the retrieval of the skeleton
(in blue). (b) Given the skeleton, we remove the junctions (arrow) as these are
points of fake curvature, i.e., abrupt line change would give a high curvature.

As all quantitative results can now be calculated and the pipeline is defined, it is
necessary to make it user-friendly in a continuous environment.

76CHAPTER 4. QUANTITATIVE ANALYSIS AND DESCRIPTION OF THE BINARY SHAPE

Table 4.1: Results of calculating the straightness after applying the Hough
Transform to different test images. First column: original drawings (above)
and skeleton of the images (below - straightest segments in green, start in
yellow and end in red). Second column (Number of Segments): detected
number of straight segments. Third column (Total Straightness): ratio be-
tween the sum of the length of those segments per sum of all the pixels in
the chosen part of the skeleton. Fourth column (Average Segment Straight-
ness): ratio between total straightness and the number of segments. Fifth
column (Euclidean Metric): ratio between the Euclidean distance of the end
points and the length of the path, in the linear cases.

Number of
Segments

Total
Straightness

(%)

Average
Segment

Straightness
(%)

Euclidean
Metric

(%)

Neuron

17 66.3 3.9 92.7

8 68.4 8.6 95.1

Disorganisation

31 22.8 0.7 —

28 43.6 1.6 —

Line

8 15.2 1.9 60.5

9 98.4 10.9 50.2

4.3. CURVATURE 77

Table 4.2: Analytical functions describing a logarithmic spiral (Figure 4.17a)
and an ellipse (Figure 4.17b). The range of angles for the logarithmic spiral is
limited to provide a resolution that would be visible by the methods (smaller
values would correspond to pixel-sized curves).

Logarithmic Spiral Ellipse

Equation r = aebθ x2

a2
+ y2

b2
= 1

Curvature κ(θ) = 1
a
√

1+b2ebθ
κ(t) = ab

(b2 cos2(t)+a2 sin2(t))
3/2

Arc-length s(θ) = a
√

1+b2ebθ

b
s(θ) = a

∫ φ
0

√
1−

√
1− b2

a2

2

sin2(θ)

θ ∈ [8π, 14π] θ = tan−1
(
b
a

tan(t)
)
∈ [0, 2π]

Table 4.3: Root mean square error calculated between each method and the
theoretical values of radius.

Logarithmic Spiral Ellipse
FiberApp 23413 1.57× 109

Our Method 22112 2373.3

Chapter 5

ALFRED: the pipeline and the software

5.1 Rationale

The main goal of this project is to create a software package with an image analysis
pipeline to facilitate the analysis of biological images most commonly obtained in the
group. One aim is to make the analysis more independent of variations in user input.
Another is to enhance the image analysis capabilities by two important parameters:
straightness and curvature. The methods mentioned in Chapter 3 and 4 build the
basis for the functionality of the software package.

One potential option could have been the implementation as ImageJ plug-ins.
However, ImageJ has its own scripting language, which I was not familiar with. In-
stead, I was already proficient in MATLAB. The language offers a wider range of
tools for image processing, allows the statistical analysis at the end of the parameter
acquisition, as well as data visualisation, and easy interface implementation with its
GUIDE functionality. These allow not only the easy incorporation of the scripts al-
ready written but also an overview of the interface and can automatically generate
the necessary code for the components of the interface.

The end users of these methods are preferentially biologists, often with limited
IT knowledge. As such, to achieve a wider use and data collection, a user-friendly
implementation becomes imperative. I chose to add a Graphical User Interface (GUI)
to allow end users an easy interaction with the underlying algorithms and control
a number of input parameters. With the implementation of a GUI, new challenges
appear: the software needs to be robust to any user interaction. Even if the order
of buttons to use is clear, users can forget steps and that could cause the software to
break (for example, trying to get a skeleton from an RGB image).

My aim was to develop an interface that is user-friendly and robust, which allows
people with non-programming backgrounds to analyse their images with the algo-
rithms that were chosen and developed, as a strategy to gain more and better data
about microtubule organisation in the future, avoiding the time-consuming necessity
to pre- and post- process the images.

78

5.2. STRATEGIC DECISIONS FOR SOFTWARE DESIGN 79

I therefore decided to develop my own software in MATLAB, named ALFRED,
the acronym for Advanced Labelling, Fitting, Recognition and Enhancement of Data
[98].

In this chapter, I will explain the software implementation of the methods men-
tioned in Chapters 3 and 4 as the user-friendly ALFRED program. I will explain
the strategic reasoning behind the general structure of the interface, and all features
gradually added to fit the expected needs of the target users.

5.2 Strategic decisions for software design

An important outcome of having analysis performed on a software with a higher
level of automation is the reduction of human error, accuracy improvement, potential
inclusion of new readout and, in consequence, the generation of more data that can
help to decipher the scientific problem in question.

As a starting point and concrete example of application, ALFRED was developed
as an interface that facilitates the work and image analysis within our group, i.e., the
analysis of microtubule networks in the axons of primary neurons.

As such, ALFRED pipeline was closely designed to steps of the current work-
flow for neuronal image analysis in the group. The focus on a concrete goal made it
possible that each version, ALFRED was extensively tested by my colleague André
Voelzmann in order to assess the performance of the software and its general adapt-
ability to the workflow from the users point of view.

In our group, images are obtained from Drosophila neuronal cultures following
standardised procedures (Figure 5.1):

• at least two genotypes are needed in an experiment: e.g., wild-type and at least
one mutant condition;

• each genotype will be cultured on at least three different slides providing three
repeats1;

• each experiment is performed at least twice, providing replicates of the same
conditions;

• from each slide at least 30 images are taken;

• each image contains at least one neuron;

• each neuron displays an axon which can have none to various microtubule
disorganisation regions.

1Repeat measurements are taken during the same experimental run, or consecutive runs. Replicate
measurements are taken during identical but different experimental runs.

80 CHAPTER 5. ALFRED: THE PIPELINE AND THE SOFTWARE

Region of Interests (ROIs) are sections of the image used for specific individual
analysis. As both axons and disorganisation regions are analysed, each one is a ROI,
and consequently this number is highly variable.

Repeat 1 and Repeat 2

Wild-type

Slide 1 · · · Slide 3

Image 1
Neuron Axon

Disorg

......
...

Image 30
Neuron Axon

Disorg

......

Slide 4 · · · Slide 6

Image 1
Neuron Axon

Disorg

......
...

Image 30
Neuron Axon

Disorg

......

Mutant

Slide 1 · · · Slide 3

Image 1
Neuron Axon

Disorg

......
...

Image 30
Neuron Axon

Disorg

......

Slide 4 · · · Slide 6

Image 1
Neuron Axon

Disorg

......
...

Image 30
Neuron Axon

Disorg

......

Figure 5.1: Diagram for the final number of ROIs in an experiment with only
one repeat. Axons in blue represent ROIs for length and curvature analysis,
disorganisation in red represents ROIs for microtubule curling analysis.

Before delving into the details of how to automate the analysis of these specimens
through the implementation of ALFRED, I will first present an overview of the final
outcome provided as a flowchart illustrating how ALFRED is organised (5.2).

The user interface has three windows: the loading window dedicated to the han-
dling of files, the main window dedicated to image processing and the ROI window
dedicated to path selection. Each will be described in more detail in the respective
sections indicated in the brackets above.

Keeping the windows separate is a deliberate decision: it is easier for the user
to follow the scope of the image: the loading window comprises the group of im-
ages, the main window focus on one image and the ROI focuses on one selected part
of the image at the time. Furthermore, it has the added advantage that a program
malfunction in one of the windows will not retroactively influence the work in the
others.

The algorithms mentioned in the previous chapters are called also at different
stages of the analysis, particularly given the level of the image (group of images, in-
dividual image, ROI within the image) and the computational power that it would
require. During the pre-processing, both the filter algorithms and the application of
a mask can be quickly applied to the entire image, and allow the user to have a better

5.2. STRATEGIC DECISIONS FOR SOFTWARE DESIGN 81

perception of what the program can recognise. On the other hand, the skeletonisation
(which is performance heavy) happens at a regional stage with the opening of each
ROI window, and subsequently the path extraction happens only after the user has
selected the end points. This also means that the length and straight segment acqui-
sition also happen on the ROI window. Furthermore, the final calculations, including
the straightness ratios and curvature, happen after the entire group of images has
been processed, in the main window.

Import images to
Loading Window

Split the panel
into multi-
ple images

Stack automat-
ically loads

Click the image
to start analysis

Channel
Selection

Automated
Vesselness

Mask Creation

ROI Selection Type Selection

MT Disor-
ganisation Axon

Select and
Edit endpoints

More images
to analyse?

Scaling Factor
Adjusted

Calculations
for all im-

ages analysed

panelmultiple

single

Skeletonisation

no

yes

Figure 5.2: Flowchart of the user pipeline of ALFRED. The different colours
represent the functions executed on different windows: loading window
(blue) takes care of the loading of the images into the software, the main win-
dow (orange) takes care of navigation and the main pre-processing needed,
as well as the calculations at the end, ROI window (red) has specific func-
tions for either selection of axon or microtubule disorganisation, scaling fac-
tor adjusted on a pop-up (grey).

The implementation and user manual of the software can be seen in Appendix A.

82 CHAPTER 5. ALFRED: THE PIPELINE AND THE SOFTWARE

A specific value: Microtubule Disorganisation Index (MDI)

Microtubule disorganisation is not a regular phenotype across different mutations.
Several values can be compared, such as number of disorganisations or area. How-
ever, these alone are not sufficient. The impact of a disorganised region of a certain
area will have a very different effect on a smaller axon. The Microtubule Disorgan-
isation Index represents the ratio between area of microtubule disorganisation and
axon length. The method so far was performed with manual calculations.

In ALFRED, both the area and the axon length have been obtained, so the ratio
could be easily computed. The simplest solution would be the calculation of these
values when the user selects the disorganisation, but does not account for the variable
number of disorganisations in each axon.

Figure 5.3: Example of overlapping bounding boxes of two neurons close
by. In this case, the criteria to calculate MDI would be the percentage of
overlap between the disorganisation bounding box and the axons. Magenta
bounding box corresponds to axons, green to microtubule disorganisation.
Shown area of width 29.7µm.

After each ROI selection, the bounding boxes are saved and the designated pro-
cessed areas are marked in the image (Figure 5.3, magenta and green).

Since the disorganisation regions are invariably a part of the axon, their bounding
boxes will overlap on some level. The MDI can be calculated using the disorgani-
sation bounding boxes that overlap significantly (if not completely) with the corre-
sponding axon.

If one bounding box overlaps with more than one axon (Figure 5.3), the disorgan-
isation will be considered for the axon with which it has a higher overlap.

In the unlikely case that the overlap is equal, a tie-breaker method is applied by

5.2. STRATEGIC DECISIONS FOR SOFTWARE DESIGN 83

checking the overlap of axon skeletons, as these will invariably be part of the disor-
ganisation. This method is much more time consuming and, therefore, is only used
as last resource.

The values for MDI are attached to the already saved values of each axon.

Chapter 6

Biological Image Analysis

6.1 Description of the Images and Aim

After verifying the validity of each ALFRED component individually, it is necessary
to evaluate its performance with the target images. As explained in Section 2.3, the
biological data obtained in the group are fluorescence microscopy images of cultured
Drosophila neurons.

6.2 ALFRED Analysis

Before any novel analysis can be performed with the ALFRED pipeline, it is pivotal
to guarantee that the data acquired with the software is statistically non-significantly
different from the manual protocol data.

The manual analysis was performed first, and ALFRED was tested by choosing
the same ROIs as the manual user.

Axonal Length

Axonal length is one of the most important measurements for phenotype studies in
our group. As described in Section 2.3.1, the manual analysis is usually performed
using ImageJ via a click-based approach where the user clicks along the axon from
the cell body to the axon tip (Figure 6.1(a)). For a relatively straight axon, this could
be done in a small number of clicks but, as can be seen with the 20 white squares in
Figure 6.1a, a lot more are usually necessary for curved axons. In contrast, with AL-
FRED the user needs to click only twice, on average (Figure 6.1b, green dots indicated
by arrows). Extra clicks can be added to improve the path chosen by the algorithm.

Furthermore, ALFRED follows the pixels as they are lined up in the image, thus
tracing curves accurately, whereas the manual approach is composed of straight lines
that can only approximate bent sections (see magnifications in Figure 6.1). Both ap-
proaches allow scaling from pixels to micrometres.

84

6.2. ALFRED ANALYSIS 85

(a) (b)

Figure 6.1: Manual measurement of axonal length with (a) ImageJ protocol
and (b) ALFRED. The clicks performed by the user are represented by: 20
squares in (a), and 2 green dots evidenced by arrows in (b). Magnifications
shows a region with a different path in the manual and ALFRED analysis.
Shown area of width 19.1µm.

To test the performance of ALFRED, four data sets representing different geno-
types and each containing 30+ images, were analysed manually and via ALFRED.
Data were sorted and plotted from the shortest to the longest axon (Figure 6.2). As
can be seen, both analyses match closely, although ALFRED values (blue) tend to
be slightly higher, especially in longer axons. This deviation is expected, since AL-
FRED precisely follows the path, including curves that were only approximated with
straight lines in the manual analysis.

As already suggested by the graphs in Figure 6.2, also statistical comparisons re-
vealed similarity of data. As shown in Figure 6.3, ImageJ and ALFRED analyses
showed the same inter-genotype relationships that were statistically significant (blue
connectors for ALFRED, orange for ImageJ).The distribution of the length values for
the different genotypes was compared to the respective wild-type values and tested
for significance in the differences using non-parametric multiple comparison tests.
The p-values indicate with which probability the difference between the two datasets
is random.

Furthermore, when comparing ImageJ versus ALFRED data for each genotype
(normalised to the median of the wild-type), there were no significant differences
(black connectors, all p-values are above 0.05).

These data were very encouraging and demonstrate that ALFRED is a reliable tool

86 CHAPTER 6. BIOLOGICAL IMAGE ANALYSIS

to measure axon lengths in this case, suggesting that it will be applicable to length
measurements in general.

Disorganised Area

In the next trial, I measured axonal areas containing disorganised microtubules
scaled to square micrometres. The protocol with FIJI allows to draw areas freehand
(Figure 6.4a). For the ALFRED analysis, however, no selection tool is necessary other
than choosing two axonal points surrounding the disorganisation (i.e., the ”begin-
ning” and ”end” of the disorganisation), with added clicks to remove any unwanted
branches (Figure 6.4b) - the disorganisation area is retrieved as the area enclosed in
the outer lines of the path. It is clear that the area calculated by ALFRED includes
several creases that are overseen in the manual selection.

Figure 6.5 shows the sorted data for the converted measurements of area of disor-
ganisation, for each genotype, with the two different analysis modes.

Figure 6.5 shows the area measurements arranged by size, obtained from the same
neurons and the same genotypes used already for axon length measurements (Figure
6.2). While the graphs have a similar shape, there is a clear trend for ALFRED data to
be gradually higher than ImageJ data, for larger areas. However, given the precision
in pixel recognition present in ALFRED, these are expected to be higher than the
manual analysis.

While the discrepancy seems higher in this case than the previous length, the
explanation relies on the conversion itself: each pixel in an area is squared. This
implies that the seemingly insignificant differences in linear results become enhanced
when squared.

Accordingly, the medians of data normalised to the respective wild-type medians
are always higher in ALFRED analyses. Upon statistical comparisons using non-
parametric tests, the p-values comparing mutant genotypes to the respective wild-
types are within the same order of magnitude for both ImageJ- and ALFRED-derived
data, and comparisons between ImageJ- and ALFRED-derived data for each geno-
type are non-significant (p-value> 0.05, black connectors in Figure 6.6).

As both measurements provided non-significant differences with the previous
manual analysis, there is an a priori confidence in the calculation of the microtubule
disorganisation index. However, it is still necessary to analyse those results.

Microtubule Disorganisation Index

Even though the de facto measurements obtained from the images are the axonal
length, and the disorganisation areas, the value used in publications and in the def-
inition of the genotypes is the microtubule disorganisation index. This means that
two independent values are being combined which might lead to a stronger devia-
tion between ImageJ- and ALFRED-derived data than when comparing each value

6.2. ALFRED ANALYSIS 87

in isolation. The results of the statistical analysis of these calculations are shown in
Figure 6.7.

The genotype comparisons intra-analysis presents the same order of magnitude
of difference between the genotypes and their respective wild-types when comparing
ImageJ data sets (orange connectors) to ALFRED data sets (blue connectors). There
is a tendency for MDI values derived from analyses with ALFRED to be higher than
with manual analyses but the comparison within genotypes of the two analysis meth-
ods did not reveal any significance to these differences (black connectors).

Curvature

The first new value obtained with ALFRED is the curvature. In this case, there are no
manually acquired values to compare with and, as discussed before, there is no other
software available that performs these analyses. FibreApp can only measure single
filamentous structures that need to be traced by hand.

The closest way to measure the real curvature of the disorganisation would be by
manually calculating the radius of the loops. In Figure 6.8 is an example of manually
obtained radii.

Given the literature available [23, 99], the true range considered will be of radius
in the order of magnitude of hundred nanometres (102 nm).

With ALFRED, curvature calculations are applied to the path recognised in the
”MT disorganisation” option, that retrieves the skeleton of the disorganisation (all
the blue lines in Figure 6.4b).

In all graphs of Figure 6.9, the curvature is shown sorted by size. Each point
corresponds to the curvature measured in each individual spline (i.e. each segment
in which the algorithm splits the skeleton) as obtained per Section 4.3.

As the presence of disorganisation was significantly different within genotypes,
this translates into a different number of measured points. Figure 6.9a evidences this:
wild-type genotype has half the points of khc27/27, and a third of the points of the
other two genotypes (shot3 and efa6ko).

However, comparing just the number of points does not provide any information
in the similarity within the disorganised regions, when they are present. To this end,
Figure 6.9b shows the sorted values normalised for the number of points.

The distributions appear to have an exponential behaviour. In order to further
analyse the values in the first half of the graph, a log transformation was applied (as
per Figure 6.9c), where the initial behaviours become more evident.

The most evident difference is between wild-type and the other three genotypes.
However, it seems that efa6ko is more similar to khc27/27, with shot3 slightly isolated.
In other words, it appears that when disorganisation is present in wild-type, the log
transformation curvature tends to be larger (i.e., smaller radius for the loops).

When measuring computationally, all the lines are considered, even the straight

88 CHAPTER 6. BIOLOGICAL IMAGE ANALYSIS

ones. Furthermore, given the spline method used, there are millions of values for
each genotype. In Figure 6.9, most of the curvature measurements are under 2.5µm−1

and above 0.05µm−1, which correspond to radii superior to 0.4µm and inferior to
20µm.

It is also important to consider the average curvature of the region, as there are a
lot of straight segments and pixel-length radius. In Table 6.1 is presented the average
value for each genotype, after eliminating some outliers (i.e. the radius larger than
1011 nm, which corresponds to 99.99% of the data).

Table 6.1: Average radius measured with ALFRED for each genotype, after
removing the values above 1011nm. N represents the number of valid points
per set, σ is the standard deviation.

Genotype Average (nm) N σ√
N

wild-type 420 914959 29.2
khc27/27 154 2397918 6.74
efa6ko 203 1767941 51.2
shot3 1592.2 2210909 158.2

While the values for shot3 are slightly higher, all genotype curvatures appear to be
within the expected range. Furthermore, the average values seem to concur with the
above statement where the curvatures present in the khc27/27 and efa6ko genotypes
are closer than to the others. The higher values for shot3 do not necessarily mean
larger circles, but can correspond to the presence of a higher number of straight lines
within the measured splines.

Axon Straightness

The final value to be a novel calculation by ALFRED is the axonal straightness ratio,
the total sum of the straightest segments measured divided by the total length. The
path considered for the segment retrieval is the one obtained for the length measure-
ments, as per Figure 6.1b. Figure 6.10 shows the values obtained for each genotype,
for each of the axons recognised in the previous sections.

In Figure 6.10a, the ratio values are sorted by size, with the number of axons con-
sidered the same as the one analysed for Axonal Length and MDI. The general distri-
bution for the mutations seems to be similar, even though shot appears to be slightly
different from the other two. However, when the values are compared relative to
the wild-type (Figure 6.10b), although the p-value obtained for shot3 is one order
of magnitude lower than the other two there are no significant statistical differences
between them.

Furthermore, the next step relies on trying automatic methods (with machine
learning) to try and distinguish between the genotypes.

6.2. ALFRED ANALYSIS 89

(a) (b)

(c) (d)

Figure 6.2: Ladder plot showing axonal length measurements obtained man-
ually via ImageJ versus semi-automated ALFRED analysis, where the latter
are usually longer. The cultured primary Drosophila neurons (a, wild-type,
N=39; b, khc27, N=92; c, shot3, N=91; d, efa6ko, N=86 and N=87) were as-
sessed for axon length using semi-automated ALFRED (blue) or manual Im-
ageJ (orange) approaches.

90 CHAPTER 6. BIOLOGICAL IMAGE ANALYSIS

Figure 6.3: Statistical analysis of axon length data from Figure 6.2. Axonal
length data for wild-type (N=39), khc27 (N=92), shot3 (N=91) and Efa6ko

(N=86 and N=87) neurons acquired manually via FIJI (orange) or via semi-
automated analysis in ALFRED (blue) were normalised to the respective me-
dian of wild-type. P-values were calculated using Dunn’s multiple compar-
ison tests, either comparing data of mutant neurons to the the respective
wild-type, or comparing ImageJ versus ALFRED data for each genotype.
Boxes represent the values within 1st and 3rd quartile, whiskers show 5-95%
of the data, with the outliers presented as x.

6.2. ALFRED ANALYSIS 91

(a)
(b)

Figure 6.4: Manual measurement of disorganisation with (a) ImageJ protocol
with the freehand tool and (b) ALFRED. The clicks performed by the user in
ALFRED are shown with arrows. Scale: 22.16px/µm.

92 CHAPTER 6. BIOLOGICAL IMAGE ANALYSIS

(a) (b)

(c) (d)

Figure 6.5: Ladder plots comparing disorganisation area measurements
obtained manually via ImageJ versus semi-automated ALFRED analysis,
where the latter are larger. The same cultured primary Drosophila neurons
used for axon length analysis in Figure 6.2 (a, wild-type, N=39; b, khc27,
N=92; c, shot3, N=91; d, efa6ko, N=86 and N=87) were used to measure
axonal areas with microtubule disorganisation, either via semi-automated
approaches with ALFRED (blue) or manual analyses with ImageJ (orange).
Data were sorted by size.

6.2. ALFRED ANALYSIS 93

Figure 6.6: Statistical analysis of axon area data from Figure 6.5. Axonal area
data for wild-type, khc27/27, shot3 and efa6ko neurons acquired manually via
ImageJ (orange) or via ALFRED (blue) were normalised to the respective
median of wild-type. P-values were calculated using Dunn’s multiple com-
parison tests, either comparing data of mutant neurons to the the respec-
tive wild-type, or comparing ImageJ- versus ALFRED-derived data for each
genotype. Boxes represent the values within 1st and 3rd quartile, whiskers
show 5-95% of the data, with the outliers presented as x.

94 CHAPTER 6. BIOLOGICAL IMAGE ANALYSIS

Figure 6.7: Statistical analysis of relative Microtubule Disorganisation In-
dex (MDI) data calculated from ImageJ- and ALFRED-derived data. MDI
data for wild-type, khc27, shot3 and efa6ko neurons calculated from man-
ual ImageJ data (orange) or semi-automated ALFRED data (blue) were nor-
malised to the respective median of wild-type. P-values were calculated us-
ing Dunn’s multiple comparison tests, either comparing data of mutant neu-
rons to the the respective wild-type (blue and orange connectors) or compar-
ing ImageJ- versus ALFRED-derived data for each genotype (black connec-
tors). Boxes represent the values within 1st and 3rd quartile, whiskers show
5-95% of the data, with the outliers presented as x.

Figure 6.8: Manual approximate radius measurements. Red circles denote the ap-
parent loops, with the respective radius in nm in white. Adapted from Dr. Simon
Pearce’s work [99].

6.2. ALFRED ANALYSIS 95

Figure 6.9: Curvature histogram profile of neurons with different genotypes.
Curvature data obtained via ALFRED for areas of microtubule disorganisa-
tion in primary Drosophila neurons of different genotypes (colour-coded as
indicated: wild-type, khc27/27, shot3 and efa6ko). Each point represents the
value of the curvature for each individual spline obtained from the image.

96 CHAPTER 6. BIOLOGICAL IMAGE ANALYSIS

(a)

(b)

Figure 6.10: Straightness data obtained via ALFRED from axons of primary
Drosophila neurons. Neurons were the same as in previous figures from the
same four genotypes (colour-coded as indicated: wild-type, khc27/27, shot3

and efa6ko). (a) Frequency histogram of straightness values. Each bar rep-
resents the number of axons with a straightness within the limits of the bin.
(b) Straightness relative to the wild-type median. Boxes represent the val-
ues within 1st and 3rd quartile, whiskers show 5-95% of the data, with the
outliers presented as dots.

Chapter 7

Using machine learning methods to
further analyse the biological images

7.1 Background and Rationale

One of the key goals of the ALFRED software is to have as little user input as possi-
ble. Even though the calculation section does not require such input, the initial stages
of processing and shape extraction do. Taking into account that different users might
have different impressions of each image, as well as different line interpretations for
the paths, automation would provide an extra level of user abstractness. Further-
more, it could make the pipeline not only faster from the user perspective but also
allow the potential development of the software for uses in high-throughput experi-
ments.

In all of the mentioned processes of this thesis so far, it has been under the as-
sumption that the chosen parameters (curvature, straightness) are, in fact, the most
relevant to characterise different phenotypes. However, this might not be the case.
Although ALFRED provides a pipeline to analyse the experimental images of the
group, there could be further information to be retrieved.

The data boom of the last decade has propelled the development of machine
learning methods that are not completely dependent on the programmer and can,
in fact, evolve with each iteration by learning and predicting from the data itself
[100]. These algorithms allow to pose different kinds of questions that do not need
complete knowledge of the system or parameters to describe them. If there is no
information about the data, the methods applied are unsupervised and try to find
patterns and commonalities among the data. On the other hand, if there is a priori
knowledge of the data (i.e., a ground truth), supervised methods can be applied.

Supervised methods can be used to understand whether a property of interest (in
our case, the genotype) can be predicted via other properties (certain aspects in their
images, such as microtubule disorganisation) [101]. The prediction rule (i.e. what
defines the connection between properties and target) is deduced by teaching the

97

98 CHAPTER 7. MACHINE LEARNING

algorithms with a labelled training data set. After this deduction, new blind inputs
can be provided to the algorithms for classification.

Furthermore, to train a classification model, it is necessary to have thousands of
input images. Even though each experiment results in hundreds of neurons to be
analysed, the amount of data necessary for classification is far higher. As such, it is
important increase the number of input images without compromising the results.
This can be accomplished with data augmentation methods.

To implement machine learning strategies during my project, I was accepted to
participate in The Alan Turing Institute Enrichment Scheme of 2019, where I col-
laborated with Turing Fellow Dr. Iain Styles, whose expertise lies in applying com-
putational methods to understanding biological data. The placement lasted from
September 2019 to March 2020.

7.2 Methods

The Turing project was divided into two consecutive sections: Data Clean-up and
Augmentation, and Classification, where the first had to be achieved to provide
enough data for the second. Figure 7.1 shows the flowchart of the data processing
precedent to the classification. For simplicity of methods due to time constraint, the
images used were comprised only of the green (microtubule) channel.

Fluorescence images
converted to hdf5

Labelling of
all pixels in
the image

Probability of
pixel being neu-
ron higher than

background?

Mask

Image multi-
plied by mask

DataSet

Training Set
with Data

Augmentation

Validation Set

yes

70%

30%

Figure 7.1: Flowchart of the pipeline created for the image processing before
classification, using both Ilastik (orange) and MATLAB (blue).

7.2.1 Data Clean-Up and Augmentation

The way in which the primary neuron cultures are generated and stained, neurons
are intermingled with other non-neurnal cell types and cellular debris [69] (Figure

7.2. METHODS 99

7.2). In order to achieve an automated pipeline, it is pivotal to reliably identify the
actual neurons in the images obtained.

*

x

x

x

Figure 7.2: A cell culture derived from wild-type Drosophila embryos. Cells
are stained with anti-tubulin (green) to label microtubules. The asterisk de-
notes the cell body of a neuron of interest that fulfils key criteria: it displays
axons longer than the diameter of the cell body and fully visible (in contrast
to the neuron at the bottom). x denotes all other irrelevant cells. Shown area
of width 41.3µm.

To develop neuron identification strategies, I used Ilastik [61], a program that is
user-friendly and allows a quick deployment of a work-flow adapted to the images.
The workflow most suited for my purposes was Pixel Classification, which produces
a semantic segmentation of the images, i.e. classifies each pixel as either relevant or
background.

The first step was to define the classes the image should be divided into, which
were ”neuron” (fulfilling all criteria, Figure 7.2) and ”not-neuron” (unstained areas/
debris that is not fulfilling key criteria). The ground truth annotation was manual
and could be adapted in real time, as brushes allow the user to define which part of
the image was relevant. Furthermore, each step could be backtracked if with the new
learning stages, the classification was less-optimal.

The output of this program is, for each image, the probabilities of each pixel being
part of a neuron or not which can be used to create a binary mask (on MATLAB),
where all the pixels with a probability of being ”neuron” superior to 50% are assigned
a value of 1, and the rest are zeros (Figure 7.3b). When multiplying the original image
(Figure 7.3a) by the mask, the result should be a clean image with only the neuron
present (Figure 7.3c).

However, while it worked perfectly with the images annotated manually, the sim-
ilarity between neurons and the surrounding cells was often cause for misclassifica-
tion.

A further attempt was done with all three channels present in the classification,

100 CHAPTER 7. MACHINE LEARNING

(a) Original Channel (b) Probability Mask (c) End Result

Figure 7.3: Images of a neuron in culture before (a) and after (c) application
of the probability mask (b) obtained with Ilastik, to reduce the background
noise.

but not only did it heavily increase the performance (as now there were three matrices
per image, instead of one), it produced the same results with the same problems. As
such, only the microtubule channel was used for classification. Further, even though
the cleaning of the images was not ideal, it removed parts of the background that
would be present otherwise. As such, the images chosen for the classification were
processed through Ilastik.

Before proceeding to the classification, the available dataset is still not sufficiently
large. Further, in order to also prevent overfitting (the algorithms become extremely
accurate for the training data, but fails when presented with new inputs), augmenta-
tion is necessary.

Augmentation is done by adding to the dataset slightly modified copies of the
already available data. However, these modifications have to make sense given the
type of data. For example, if one is considering images of cars, flipping them verti-
cally would produce an upside-down car, which is not a viable solution. Rotations of
all angles are possible with cell cultures, as the direction and orientation of neurons
is irrelevant.

Table 7.1: Values used in the image augmenter for morphological transfor-
mations of the image dataset. For each transformation, a random value in-
side the presented ranges was chosen for individual input images. All trans-
formations except rotation were applied to the x and y axes separately.

Transformation Min Max
Rotation -90◦ 90◦

X-axis Translation -3 3
Y-axis Translation -3 3

X-axis Shear -90◦ 90◦

Y-axis Shear -90◦ 90◦

X-axis Scale 0.5 4
Y-axis Scale 0.5 4

Finally, in order to proceed to classification, images have to be resized into the

7.2. METHODS 101

x

x

x

(a)

x

x

x

(b)

Figure 7.4: The probability mask not always deletes all the background noise.
Images of neurons before (a) and after (b) application of the probability mask
obtained with Ilastik. Crosses denote the background that is not present in
the second image, while arrows point to the ones that were not cleaned.

expected input sizes: 244x244 px. There were several attempts at classification using
a simple resizing but, given the sizes of the images and how much background would
be in each, a possible solution was splitting the image into same-size blocks and only
analysing the ones with a certain number of viable pixels per block: >100 pixels in
any block, or >10% and >30% of viable pixels in the block.

7.2.2 Classification

The main proponent of using supervised learning is that, by definition of the bio-
logical experiments, the data is already labelled as we know a priori which images
belong to which genotype. In order to use as many images as possible, the experi-
ment chosen has been repeated and includes three genotypes: wild-type, khc3 and
shot3.

102 CHAPTER 7. MACHINE LEARNING

The dataset obtained with the clean-up is divided into a training set (comple-
mented with augmented images) and a validation set, each used in the corresponding
phase (Figure 7.5), 70% to 30% proportionality.

The training set is used by the algorithms to learn which images correspond to
which labels - training phase (Figure 7.5a). After several iterations, the validation set
is tested (Figure 7.5b) and the accuracy of the measurements with this set defines the
accuracy of the overall pipeline.

oreR

khc

shot

Network !

(a) Training phase

? Network

oreR

khc

shot

(b) Testing phase

Figure 7.5: Schematics of the used classification architecture. During the
training phase, labelled images are provided as input to the network that
learns the predictive rule. In the testing phase, an unlabelled image is the
input and the network will classify it into one of the learned categories.

But what does the network actually look like?
The most prominent network type in machine learning is a neural network (Fig-

ure 7.6).
When referring to feedforward neural networks, the information flows in one di-

rection between the different layers: input layer (Figure 7.6, orange), hidden layer
(Figure 7.6, blue) and output layer (Figure 7.6, red). In the training phase, labelled
images are added to the input layer and the hidden layer will associate all the percep-
tible (to the algorithm) parameters seen on the images to the respective classification.
In short, the hidden layer learns what distinguishes the labelled inputs.

However, a network can have several hidden layers. In this case, each layer re-
ceives the information already learned by the previous and propagates new knowl-
edge forward. When there are multiple hidden layers, it becomes a deep neural net-
work (Figure 7.7).

There is a specialised kind of neural network for processing grid-like data, par-
ticularly images: Convolutional Neural Networks, or CNN, which are networks that
use convolution in at least one of their layers [102].

For images, and generally inputs that can be described as matrices, regular neu-
ral networks would share the inputs fully, i.e., the entire knowledge for the image.

7.2. METHODS 103

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Input
layer

Output
layer

Figure 7.6: Schematics of a neural network architecture. There are three dis-
tinctive layers of ”neurons” (circles) : input (orange), hidden (blue) and out-
put (red). Arrows denote the direction of the information

Input #1

Input #2

Input #3

Input #4

Output

Hidden
layer

Hidden
layer

Hidden
layer

Input
layer

Output
layer

Figure 7.7: Schematics of a Deep Neural Network architecture. There are
three types of layers: input (orange), hidden (blue) and output (red). The
information flows in one direction, and each hidden layer learns with the
previous.

However, with convolution (already referred in Chapter 3 for image filters) using
small kernels, which decreases the information into smaller matrices. Further, given
the weight of the information passed between layers, the parts of the image that do
not provide any particular details will be dismissed. CNNs allow the detection of
small and meaningful features in an otherwise large matrix.

The training of the convolutional layers is extensive, and computationally heavy
as it has to learn how to interpret the input data. When it comes to image analysis,
there are similarities between the data itself: for example, every RGB image is com-
posed of pixels with certain intensities. As such, it is a futile exercise to train every
network in how to detect image details such as colours, or image features such as
edges. Consequently, the only layers that need to be trained to fit our dataset are the
classification layers - the weighing of each node is adapted to the new, learned infor-
mation.This process is called transfer learning. In image analysis, this translates into

104 CHAPTER 7. MACHINE LEARNING

networks previously trained on image feature extraction with a large image dataset.
The two types of CNNs used in this project were VGG16 and ResNet18, which are

available MATLAB and pre-trained with the ImageNet [60] dataset.
VGG16 (Figure 7.8) [103] contains a total of 16 learning layers, out of which 13 are

convolutional (Figure 7.8 dark gray), and the remaining 3 are fully connected layers
(Figure 7.8, orange), which will feed the classification into the output.

The light gray dashed layers correspond to maxpooling layers, where the matrix
has a size reduction to half by choosing the maximum value of each four elements.
With the input image starting at 244×244, the final layers receive a 7× 7 input. These
are denominated fully connected as they receive information from all the nodes in
the previous layer and will associate the image features obtained to the intended
classification.

Not depicted are auxiliary layers to prevent overfitting.

Figure 7.8: Schematics of a VGG16 architecture. Red layers are input and out-
put, dark gray correspond to the 13 convolutional layers, dashed light gray
correspond to pooling layers, orange are the fully connected layers. Adapted
from [104].

The second network architecture used, ResNet18 [105], has a similar structure
to VGG16 but has two extra layers and allows residual information to inform latter
layers (Figure 7.9 blue). As such, small features (details that would be lost in the
downsizing of image matrices) are propagated to latter layers.

Figure 7.9: Schematics for the ResNet18 building block. Gray represents the
convolutional layers, while blue represents the points between which resid-
ual information is propagated forward.

The last fully connected layer specified the classes in which to label the images.
In both cases, the number was three: wild-type, shot3 and khc8.

In order to test the networks, an exploratory data analysis (EDA) was performed.
Images were tested before and after being processed through ilastik, the size of the

7.3. CLASSIFICATION RESULTS 105

blocks in which the image was split varied, and number of viable pixels. Further, the
percentage of training/validation sets was changed which could inform whether a
higher number of labelled data was needed.

MATLAB provides a user-interface to observe the training, where accuracy (the
percentage of correct classifications in the validation phase) and loss (function to be
minimised) are plotted per learning iteration. After going through all the epochs1,
the accuracy can be compared.

7.3 Classification Results

The tests were run during 30 epochs. Figure 7.10 shows an example of an interface
for the network training in MATLAB.

Figure 7.10: MATLAB user interface for network training, via Deep Learning
Toolbox. The top graph shows the accuracy per iteration, the lower graph
shows the loss per iteration. The right panel shows the evolution of results,
training cycle and CPU usage.

With these interfaces, it is possible to keep track of the training evolution. The
accuracy (Figure 7.10, top graph) and loss function (Figure 7.10, bottom graph) are
calculated for each iteration and, ideally, accuracy would be at a high percentage
while loss would be close to zero. In all the cases, loss was always around one and so
the depicted value is the accuracy.

Further, the interface presents a panel with extra information such as the training
cycle steps, CPU usage and time elapsed.

Table 7.2 shows the different combinations of dataset division, block size and how
many viable pixels are necessary to consider a block to be valid as described in Sec-
tion 7.2.1. The validation frequency is a parameter of the classification that performs

1Epochs are the number of times the algorithm goes through the entire training dataset, there are
several iterations per epoch.

106 CHAPTER 7. MACHINE LEARNING

validation after a number of iterations of training (in these cases, either 3 or 6).

Table 7.2: List of parameters explored and the average accuracy to two dec-
imal places. The dataset % corresponds to the split between training and
validation sets, block size applies when the images were individually split
into blocks before being classification. Validation was performed every 3 or
6 iterations (Validation frequency).

Network Dataset % Block Size Validation Freq Viable Pixels Accuracy %
VGG16 70/30 Full Image 6 N/A 13.4
VGG16 90/10 Full Image 6 N/A 14.1
VGG16 90/10 Full Image 3 N/A 16.8

ResNet18 70/30 Full Image 6 N/A 33.2
ResNet18 80/20 Full Image 6 N/A 39.9
ResNet18 90/10 Full Image 6 N/A 51.6
ResNet18 70/30 448x448 6 >30% 50.0
ResNet18 70/30 896x896 6 >30% 49.7
ResNet18 70/30 224x224 6 >30% 50.4
ResNet18 70/30 224x224 6 >10% 48.5
ResNet18 70/30 224x224 6 >100 35.5

The maximum value for the VGG16 classification accuracy was below 17%. Even
with a large training set and risking over-fitting, the values remained low. With the
introduction of ResNet, the value improved significantly, albeit not to a good classi-
fication standard (higher than 80%). Although there was a maximum of 67% when
the percentage of training data was 90 to 10, the average was still ≈50%.

In practice, the classification between the three genotypes had such a low accuracy
that no conclusions can be withdrawn.

As shown in Section 7.2.1, the images presented a number of image artefacts
through an incomplete clean-up in Ilastik. This could translate into consideration
of elements in the image that are not necessarily the neuron. Ideally, the classifier
would be trained in the relevant region - the neurons.

The reduction of the images from 1376x1083 to 224x224 pixels may cause a high
level of information loss due to the small details present in disorganisation areas.
Given the increase of accuracy in ResNet, where the propagation of small details
increases, it shows that the images might be too big for the classifier to properly
distinguish them.

Chapter 8

Conclusions, discussion and future

8.1 Main Outcomes

8.1.1 Aim of the Thesis

Understanding how axons are maintained is an important step towards mechanistic
insights into neuropathies [4]. One of the phenotypes present in such diseases is
axon swellings: while axonal microtubules are normally arranged in parallel, mostly
straight bundles, in the swellings they appear disorganised and forming loops. As
explained in Section 1.3, the Local Axon Homoeostasis hypothesis [11, 14] states that
microtubules would have an intrinsic tendency to get disorganised but are guided
into parallel bundles by outside forces and additional proteins. These gave rise to
the idea that the curling phenotypes could be quantitatively similar between mutant
conditions in proteins of different pathways.

The biological key question behind this project is to identify whether areas of dis-
organisation differ between different genetic conditions or are similar. In order to
lay the foundation to address this, the aim of the project was to (1) automate the im-
age processing and analysis pipeline and (2) retrieve two new parameters to describe
microtubules in image datasets: straightness of microtubule bundles/axons and cur-
vature of microtubules within areas of disorganisation.

The three phenotypes chosen to analyse belong to three different pathways: ki-
nesin (khc), a molecular motor transporting cargoes along microtubules; efa6, a factor
preventing microtubule polymerisation and shot, a protein that guides microtubules
parallel to the plasma membrane into bundles.

8.1.2 Image Processing and Analysis

There are a number of challenges when imaging of areas of microtubule disorgan-
isation: microtubule disorganisation can be easily identified using epifluorescence,
which is the most convenient, cheapest and quickest imaging method available in
the laboratory. However, microtubule bundles and other fine microtubule structures

107

108 CHAPTER 8. CONCLUSIONS, DISCUSSION AND FUTURE

cannot be resolved into individual microtubules, or resolved as such - a single mi-
crotubule is thinner than the resolution limit of visual light. At this point it is also
not clear if the observed structures in areas of disorganisation represent single mi-
crotubules or smaller subbundles of microtubules. This means that microtubules
would need to be imaged with super-resolution methods (e.g. gSTED) to resolve
ultrafine structures or ways would need to be found to get meaningful information
from sub-resolution epifluorescence images. As the majority of the available images
are epifluorescence images, the latter strategy was followed.

The first approach was to check whether the available software packaged at the
Bioimaging Facility, University of Manchester, or free versions online provided the
necessary functionality to retrieve the parameter we were most interested in - the
curvature of the curling microtubules. However, none of them had the tool or even
an algorithm available at the time - the development of a computational algorithm
from the theoretical designs of curvature retrieval was necessary.

Analysing images is the process of retrieving information from the intensity ma-
trices. Given the discrete nature of these, even the simple act of capturing an real
scene onto an image (with any camera, from microscopes to phones) forces continu-
ous, real values onto a grid.

From image to skeletonised shape

One way to accurately describe and retrieve the shape of such thin lines can be
through the retrieval of its skeleton, the pixel-wide centred contour of the lines. The
first part of the project was to transform the images from their RGB files into a binary
skeleton.

First, finding an appropriate filter was pivotal to enhance the tube-like features
(microtubule fluorescence images are projections of 3D ”tubes”) and depreciate the
background. Applying the function vesselness2D to the microtubule channel allowed
a better recognition of the lines, rather than directly applying a threshold to build the
binary mask.

While this method is effective, the experimental conditions are not ideal and there
could be gaps in the microtubules either as phenotype or because fixation did not
work. Some improvement can be achieved by adding a predictive method that eval-
uates the probability of a certain pixel belonging to a tube, if the neighbours have a
high certainty of being one.

From the enhanced image, a threshold is applied to retrieve the binary mask. At
this stage, the user chooses the pixel intensity above which will consider the relevant
parts of the image. This gives a choice to fine-tune both the virtualisation and mask
construction in order to optimise the skeleton retrieval. While the user has to have
some input on this stage, it would be ideal to find how to connect the threshold of
the mask to the values of the monoscale image provided by the vesselness function,

8.1. MAIN OUTCOMES 109

while still allowing the user to fine tune the parameters. This would provide a first
binary mask that conserves a certain percentage of pixels based on the distribution of
monoscale intensities. These would be good indicators as to whether the mask needs
to be more permissive (allow a higher percentage of values to be considered relevant)
or the virtualisation to be repeated with a different intensity.

The next step was finding an appropriate method to retrieve the skeleton from
the binary mask. It was important to keep certain conditions in mind: appropriate
shape recognition, maintenance of Euler number and time. The functions tested had
different algorithms and neighbouring considerations, which provided varying re-
sults. In the end, the function chosen was bwmorph as it was the quickest and took
the most conservative approach by considering more points and bridges between
parts of the image that separated by a couple of pixels in the binary mask. As men-
tioned above, the resolution cap will always create artefacts in the images - if the
skeleton can minimise those, it performs better in delicate and small structures like
microtubule disorganisation.

Skeletonisation is a method that can further be improved by applying learning
techniques: for example, by having a user manually trace the images and use them as
ground-truth for a skeleton-generating algorithm. This would be a time consuming
task for the initial annotation. However, having functions generating skeletons (e.g.
the ones mentioned in this project, bwskel and bwmorph), and the user then choosing
the correct solutions could potentially lower the number of annotations (choose the
closest skeleton instead of tracing the entire shape).

While the skeleton provides information on the shape, any intensity measurement
is lost. Ideally, this could be considered further down the pipeline. For example, by
tracking the intensity surrounding each skeleton pixel and analysing the distribution
along the entire shape. The intensity comparisons would bias the skeleton towards
the brighter pixels, which generally indicates a higher fluorescent signal - in this case,
it would correspond to the main axon rather than a secondary branch.

Path recognition

Intensity is the value that traditional path recognition techniques recognise as the
next possible point - by following to the closest neighbour with the highest intensity.
However, given its extensive 8-connectivity neighbour search, this method can be
very time consuming, especially with larger images, or with high levels of noise.
Furthermore, intensity methods do not take advantage of the skeleton, as they would
struggle with all pixels having either 1 or 0 intensity. These methods usually only
have one input, the start point, and require the user to continuously monitor whether
the path detection is correct.

Path recognition is important because generally we are only interested in a part of

110 CHAPTER 8. CONCLUSIONS, DISCUSSION AND FUTURE

the skeleton, in this case for two types of regions: axons and microtubule disorgani-
sation.

This translates into the region of interest (for disorganisation) or the path (one
single connected row) being all the pixels of interest between two end points. While
there is a need for an extra initial input by the user, having the end point also allows
different ways of searching. A quick mathematical way is by using graphs - where
nodes are connected by edges, and a path is the connected nodes between the two
ends. Each node in a graph is saved with its neighbours, which computationally
translates into only searching the relevant points, reducing the search space.

There are functions to transform binary images into graphs: each pixel with value
1 will be considered a node, and will have edges to their 8-connectivity node neigh-
bours. However, edges provide a weight to the path (i.e. the path is the shortest
sum of weights between two points). If the edge construction had also intensity as a
consideration, perhaps the path finding would be more accurate.

For the axon recognition, even in the presence of disorganisation regions, the path
chosen is the shortest possible, crossing through the region, as this was the method-
ology used for the ImageJ analysis. For microtubule disorganisation recognition, all
points connected between the two ends are considered of interest. This, however,
causes higher discrepancies with manually picked paths, as every intricacy of the
path and disorganisation is considered and not approximated. In reality, this trans-
lates into a more accurate description of the pixels in the image.

While these algorithms work for perfectly connected networks (i.e. each node
has at least one path to any other node), the biological images will present several
artefacts: gaps, other branches connecting the ends of the axon that are not part of
the core axonal structure.

In the case of a gap that prevents the network from being fully connected, there
are two strategies: either the user adds a line to complete the path, or selects one of
the nodes surrounding the gap. Furthermore, the search for the closest node to the
current recognised path could be automated if not for the edge case images where the
closest connected point is still in the wrong path - which would need further input
and corrections from the user. Finally, for axon recognition, if there is more than one
possible path between the two ends, and the shortest one is not the correct, the user
can add as many points as necessary to make sure the path is corrected.

If there were no time constraints on the method, there could be a radial search
until it found the other end point to automatically cross the gap. However, for larger
images this would mean a higher computational toll.

For microtubule disorganisation recognition, there are extra user inputs that can
be added to remove unwanted branches from the region (such as small protrusions).

8.1. MAIN OUTCOMES 111

Analysis

Two important measurements can be retrieved just with the path recognition: axonal
length (number of graph nodes, i.e. pixels, between cell body and the axon terminal),
and disorganisation area (area enclosed by the other line of the region). However, the
geometric description of the shapes is necessary, so straightness ratio and curvature
require extra calculations.

The general method for straight segment calculation is based on the distances be-
tween the user clicks. By removing these, it is necessary to retrieve the geometrical
description of the shape with other methods. The most widely used method is a
Hough Transform, where the coordinates are parametrised according to the geomet-
rical shape that one wants to retrieve. In this case, the shape is a simple straight line.
The advantage is reducing any possible search into just one operation: the transfor-
mation into the parameter space. This reduces the time and computational resources
needed, as well as providing an accurate description of the image. The Hough Trans-
form method was applied recursively to the path: the algorithm will search the path
until it finds the maximum number of peaks, or until the path has been saturated.
While in theory it should work, the transform is heavily influenced by the angle in
which the line is presented.

Having the straight line rotated in different angles will produce different results
(Figure 4.10c). For example, diagonal lines in a binary matrix correspond to small
straight ladders, rather than one long segment. This will produce a high number of
small straight segments, rather than just a long one. The optimum result could be
obtained if each skeleton is rotated 90◦and the transform calculated for each rotation.
However, this would be very time consuming, and performance heavy as it would
require an increasingly larger amount of calculations.

Furthermore, the number of peaks in the Hough Transform space (i.e. the number
of the highest frequency of pixels in the straight lines considered) is decided a priori,
and as of the current version, the user can not change it. One way of having an
adaptive number of peaks is by taking the number of straight segments and their
length into account, as the calculations are happening. If all the straight segments
found are roughly the same size, then potentially there are going to be more straight
segments of that size in the image, so there is a need for a larger number of peaks. On
the other hand, if the first segments are much larger than the last ones, then the search
would stop. While it would improve the performance in most cases, large images
with small segments would have a much longer search. This method provides a good
comparison method between different phenotypes, but needs extra adjustments to
accurately describe the straightness of real images.

The final calculated value is the curvature. The theoretical retrieval of curvature
from images has been discussed for decades, but the implementations appear to suf-
fer with the nature of the images themselves (discrete matrices). The most common

112 CHAPTER 8. CONCLUSIONS, DISCUSSION AND FUTURE

approaches involve the calculation of the curvature via the pixels themselves. How-
ever, given the resolution problems mentioned, these are not reliable methods. Fit-
ting functions to the lines is less resolution dependent. There are several approaches.
Fitting a function to the entire shape (whether it is polynomial function or Fourier
transform), but these only provide a general curvature value per image. Further-
more, polynomials would have to be of higher degree (20+), which would introduce
artefactual oscillations to the function. Using a Gaussian filter with a Gaussian win-
dow can provide a good fit with individual curvature values for each point in the line.
However, there is the added caveat that the window size would be fixed per image:
the correct window size, that captures the intricate details in one image, might calcu-
late only a blur on the next. Finally, the method that seemed the most appropriate, is
the Smoothing Spline fitting.

Using the disorganisation region selection, all cross points are removed (to avoid
false curvatures), the resulting segments are split into the same-size splines and to
each, a polynomial of third degree is applied.

In the synthetic images, chosen for their analytical curvature calculations (loga-
rithmic spiral, where the curvature is proportional to the radius, and an ellipse, with
a periodic curvature), the values obtained with the splines method are the closest
approximation to the expected values from all the testing. Interestingly, a similar
method has been recently developed [106] by applying a different type of function
(Bezier curves, where a curve is defined by the end points and auxiliary points that
act as magnets to the line, attracting the curve in their direction) to the segments.

8.1.3 ALFRED

While all the algorithms by themselves have been developed and tested, the entire
pipeline is bundled in a MATLAB software package, ALFRED.

Every window was carefully chosen and tailored, with constant feedback from
the user side. The presence of three different levels of windows correspond to the
different levels of the image: full set of images, individual image and region of inter-
est. The type of analysis performed in each window is also applicable to that level:
all images are loaded in the first window, the whole image is processed in the sec-
ond window (and the process is replicated in all images), each individual region is
treated separately for its path recognition. Furthermore, if one of the panels malfunc-
tions, the program continues to run and no progress is lost. This guarantees a visible
consecutive flow, as well as robustness to unpredictable errors.

The order in which the buttons become available to the user corresponds to the
functional pipeline: no button becomes available before it can be used (for example, a
binary mask can not be obtained from the full RGB image). This is another robustness
measure, as it prevents the program from crashing due to unexpected interactions.
Furthermore, it helps the user with the flow of the analysis itself, preventing any step

8.1. MAIN OUTCOMES 113

being forgotten.

When analysing the regions individually, while the user sees the skeleton on the
gray-scale image, all the calculations are happening on a graph level. Whenever
the user clicks on the image, the program finds the closest possible node to the click
(using Euclidean distance). Each of the mentioned alterations to the above algorithms
(i.e. any user interaction or input such as extra clicks) are seamlessly in the software
- the user only has to work with the interface.

The underlying mathematical principles could be implemented in different pro-
gramming languages, but the calculations and flow are unique to ALFRED. Further-
more, certain parameters, such as the automated Microtubule Disorganisation Index
calculation, are a characteristic of the software. Extra features are implemented as
a consequence: by verifying first bounding box overlap, and then the actual skele-
ton overlap, the software guarantees that for each axon it finds all of the selected
disorganisation regions, without any further input from the user. This allows the cal-
culations to be automated, and the user receives the values at the end, without any
manual gathering of data as is done currently (the index is calculated by organising
the results manually).

The program was built to be used by anyone without programming experience.
Furthermore, all algorithms will be published, and the code is freely available on
Github [98] - this allows users from other languages to implement the algorithms in
their respective platforms, and contributes to open source science. Finally, there will
be a full user-manual available, explaining in detail how to use the program, and
what each individual function does.

The software is, however, highly specific to the data gathered in the group. As
the interface was optimised for the pipeline, it does not provide different features,
such as localisation of parts of the image in sequences of images (i.e., tracking of
cells per time frame), or intensity distributions. Furthermore, as it was developed
in MATLAB, it is licensed and therefore not freely available to anyone. While the
methods are modular, the implementation might not be trivial to non-programming
users. Ideally, the algorithms in ALFRED should be adapted into plug-ins for more
complex image analysis software (FIJI, or in Python, Napari [107]), using open-access
languages and becoming available to a wider community.

8.1.4 Biological Interpretations from ALFRED

After the pipeline being built and the usability and results tested, the next key ques-
tion can be addressed: are the disorganisation phenotypes quantitatively similar?

Before any considerations for curvature and straightness, it is important to con-
firm that the values obtained by ALFRED correspond appropriately to the manual
analysis in length and disorganisation area. These values, however, could never be

114 CHAPTER 8. CONCLUSIONS, DISCUSSION AND FUTURE

the same, as the path recognised in ALFRED follow the axons more closely, espe-
cially in curved regions, than manual analysis with segmented lines can. Disorgan-
isation carries another caveat: the extra curves will provide extra areas to the total
(i.e. squared pixels), which will further enhance the differences.

To infer the similarities with the original ImageJ-obtained data, it is necessary to
perform non-parametric statistical tests (as the distributions are independent). The
main comparison value is going to be the probability that any difference between
the two datasets is random, rather than systematic - p-value. The results are encour-
aging: in both length and disorganisation area, the p-value obtained by comparing
the values of each dataset (ALFRED vs Manual) is above the threshold of 5% (value
above which it is determined as random) for every genotype comparison.

Furthermore, even with ALFRED axonal length and disorganisation area values
higher than the manual counterpart, the ALFRED-calculated value of the micro-
tubule disorganisation index is not significantly different from the ImageJ-derived
one. These phenotypes have been extensively studied and help understand the con-
sequences of the different mutations in the Drosophila neurons.

Further analysis is needed, as length and area are not indication of the geometrical
characteristics of the disorganisation itself.

Curvature can be used as the geometrical description of looped shapes, such as
the ones present in disorganisation.

Given the nature of the spline method (each part of the skeleton was divided
into same several smaller splines), the number of curvature points calculated was
in the millions. As such, the time it takes to run is less than ideal - which could be
improved with parallel processing by calculating several curvatures at the same time.
Without knowing the actual measurements, the curvature values obtained are purely
comparative between phenotypes within the same experiment. Manual acquisition
of the radius in the image would also not provide an accurate comparison, as these
are subjective: the circles that a human eye can see are not necessarily present as the
images are 2D projections of 3D structures - the line continuation information is lost.
On the other hand, the ALFRED calculations are generated per spline and would, at
best, provide a range of values for the entire image.

Furthermore, there is always going to be noise in the curvature distribution as a
lot of the smaller segments appear straight (curvature value of 0).

Another phenotype geometrical characterisation is by evaluating the axonal
straightness, as the length does not provide the full picture as to how the axons have
grown. For example, neurons under higher levels of tension would have straighter
axons.

The straightness ratio calculations had results above 1, which would indicate that
the sum of the segments is larger than the total length of the axon. There are differ-
ent possible motives. Assuming the Hough Transform worked perfectly, the length

8.1. MAIN OUTCOMES 115

calculation might have been done erroneously due to the conversions from images
to graphs, as the transforms are performed in the binary mask, while the length is
calculated with the graph.

On the other hand, if the length calculation is correct (which is probable, given the
similarity of the results with the ImageJ-derived analysis), then there might be some
error with the Hough Transform conversions, such as approximation of straight seg-
ments (to be lenient to small angle changes) influencing the values, or the the recur-
sive algorithm not stopping at the correct number of peaks. To pin point the error,
several runs would be necessary with the same image but, for example, rotated. If the
values vary with the rotation, it is likely a Hough Transform problem, as mentioned
above.

Not withstanding, using the two different methods of measuring geometry the
results appear to be that shot3 has a slightly different geometry to both khc27/27 and
efa6ko: the average curvature appears to be lower (with the distribution more isolated
in Figure 6.9c, corresponding to larger loops in the disorganisation). Furthermore,
regarding the axonal length and straightness, shot3 has also a lower distribution of
values (the axon itself appears to be straighter).

The results are still consistent with the Local Axon Homoeostasis hypothesis. The
wild-type results are generally different in disorganisation regions, being present in
a much lower number of times (half or even a third of occurrences of the other phe-
notypes) and, when present, the curvature is higher - corresponding to lower radius
and, consequently, smaller loops. Given how different the pathways of khc and efa6
are, a similar geometry indicates that the curling of the microtubules is likely the
same in both disorganisations. Furthermore, the small yet present variation with the
shot phenotype could indicate the presence of another element at play that further
influences the disorganisation of microtubules, even if just as a consequence of the
mutation to shot, a guidance protein. However, this variation is far too small to draw
any further conclusions.

The small differences observed need to be further explored, with more data. Other
pathways have to be tested (mutations in other auxiliary proteins such as tau, or
XMAP215/Msps), or even within different mutations of the same gene (comparison
of phenotypes between different kinesin mutations).

Furthermore, the quantitative values could inform a mathematical model of ax-
onal disorganisation. With this, parameters of biological experiments can be scru-
tinised in different ways, or even include the testing of parameters that would be
otherwise impossible to study. In addition, simulations in silico can make predictions
about the most relevant parameters to be regarded in the experiments. An accu-
rate computational model of microtubules present in an axonal environment can also
simulate physiological conditions for longer periods of time, to study the normal de-
caying of microtubules over the lifetime of the organisms. A symbiotic relationship

116 CHAPTER 8. CONCLUSIONS, DISCUSSION AND FUTURE

of simulated data and biological results can further inform the hypotheses, and focus
the experimental time in parameters that are of interest.

8.1.5 Machine Learning

Regarding the machine learning applications, there were two main goals: Automated
region selection and classification of phenotypes to compare between mutations in
shot and khc. Furthermore, if any of these applications were successful, they were to
be implemented into ALFRED.

The biggest setback for this project was the insufficient available data. While there
are thousands of images from all different experiments, the conditions in which these
were done are different: from genotypes used, to environmental conditions and days
in vitro. As such, the hundreds of images produced in one experiment and its repeat
(i.e. experiments with the same conditions, performed at different times) are not
sufficient to accurately trained models. Data augmentation can increase the number
of input images, but might not be diverse enough to create an appropriate training
and validation dataset. The experimental setting chosen, with shot and khc, allow
the study of the two different pathways and has been performed more than once,
increasing the data available.

Segmentation was partially successful - while there are a group of images that
have been segmented correctly, a large majority still contained debris from other cells,
or neurons that are not of interest. This remains a challenge in computer vision: how
to ignore parts of the image that fit and correlate to the characteristics that define
the regions of interest, albeit are subjectively not relevant - i.e. a human can decide
which detected neuron is of interest, and which is to discard, while the program only
detects two neurons. A negative training set could be introduced by eliminating cells
that have only axon but lack cell body, or round- or oval-shaped cells. With ilastik,
this can be implemented with the Object Classification workflow [108], which builds
on the pixel classification.

The classification step, however, was not successful. The CNNs did not work: the
images either are reduced from 1376x1083 to 224x224 and lose details that are needed,
or are divided into blocks and do not represent correctly the neurons. As ResNet18
provided better results, perhaps a pre-trained network with a higher number of hid-
den layers (such as ResNet50) could be better, as this would increase the weights and
consequently the details considered on the decision.

All the methods tried were supervised. A different approach, with an unsuper-
vised method might also be a consideration: trying to cluster the images into differ-
ent classes, without any a priori information, and analysing whether these clusters
correspond to individual genotypes. However, images are large and have a high di-
mensionality for such little number of classes - the clustering would likely not be able
to distinguish between the phenotypes.

8.1. MAIN OUTCOMES 117

The next step would be to train the classification layers only on the regions se-
lected by ALFRED. This way, the user has already annotated what smaller parts of
the image are of interest for each genotype, and the dimensionality problems are re-
duced. Furthermore, the clustering approach mentioned in the previous paragraph
could also be applied to this new dataset.

As the classification step was not successful, no biological conclusions could be
retrieved from the machine learning analysis.

8.1.6 Final Remarks

The overall goal of the thesis was to speed up and find a way to require fewer user
inputs to the current analysis of the fluorescence images produced by my host group.
In addition, the goal was also to find a way to measure two new parameters, axon
straightness and curvature of microtubules in areas of disorganisation.

ALFRED provides a robust, reproducible, user-friendly, accurate pipeline to anal-
yse phenotypes in a timely manner, with the new geometrical characteristics being
retrieved. The analysis performed has less user input and provides results in accor-
dance to the ImageJ-derived values obtained thus far. Furthermore, the geometrical
results show similarities between efa6 and khc, with small differences to shot. This
might be a step towards obtaining quantitative evidence to sustain the Local Axon
Homoeostasis hypothesis. The software is ready to be used to further analyse other
genotypes or experimental conditions, for users with access to MATLAB.

The next step in the development of the software includes adding support for
time series, to analyse live imaging and further understand the mechanisms of axonal
swelling over time; data visualisation at the end, not just calculation and saving into
a file, to allow the user to see the data in real time and adjust the calculations if needer
and loading of previously saved analysis and processing.

As for the machine learning methods, as more data is generated, the datasets
might approach a size that would be auspicious for classification. The most advan-
tageous solution for a short term approach would be to save the regions selected by
ALFRED and use these as the input for the learning methods. Furthermore, the next
step is in finding the appropriate segmentation method that will distinguish the dif-
ferent parts within a neuron: cell body, axon and microtubule disorganisation. This
way, the classification could be more specific to the objects, rather than the full im-
ages.

Bibliography

1. Prokop, A. Cytoskeletal organization of axons in vertebrates and invertebrates.
Journal of Cell Biology 219. e201912081. ISSN: 0021-9525. https://doi.org/
10.1083/jcb.201912081 (May 2020).

2. Marner, L., Nyengaard, J. R., Tang, Y. & Pakkenberg, B. Marked loss of myeli-
nated nerve fibers in the human brain with age. Journal of Comparative Neurol-
ogy 462, 144–152. https://onlinelibrary.wiley.com/doi/abs/10.
1002/cne.10714 (2003).

3. Adalbert, R. & Coleman, M. P. Review: Axon pathology in age-related neu-
rodegenerative disorders. Neuropathol Appl Neurobiol 39, 90–108. ISSN: 1365-
2990 (Electronic) 0305-1846 (Linking). https://www.ncbi.nlm.nih.gov/
pubmed/23046254 (2013).

4. Prokop, A. A common theme for axonopathies? The dependency cycle of local
axon homeostasis. Cytoskeleton 78, 52–63. eprint: https://onlinelibrary.
wiley.com/doi/pdf/10.1002/cm.21657. https://onlinelibrary.
wiley.com/doi/abs/10.1002/cm.21657 (2021).

5. Bradke, F., Fawcett, J. W. & Spira, M. E. Assembly of a new growth cone after
axotomy: the precursor to axon regeneration. Nat Rev Neurosci 13, 183–93. ISSN:
1471-003x (2012).

6. Curcio, M. & Bradke, F. Axon Regeneration in the Central Nervous System:
Facing the Challenges from the Inside. Annu Rev Cell Dev Biol 34, 495–521. ISSN:
1081-0706 (2018).

7. Pisciotta, C. & Shy, M. E. Neuropathy. Handb Clin Neurol 148, 653–665. ISSN:
0072-9752 (Print) 0072-9752 (2018).

8. Kevenaar, J. T. & Hoogenraad, C. C. The axonal cytoskeleton: from organi-
zation to function. Front Mol Neurosci 8, 44. ISSN: 1662-5099 (Print) 1662-5099
(Linking). https://www.ncbi.nlm.nih.gov/pubmed/26321907 (2015).

9. Conde, C. & Caceres, A. Microtubule assembly, organization and dynamics
in axons and dendrites. Nat Rev Neurosci 10, 319–32. ISSN: 1471-0048 (Elec-
tronic) 1471-003X (Linking). https://www.ncbi.nlm.nih.gov/pubmed/
19377501 (2009).

118

BIBLIOGRAPHY 119

10. Akhmanova, A. & Steinmetz, M. O. Tracking the ends: a dynamic protein net-
work controls the fate of microtubule tips. Nature Reviews Molecular Cell Biology
9, 309–322. ISSN: 1471-0080. https://doi.org/10.1038/nrm2369 (2008).

11. Hahn, I., Voelzmann, A., Liew, Y.-T., Costa-Gomes, B. & Prokop, A. The model
of local axon homeostasis - explaining the role and regulation of microtubule
bundles in axon maintenance and pathology. Neural Development 14, 11. ISSN:
1749-8104. https://doi.org/10.1186/s13064-019-0134-0 (2019).

12. Mitchison, T. & Kirschner, M. Dynamic instability of microtubule growth. Na-
ture 312, 237–42. ISSN: 0028-0836 (Print) 0028-0836 (Linking). http://www.
ncbi.nlm.nih.gov/pubmed/6504138 (1984).

13. Matamoros, A. J. & Baas, P. W. Microtubules in health and degenerative dis-
ease of the nervous system. Brain Res Bull 126, 217–225. ISSN: 1873-2747 (Elec-
tronic) 0361-9230 (Linking). https://www.ncbi.nlm.nih.gov/pubmed/
27365230 (2016).

14. Voelzmann, A., Hahn, I., Pearce, S. P., Sanchez-Soriano, N. & Prokop, A. A
conceptual view at microtubule plus end dynamics in neuronal axons. Brain
Res Bull 126, 226–237. ISSN: 1873-2747 (Electronic) 0361-9230 (Linking). https:
//www.ncbi.nlm.nih.gov/pubmed/27530065 (2016).

15. Prokop, A. The intricate relationship between microtubules and their associ-
ated motor proteins during axon growth and maintenance. Neural Dev 8, 17.
ISSN: 1749-8104 (Electronic) 1749-8104 (Linking). http://www.ncbi.nlm.
nih.gov/pubmed/24010872https://www.ncbi.nlm.nih.gov/pmc/

articles/PMC3846809/pdf/1749-8104-8-17.pdf (2013).

16. Datar, A. et al. The Roles of Microtubules and Membrane Tension in Axonal
Beading, Retraction, and Atrophy. Biophysical Journal 117, 880–891. ISSN: 0006-
3495. https://doi.org/10.1016/j.bpj.2019.07.046 (2019).

17. Hellal, F. et al. Microtubule stabilization reduces scarring and causes axon re-
generation after spinal cord injury. Science 331, 928–31. ISSN: 1095-9203 (Elec-
tronic) 0036-8075 (Linking). http://www.ncbi.nlm.nih.gov/pubmed/
21273450 (2011).

18. Ruschel, J. et al. Axonal regeneration. Systemic administration of epothilone B
promotes axon regeneration after spinal cord injury. Science 348, 347–52. ISSN:
1095-9203 (Electronic) 0036-8075 (Linking). http://www.ncbi.nlm.nih.
gov/pubmed/25765066 (2015).

19. Lu, W., Lakonishok, M. & Gelfand, V. I. Kinesin-1-powered microtubule slid-
ing initiates axonal regeneration in Drosophila cultured neurons. Mol Biol Cell
26, 1296–307. ISSN: 1939-4586 (Electronic) 1059-1524 (Linking). http://www.
ncbi.nlm.nih.gov/pubmed/25657321 (2015).

120 BIBLIOGRAPHY

20. Bernier, G. & Kothary, R. Prenatal onset of Axonopathy in Dystonia musculo-
rum mice. Developmental Genetics 22, 160–168 (1998).

21. Hurd, D. D. & Saxton, W. M. Kinesin mutations cause motor neuron disease
phenotypes by disrupting fast axonal transport in Drosophila. Genetics 144,
1075–85. ISSN: 0016-6731 (1996).

22. Tarrade, A. et al. A mutation of spastin is responsible for swellings and impair-
ment of transport in a region of axon characterized by changes in microtubule
composition. Hum Mol Genet 15, 3544–58. ISSN: 0964-6906 (2006).

23. Liu, L., Tuzel, E. & Ross, J. L. Loop formation of microtubules during glid-
ing at high density. J Phys Condens Matter 23, 374104. ISSN: 1361-648X (Elec-
tronic) 0953-8984 (Linking). https://www.ncbi.nlm.nih.gov/pubmed/
21862840 (2011).

24. Gupta, K. K., Alberico, E. O., Nathke, I. S. & Goodson, H. V. Promoting mi-
crotubule assembly: A hypothesis for the functional significance of the +TIP
network. Bioessays 36, 818–26. ISSN: 1521-1878 (Electronic) 0265-9247 (Linking).
https://www.ncbi.nlm.nih.gov/pubmed/24943963 (2014).

25. Hahn, I. et al. Tau, XMAP215/Msps and Eb1 co-operate interdependently to
regulate microtubule polymerisation and bundle formation in axons. bioRxiv
(2021).

26. Alves-Silva, J. et al. Spectraplakins promote microtubule-mediated axonal
growth by functioning as structural microtubule-associated proteins and EB1-
dependent +TIPs (tip interacting proteins). J Neurosci 32, 9143–58. ISSN: 1529-
2401 (Electronic) 0270-6474 (Linking). https://www.ncbi.nlm.nih.gov/
pubmed/22764224 (2012).

27. Voelzmann, A. et al. Drosophila Short stop as a paradigm for the role and reg-
ulation of spectraplakins. Seminars in Cell and Developmental Biology 69. Spec-
traplakins, versatile roles in physiology and pathology Protocadherins and
other atypical cadherins, 40–57. ISSN: 1084-9521 (2017).

28. Qu, Y., Hahn, I., Webb, S., Pearce, S. P. & Prokop, A. Periodic actin structures
in neuronal axons are required to maintain microtubules. Mol Biol Cell. ISSN:
1939-4586 (Electronic) 1059-1524 (Linking). http://www.ncbi.nlm.nih.
gov/pubmed/27881663 (2016).

29. McNally, F. J. & Roll-Mecak, A. Microtubule-severing enzymes: From cellular
functions to molecular mechanism. Journal of Cell Biology 217, 4057–4069. ISSN:
0021-9525. https://doi.org/10.1083/jcb.201612104 (Oct. 2018).

BIBLIOGRAPHY 121

30. Brouhard, G. J. & Rice, L. M. The contribution of alphabeta-tubulin curvature to
microtubule dynamics. J Cell Biol 207, 323–34. ISSN: 1540-8140 (Electronic) 0021-
9525 (Linking). http://www.ncbi.nlm.nih.gov/pubmed/25385183
(2014).

31. Akhmanova, A. & Steinmetz, M. O. Control of microtubule organization and
dynamics: two ends in the limelight. Nat Rev Mol Cell Biol 16, 711–26. ISSN:
1471-0080 (Electronic) 1471-0072 (Linking). https://www.ncbi.nlm.nih.
gov/pubmed/26562752 (2015).

32. Brady, S. T. & Siegel, G. J. Basic Neurochemistry Principles of Molecular,
Cellular and Medical Neurobiology Eighth Edition. <GotoISI> ://WOS:
000320652300002 (2012).

33. Kawaguchi, K. Role of kinesin-1 in the pathogenesis of SPG10, a rare form of
hereditary spastic paraplegia. Neuroscientist 19, 336–44. ISSN: 1089-4098 (Elec-
tronic) 1073-8584 (Linking). http://www.ncbi.nlm.nih.gov/pubmed/
22785106 (2013).

34. Crimella, C. et al. Mutations in the motor and stalk domains of KIF5A in spastic
paraplegia type 10 and in axonal Charcot-Marie-Tooth type 2. Clin Genet 82,
157–64. ISSN: 1399-0004 (Electronic) 0009-9163 (Linking). http://www.ncbi.
nlm.nih.gov/pubmed/21623771 (2012).

35. Ahmad, F. J. et al. Effects of dynactin disruption and dynein depletion on ax-
onal microtubules. Traffic 7, 524–37. ISSN: 1398-9219 (Print) 1398-9219 (Linking).
http://www.ncbi.nlm.nih.gov/pubmed/16643276 (2006).

36. Ferreira, A., Niclas, J., Vale, R. D., Banker, G. & Kosik, K. S. Suppression of
kinesin expression in cultured hippocampal neurons using antisense oligonu-
cleotides. J Cell Biol 117, 595–606. ISSN: 0021-9525 (Print) 0021-9525 (Linking).
http://www.ncbi.nlm.nih.gov/pubmed/1533397 (1992).

37. Roote, J. & Prokop, A. How to design a genetic mating scheme: a basic training
package for Drosophila genetics. G3 (Bethesda) 3, 353–8. ISSN: 2160-1836 (Elec-
tronic) 2160-1836 (Linking). http://www.ncbi.nlm.nih.gov/pubmed/
23390611 (2013).

38. Prokop, A. Fruit Flies in Biological Research. English. Biological Sciences Review
28, 10–14. ISSN: 0953-5365 (Apr. 2016).

39. Prokop, A. Why funding fruit fly research is essential for the biomedical
sciences. https://www.openaccessgovernment.org/fruit- fly-
research/52396/ (2018).

122 BIBLIOGRAPHY

40. Sanchez-Soriano, N., Tear, G., Whitington, P. & Prokop, A. Drosophila as a ge-
netic and cellular model for studies on axonal growth. Neural Dev 2, 9. ISSN:
1749-8104 (Electronic) 1749-8104 (Linking). http://www.ncbi.nlm.nih.
gov/pubmed/17475018 (2007).

41. Pandey, U. B. & Nichols, C. D. Human disease models in Drosophila melanogaster
and the role of the fly in therapeutic drug discovery. Pharmacol Rev 63, 411–36.
ISSN: 1521-0081 (Electronic) 0031-6997 (Linking). http://www.ncbi.nlm.
nih.gov/pubmed/21415126 (2011).

42. Reiter, L. T., Potocki, L., Chien, S., Gribskov, M. & Bier, E. A systematic anal-
ysis of human disease-associated gene sequences in Drosophila melanogaster.
Genome Res 11, 1114–25. ISSN: 1088-9051 (Print) 1088-9051 (Linking). http:
//www.ncbi.nlm.nih.gov/pubmed/11381037 (2001).

43. Debanne, D., Campanac, E., Bialowas, A., Carlier, E. & Alcaraz, G. Axon physi-
ology. Physiol Rev 91, 555–602. ISSN: 1522-1210 (Electronic) 0031-9333 (Linking).
https://www.ncbi.nlm.nih.gov/pubmed/21527732 (2011).

44. Gu, C. Rapid and Reversible Development of Axonal Varicosities: A New Form
of Neural Plasticity. Frontiers in Molecular Neuroscience 14, 1. ISSN: 1662-5099.
https://www.frontiersin.org/article/10.3389/fnmol.2021.

610857 (2021).

45. Beaven, R. et al. Drosophila CLIP-190 and mammalian CLIP-170 display re-
duced microtubule plus end association in the nervous system. Mol Biol Cell
26, 1491–508. ISSN: 1939-4586 (Electronic) 1059-1524 (Linking). http://www.
ncbi.nlm.nih.gov/pubmed/25694447 (2015).

46. Sanchez-Soriano, N. et al. Mouse ACF7 and drosophila short stop modulate
filopodia formation and microtubule organisation during neuronal growth. J
Cell Sci 122, 2534–42. ISSN: 0021-9533 (Print) 0021-9533 (Linking). http://
www.ncbi.nlm.nih.gov/pubmed/19571116 (2009).

47. Schindelin, J., Arganda-Carreras, I. & Frise, E. e. a. Fiji: an open-source platform
for biological-image analysis. Nature Methods 9 (2012).

48. Software, G. version 9.0.0 for Windows www.graphpad.com.

49. Bitplane. Imaris for Neuroscientists https://imaris.oxinst.com/products/
imaris-for-neuroscientists.

50. McQuin, C. et al. CellProfiler 3.0: Next-generation image processing for biology.
PLOS Biology 16, 1–17 (July 2018).

51. Usov, I. & Mezzenga, R. FiberApp: An Open-Source Software for Tracking
and Analyzing Polymers, Filaments, Biomacromolecules, and Fibrous Objects.
Macromolecules 48, 1269–1280 (2015).

BIBLIOGRAPHY 123

52. Meijering, E. et al. Design and validation of a tool for neurite tracing and analy-
sis in fluorescence microscopy images. Cytometry A 58, 167–76. ISSN: 1552-4922
(Print) 1552-4922 (Linking). https://www.ncbi.nlm.nih.gov/pubmed/
15057970 (2004).

53. Mathworks. MATLAB GUIDE Web Page. 2015. https://uk.mathworks.
com/discovery/matlab-gui.html.

54. Mathworks. tic Web Page. 2006. https://uk.mathworks.com/help/
matlab/ref/tic.html.

55. Mathworks. toc Web Page. 2006. https://uk.mathworks.com/help/
matlab/ref/toc.html.

56. Linkert, M. et al. Metadata matters: access to image data in the real world. Jour-
nal of Cell Biology 189, 777–782. ISSN: 0021-9525. <GotoISI>://000278177500003
(2010).

57. Eddins, S. Image Graphs https://www.mathworks.com/matlabcentral/
fileexchange/53614-image-graphs.

58. Jerman, T., Pernus, F., Likar, B. & Spiclin, Z. Beyond Frangi: an improved mul-
tiscale vesselness filter. Medical Imaging 2015: Image Processing 9413. ISSN: 0277-
786X. <GotoISI>://000355653800079 (2015).

59. Mathworks. Deep Learning Toolbox Web Page. 2018. https://uk.mathworks.
com/help/deeplearning/.

60. Deng, J. et al. ImageNet: A Large-Scale Hierarchical Image Database in CVPR09
(2009).

61. Berg, S. et al. ilastik: interactive machine learning for (bio)image analysis. Na-
ture Methods. ISSN: 1548-7105. https://doi.org/10.1038/s41592-019-
0582-9 (Sept. 2019).

62. Ilastik. Ilastik Pixel Classification Documentation https://www.ilastik.

org/documentation/pixelclassification/pixelclassification.

63. Haubold, C. et al. Segmenting and Tracking Multiple Dividing Targets Using
ilastik. Adv Anat Embryol Cell Biol. (2016).

64. Prokop, A., Kuppers-Munther, B. & Sanchez-Soriano, N. Using Primary Neuron
Cultures of Drosophila to Analyze Neuronal Circuit Formation and Function ().

65. Saxton, W., Hicks, J., Goldstein, L. & Raff, E. Kinesin heavy chain is essential
for viability and neuromuscular functions in Drosophila, but mutants show no
defects in mitosis. Cell 64, P1093–1102 (1991).

66. Brendza, K., Rose, D., Gilbert, S. & Saxton, W. Lethal Kinesin Mutations Re-
veal Amino Acids Important for ATPase Activation and Structural Coupling.
Journal of Biological Chemistry 274, 31506–31514 (1999).

124 BIBLIOGRAPHY

67. Nguyen, M., Stone, M. & Rolls, M. Microtubules are organized independently
of the centrosome in Drosophila neurons. Neural Development 6 (2011).

68. Kolodziej, P., Jan, L. & Jan, Y. Mutations That Affect the Length, Fasciculation,
or Ventral Orientation of Specific Sensory Axons in the Drosophila Embryo.
Neuron 15, 273–286 (1995).

69. Kuppers-Munther, B. et al. A new culturing strategy optimises Drosophila pri-
mary cell cultures for structural and functional analyses. Developmental Biol-
ogy 269, 459–478. ISSN: 0012-1606. https://www.sciencedirect.com/
science/article/pii/S0012160604000892 (2004).

70. Zhang, Y., Tsinghua University, P. & DeGruyter. Image Engineering (2017).

71. Mendonca, A. M. & Campilho, A. Segmentation of retinal blood vessels by
combining the detection of centerlines and morphological reconstruction. IEEE
Trans Med Imaging 25, 1200–13. ISSN: 0278-0062 (Print) 0278-0062 (Linking).
https://www.ncbi.nlm.nih.gov/pubmed/16967805 (2006).

72. Grel, C., Gol Mohammedzadeh, H. & Erden, A. Rose Stem Branch Point Detec-
tion And Cutting Point Location For Rose Harvesting Robot (July 2016).

73. Jiang, W. et al. A feature based method for trajectory dataset segmentation and
profiling. World Wide Web 20, 5–22. ISSN: 1573-1413. https://doi.org/10.
1007/s11280-016-0396-y (2017).

74. Jerman, T., Pernu, F., Likar, B. & piclin, i. Beyond Frangi: an improved multiscale
vesselness filter in. 9413 (), 94132A–94132A–11. http://dx.doi.org/10.
1117/12.2081147.

75. Tabachnick, B. G. & Fidell, L. S. Using multivariate statistics (2018).

76. Frangi, A. F., Niessen, W. J. & Viergever, M. A. Three-dimensional modeling
for functional analysis of cardiac images: a review. IEEE Trans Med Imaging 20,
2–25. ISSN: 0278-0062 (Print) 0278-0062 (Linking). https://www.ncbi.nlm.
nih.gov/pubmed/11293688 (2001).

77. Longo, A. et al. Assessment of hessian-based Frangi vesselness filter in op-
toacoustic imaging. Photoacoustics 20, 100200. ISSN: 2213-5979 (Print) 2213-5979
(Linking). https://www.ncbi.nlm.nih.gov/pubmed/32714832 (2020).

78. Mathworks. bwmorph Web Page. 2006. https : / / uk . mathworks . com /
help/images/ref/bwmorph.html.

79. Mathworks. bwskel Web Page. 2018. https://uk.mathworks.com/help/
images/ref/bwskel.html.

80. Howe, N. R. Skeletonisation Function Computer Program. 2006. http://www.
science.smith.edu/˜nhowe/research/code/.

BIBLIOGRAPHY 125

81. Telea, A. & Wijk van, J. An augmented Fast Marching Method for computing skele-
tons and centerlines in Proceedings of the symposium on Data Visualization 2002
(VisSym’02, Barcelona, May 27-29, 2002) (Eurographics, 2002), 251–259. ISBN: 1-
58113-536-X.

82. Mathworks. bweuler Web Page. 2006. https://uk.mathworks.com/help/
images/ref/bweuler.html.

83. Mathworks. imbinarize Web Page. 2016. https://uk.mathworks.com/
help/images/ref/imbinarize.html.

84. Eddins, S. Image Graphs 2021. https://www.mathworks.com/matlabcentral/
fileexchange/53614-image-graphs.

85. Mathworks. hough Web Page. 2006. https://uk.mathworks.com/help/
images/ref/hough.html.

86. Mathworks. houghpeaks Web Page. 2006. https://uk.mathworks.com/
help/images/ref/houghpeaks.html.

87. Mathworks. houghlines Web Page. 2006. https://uk.mathworks.com/
help/images/ref/houghlines.html.

88. Hlavac, V., Pajdla, T. & Sommer, M. Improvment of the Curvature Computa-
tion. IEEE. ISSN: 1051-4651 (1994).

89. Yang, H., Luo, J., Shen, Z. & Wu, W. A local voting and refinement method
for circle detection. Optik 125, 1234–1239. ISSN: 0030-4026. https://www.
sciencedirect.com/science/article/pii/S0030402613011613

(2014).

90. Yao, Z. & Yi, W. Curvature aided Hough transform for circle detection. Ex-
pert Systems with Applications 51, 26–33. ISSN: 0957-4174. https : / / www .
sciencedirect.com/science/article/pii/S0957417415008210

(2016).

91. Djekoune, A. O., Messaoudi, K. & Amara, K. Incremental circle hough trans-
form: An improved method for circle detection. Optik 133, 17–31. ISSN: 0030-
4026 (2017).

92. Jiang, L., Wang, Z., Ye, Y. & Jiang, J. Fast circle detection algorithm based on
sampling from difference area. Optik 158, 424–433. ISSN: 0030-4026. https://
www.sciencedirect.com/science/article/pii/S0030402617317011

(2018).

93. Fornberg, B. & Zuev, J. The Runge phenomenon and spatially variable shape
parameters in RBF interpolation. Computers and Mathematics with Applica-
tions 54, 379–398. ISSN: 0898-1221. https://www.sciencedirect.com/
science/article/pii/S0898122107002210 (2007).

126 BIBLIOGRAPHY

94. Schmidt, J., Evans, I. S. & Brinkmann, J. Comparison of polynomial models for
land surface curvature calculation. International Journal of Geographical Informa-
tion Science 17, 797–814 (2003).

95. Tarolli, P., Cavalli, M. & Masin, R. High-resolution morphologic character-
ization of conservation agriculture. CATENA 172, 846–856. ISSN: 0341-8162.
https://www.sciencedirect.com/science/article/pii/S0341816218303503

(2019).

96. Yang, Z.-B., Radzienski, M., Kudela, P. & Ostachowicz, W. Two-dimensional
modal curvature estimation via Fourier spectral method for damage detection.
Composite Structures 148, 155–167. ISSN: 02638223 (2016).

97. Kerautret, B. & Lachaud, J. O. Curvature estimation along noisy digital con-
tours by approximate global optimization. Pattern Recognition 42, 2265–2278.
ISSN: 00313203 (2009).

98. Web Page. 2021. https://github.com/mooniean/ALFRED.

99. Pearce, S. P., Heil, M., Jensen, O. E., Jones, G. W. & Prokop, A. Curvature-
Sensitive Kinesin Binding Can Explain Microtubule Ring Formation and Re-
veals Chaotic Dynamics in a Mathematical Model. Bull Math Biol 80, 3002–3022.
ISSN: 1522-9602 (Electronic) 0092-8240 (Linking). https://www.ncbi.nlm.
nih.gov/pubmed/30267355 (2018).

100. Murphy, K. P. & Proquest. Machine learning : a probabilistic perspective (2012).

101. Holmes, S. & Huber, W. Modern statistics for modern biology (2019).

102. Goodfellow, I., Bengio, Y. & Courville, A. Deep learning xxii, 775 pages. ISBN:
9780262035613 (hardcover alk. paper) 0262035618 (hardcover alk. paper).
https://mitpress.mit.edu/books/deep-learningMITPressOpenAccess

(MIT Press, Cambridge, MA, 2016).

103. Simonyan, K. & Zisserman, A. Very Deep Convolutional Networks for Large-Scale
Image Recognition in International Conference on Learning Representations (2015).

104. Web Page. https://github.com/MartinThoma/LaTeX-examples/
blob/master/tikz/vgg-16/vgg-16.tex.

105. He, K., Zhang, X., Ren, S. & Sun, J. Deep Residual Learning for Image Recogni-
tion in 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)
(2016), 770–778.

106. Mary, H. & Brouhard, G. J. Kappa (): Analysis of Curvature in Biological Image
Data using B-splines. bioRxiv (2019).

107. Napari contributors. napari: a multi-dimensional image viewer for python 2019.

108. Ilastik. Ilastik Object Classification Documentation https://www.ilastik.

org/documentation/objects/objects.

BIBLIOGRAPHY 127

109. Mathworks. bwlabel Web Page. 2006. https://uk.mathworks.com/help/
images/ref/bwlabel.html.

110. Mathworks. regionprops Web Page. 2006. https://uk.mathworks.com/
help/images/ref/regionprops.html.

Appendix A

ALFRED: Software Implementation
and User Manual

A.0.1 Loading Window layout and functionality

The first window opening when running ALFRED is the Loading Window, as seen
in Figure A.1. As mentioned, it allows the user to load the images into the program.

By pressing the button Load, the user can choose the folder from which to load
the image(s). A small loading pop-up will keep track of how many images have been
loaded and how many are left. In Figure A.1b, there is an example of a panel loaded
and cropped in six columns and 5 rows.

The files are read using BioFormat (see section 2.1.2). This provides flexibility
regarding the type of image files that can be opened, ranging from simple .jpg to more
complex microscope-related stacks (e.g., STED images). In the latter case, ALFRED
will separate the stacks into its single images.

In the case that a panel is loaded onto the software, it can be divided into same-
size rectangles, simply by inserting the intended number of rows and columns and
pressing Update. There is an additional white border checkbox, for the cases where
the images are separated by a defined border of white pixels that are accounted for in
the cropping. The button Restore undoes the division and the preview will show
the original panel.

Each image is numbered, with a number that will also be saved in the backup
and final files. If more than 301 images are loaded, or if a panel has more than 30
divisions, then a new page is created and the user can navigate between them by
using the Previous Page and Next Page buttons.

After images have been loaded, the analysis can begin. To open the next window,
the user simply needs to click a certain preview, which then opens the full image in
the main window which pops-up (details in Section A.0.2).

As buttons only become available once an image is presented in the preview, the

1The number 30 was chosen to facilitate the study of panels for the experiments described.

128

129

platform is robust (i.e. does not cause an error when the user does something unex-
pected) to user input and interaction: from checking the file input, guaranteeing the
images load accordingly, to their preview or the requests to split the image, as well
as the specific order of buttons to be clicked.

To verify robustness, the tests performed ranged from opening different types of
valid and invalid imaging formats, attempting to press buttons that are otherwise
unavailable or even cancelling the loading of images.

A.0.2 Main Window layout and functionality

The main window will open with the image on the left hand side (Figure A.2a). If
the image has 3 channels or less, the image will show them overlapped as an RGB
image. However, if there are more, only the first channel will be shown.

Before any of the options are selected, the program saves the images on a backup
.mat file (MATLAB data file), saved under the name of the image. From this point
onwards, any changes are shown live in the left hand panel.

After each option on the right hand side menu (Figure A.2b) is newly selected, the
progress is saved on the backup file to ensure that no work is lost in case a program
error occurs. Furthermore, the original image matrices are kept intact in memory, so
any progress can be undone up to the starting image, even before virtualisation.

Furthermore, running the same step repeatedly with the same values will not,
influence the resulting image, for example, virtualisation is always applied to the
channel and not to an already virtualised image.

The View Original Image button at the top allows a quick comparison be-
tween the image at any stage with the initial image, by overlaying the images and
the user can click in and out. This allows the user to keep the real image in mind
while working with its monoscale or binary versions.

The first option on the control panel (Figure A.2b) is a checkbox of whether the
image has a dark (normal) or light background (inverse). In the usual fluorescence
imaging, the background is dark. Normalisation in this case is to reduce the images
to 8bit (each pixel is normalised to values between 0 and 255), which usually allows
a faster analysis than higher values (such as 16bit). Furthermore, if the input image
is 8bit, there will be no difference from the original.

The Channel Selection drop-down menu allows choosing the desired channel for
analysis (Figure A.3). In this example, and with RGB images, the channels have the
correspondence of 1-Red, 2-Green and 3-Blue. If all the images loaded to the program
were RGB, the channels could be named after the colours. However, the program
does not really recognise colours, but rather the overlapping matrices. As such, if the
image type has a different number of channels, these would not be assigned to any
colour, but would appear numbered.

130APPENDIX A. ALFRED: SOFTWARE IMPLEMENTATION AND USER MANUAL

Upon channel selection, the image instantly goes through the virtualisation/ves-
selness process (Section 3.2.1). The function sensitivity (parameter τ mentioned in the
method by Jerman, Section 3.2.1) can be tuned with the slider and the Virtualise
button, which will always apply vesselness to the original image channel with the
new specified value.

The Greyscale Threshold slider enables the user to set the greyscale threshold of
the binary mask, which can be compared at all times with the original by clicking the
View Original Image button at the top.

As mentioned in Chapter 3, the ensuing step of the image processing is skeletoni-
sation. However, this is a computationally demanding process, scalable with the size
of the image. As such, the skeletonisation is only applied after the user has selected a
ROI, and a new window opens (Section A.0.3) with only the relevant selected region.

The region selection is generally done with a rectangular tool: highlighting a rect-
angle of the larger image to be analysed individually. However, some images have
high background noise, or where cells are positioned close together. There is a free
hand tool which allows a more detailed selection around the regions. The image
cut-off is defined by the bounding box (dashed lines in Figure A.4) - the coordinates
of the smallest possible rectangle that contains the selection area. In the case of free
hand tool (Figure A.4b), it is the minimum bounding box that encompasses the selec-
tion, and everything outside the selected shapes is set to zero for analysis purposes
of selection.

As soon as the selection is completed, a new pop-up window is opened with
the skeletonised version of the region (ROI window, further described in Section
A.0.3), which has been calculated from the mask in an automated interim step (see
Flowchart, Figure 5.2).

After closing the ROI Window, if the selection is saved, the properties of the path
selection are further saved on the main backup file, and the bounding box of the
region is highlighted with a dashed rectangle on the image (Figure A.5, green for
microtubule disorganisations, magenta for axons).

Furthermore, whenever the user changes between images in the same panel, the
processed regions will still be highlighted, and the user can keep track of which parts
have been done.

The button Discard All Regions allows the user to erase all ROIs selected
and restart the selection, without having to process the images again.

An important detail in analysing the images is the scaling factor between pixels
and the measurements of the original image. The scaling factor is formatted as pixel
per unit. To set the conversion factor, the user needs to click the Change button
that prompts a pop-up window (described in Section A.0.4). If no conversion factor
has been input before, the scale change is retroactively applied to all the previously
processed images. The default calculation is 1 pixel per µm.

131

The final group of buttons in the control panel of the Main Window represent
general actions:

• Undo - retracts the last action performed by the user, at any step.

• Previous - opens the previous image in the group.

• Continue - opens the next image in the group.

• Calculate All - triggers the calculations (Section A.0.5) for all the images
processed thus far.

When changing between images with Previous and Continue, the image pro-
cessing steps are automatically applied even if the image has been previously pro-
cessed, as images are generally analysed in succession and have been obtained us-
ing the same microscope. The channel selection and virtualisation will be the same
throughout all images of a panel or stack, as well as the conversion factor.

To improve performance, the calculations should be done after all ROIs in all
images have been selected.

A.0.3 ROI Window

The ROI window is prompted with two inputs provided by the main window: the
selected region of the selected channel and its skeleton, calculated after the bounding
box selection has been done by the user (Figure A.6). When the window opens, it
displays the skeleton (white line) overlapping the image (section from the original
image matrix) to allow the user to judge as to whether the program has recognised
the shape accurately. This is the point where the methods in Section 3.3.2 are applied
on the background, as a graph is created from the binary image.

The type selection provides a dropdown menu, which allows the selection be-
tween the two types of regions contained in the ROI: either microtubule disorganisa-
tion (Figure A.6b (1)), or axon (Figure A.6c (1)). This selection triggers the availability
of the adequate set of selection tools (Figure A.6b,c (2)).

This selection will enable the necessary buttons for each type of analysis ahead
(present in Figure A.6b (2)). Firstly, both will enable the Start Selection button.
This will allow the user to click the end points (beginning and end of the region) of
the relevant section of the skeleton.

As the skeleton is a pixel-wide line on a black background, it would be difficult
for the user to click exactly on a specific pixel of the skeleton. As such, there is a
search scope around each click with a certain radius, searching for the closest node
to the selected coordinates (using the function checkCoordinates.m). There is a
constant check and conversion between the (x, y) coordinates of the image and the
nodes in the graph, to guarantee the closest real image values at any point.

132APPENDIX A. ALFRED: SOFTWARE IMPLEMENTATION AND USER MANUAL

The aforementioned radius for the search scope is controlled by the jump slider
and the algorithm is allowed to recognise between two unconnected nodes in the
graph. This is also to account for image artefacts where there is not a fully connected
path but it is still close enough to recognise it.

If the selection is out of the scope of any point in the graph, a prompt appears to
warn the user and asks for a new coordinate. The selected coordinates will then be
displayed in green on the skeleton (Figure A.7a). After, the algorithms presented in
Section 3.3 are called to extract the path between the two end points, which will be
shown in blue. Further selection points can be added.

On the other hand, the checkbox for the entire path allows the user to mark all
nodes in the graph as part of the path without any user input (Figure A.7b), which
is particularly useful when applying to the test images used in testing, or when the
user selection is very comprehensive.

The amount of points to be added at one particular step can be changed in the
editable text box. The type of points to add to the graph differs between regions, and
the changes are automatically applied and shown in the left hand-side panel.

If the region was selected as axon, and the suggested path does not match the
user’s interpretation, Inner Points can be added, which will determine crucial
nodes of the skeleton along which the path needs to go through. This might be
needed also if there is a significant gap. Furthermore, the user can Add Lines to
circumvent any imaging problems (e.g., image presents a dotted line instead of a
continuous one).

If, on the other hand, the selected region was microtubule disorganisation, the
user can add Outer Points, which will delete connections to regions that don’t
belong to the disorganisation, thus trimming the region and removing any unwanted
branches such as, for example, parts of the axon (Figure A.7c,d).

The user can press Undo to eliminate any wrong selections or unwanted points, in
the reverse order they were added. This is done by deleting from the saved internal
matrices the most recently saved values. If the user wants to restart the selection
and clear the path completely (i.e., resetting the window), there is the Reset Path

button.

At any point, the user can make changes to the options above and press Apply to
update the path selection.

After the selection, the user can either Save and Close, where the values are
saved to the main dataset (connecting all windows of ALFRED), or Cancel and dis-
card the changes. However, before doing so, there’s a prompt to confirm with the
user that it doesn’t want to save any changes or information gathered in that region.

133

A.0.4 Microscope Specifications Window

Before ALFRED calculates all of the values mentioned in Chapter 4, it needs a value
for the conversion from pixels to another unit of length. As such, when pressing the
Image Specs Change button, a pop up appears, as seen in Figure A.8.

There are three options that a user can choose from in order to select the conver-
sion.

• Metadata (Figure A.8a): Certain types of files, such as images from a STED mi-
croscope, will include metadata with each image, provided by the image acqui-
sition software and automatically loaded by BioFormats. This usually includes
the pixel/unit conversion needed. As such, with a simple checkbox, that value
will be accessed.

• Microscope Scaling Factors (Figure A.8(b)): If the images do not provide the
correct needed conversion, then the user can select from predefined scaling
factors. Currently, this can only be altered manually previous to running the
program. On the subfolder \documents, there is an Excel spreadsheet named
scalingfactors.xlsx:

On the inside, there is a table with the conversion values for the selected mi-
croscope, as in Figure A.9. When the user selects the microscope, the Objective
will automatically update with the available options from the sheet, as well as
Optovar and Binning options after each has been sequentially selected. Finally,
ALFRED will get the designated value from the provided table, as soon as the
user presses Apply.

• Manual Insertion (Figure A.8(c)): the default unit is 1 pixel per micrometers
(µm), but can be changed with the drop-down menu. If the user wishes to
obtain the values in pixels, just insert manually 1 and no conversion will be
calculated.

After each selection, the user can simply press the button Apply and continue
the analysis. On the other hand, if the user does not want to apply any changes, the
Cancel button can be pressed.

A.0.5 Analysis and Calculations

After all the ROIs have been selected, the last step their individual analysis. In order
to save computational efforts and time, all the calculations are performed after the
button Calculate All is selected. As such, the user can stop the region selection
at any point and perform the calculations afterwards.

Furthermore, even though all values are calculated and saved on the back up
file, a pop-up shows up (Figure A.10) that allows the user to have selected results

134APPENDIX A. ALFRED: SOFTWARE IMPLEMENTATION AND USER MANUAL

saved on a separate comma-separated value (csv) file. These can later be opened in
spreadsheet analysers such as Excel.

Before any calculation is saved, it is important to check whether all the images
have had the conversion factor updated. If none was changed, all are set to the de-
fault value of 1px/µm. These are added retroactively to any image whose conversion
factor was not changed.

The regions considered are the blue paths selected, as in Figure A.7. The straight-
ness index is calculated for both axons and microtubule disorganisation regions by
dividing the sum of all straight segment lengths obtained with the Hough Transform
per the total length of the path. While in the axon the path tends to be linear, in
microtubule disorganisation the total region of the skeleton selected by the user is
considered.

As morphologically both regions are different, some calculations are handled sep-
arately for the microtubule disorganisation.

Most of the calculations for axon regions, such as straightness, are calculated
when ROIs are selected. This happens when the calculations are seamless and, there-
fore, will not influence the work-flow. If the calculations were slow, they could be
moved to this section.

Furthermore, the only calculation needed at this stage is the conversion of all the
values (particularly axon length) with the scaling factor.

Microtubule Disorganisation

For the disorganisation regions, an additional step is needed. The best way to anal-
yse these complex shapes is by dividing them into different segments of connected
components. Each region is converted into a binary mask (as in Chapter 3), and each
connected component is labelled.

MATLAB provides the function needed to perform the labelling (bwlabel [109],
Figure A.11), whose output is an image where each point in a connected component
has the value attributed.

This labelled image will then be the input to another MATLAB function to analyse
the properties of each individual region (regionprops [110]). While a lot of values can
be obtained, only two provided the needed morphological insight: eccentricity and
area.

Eccentricity is the ”un-circularity” of a shape, defined as its difference to circle: a
larger eccentricity corresponds to a less symmetrically curved shape. As the loops
in disorganisation appear to be circular, this could be an indication of their shapes.
Furthermore, area of each individual swelling is also calculated, which provides an
insight on the average size of swellings.

There are two other different types of areas of interest: microtubule disorganisa-
tion area and the effective area occupied by microtubules in the swelling. These are

135

used to calculate the density of the disorganisation region. As the calculations are
done in binary masks, the area is the sum of all values in the selected points binary
matrix. The density becomes, therefore, the area of the microtubules divided by the
total area of the swelling.

Most of the computational time is spent on the next calculation: the curvature
(Section 4.3).

First, each individual skeleton for each region goes through the pre-processing
needed for the curvature calculation, i.e., the removal of branch points and general
cleaning of smaller branches. The remaining matrix can now go through the calcula-
tion, and the final output are radius and arc length for each spline.

After all the values are calculated, the .csv file can be created (if selected by the
user). The user can now proceed for bulk analysis of their biological images.

136APPENDIX A. ALFRED: SOFTWARE IMPLEMENTATION AND USER MANUAL

(a)

(b)

Figure A.1: Loading Window of ALFRED: (a) View of the window
when it opens. (b) View of the window after loading and cropping
a panel. The majority of the window is the region where the images
will be previewed. On the right, there is the Load button; the option
to divide it into same sized blocks in case a panel was loaded (with
an input for the intended number of rows and columns). The images
can be previewed on the left side of the window.

137

(a)

(b)

Figure A.2: Main Window of ALFRED. (a) Full view with image
number 29 from the panel in Figure A.1b loaded. Image shown on
the left hand side, with MATLAB Figure tools for zoom and posi-
tioning above; control panel on the right is shown as close-up in (b),
and further explained in the main text.

138APPENDIX A. ALFRED: SOFTWARE IMPLEMENTATION AND USER MANUAL

Figure A.3: Example of channel selection options if the Main Win-
dow of ALFRED. When clicking the chevron, the selection options
are shown as arbitrary numbers: in this case, 1 corresponds to red,
2 to green and 3 to blue. The program does not identify the colour
of the channel, only the numbers and these can be different between
different types of images.

(a) (b)

Figure A.4: The region selection options in the Main Window of
ALFRED. (a) A rectangular selection, (b) a free hand selection (blue).
Both have the same bounding box (dashed line), but in (b) the pixels
outside the selected area are set to 0.

139

(a)

(b)

Figure A.5: Highlighting processed regions in ALFRED in the RGB
image (a) and binary mask (b). Two different bounding boxes of
processed regions are highlighted with dashed lines: magenta for
axon, green for microtubule disorganisation.

140APPENDIX A. ALFRED: SOFTWARE IMPLEMENTATION AND USER MANUAL

(a)

(1)

(2)

(3)

(b)

(1)

(2)

(3)

(c)

Figure A.6: Opening of the ROI window of ALFRED. (a) Overview of the
skeletonised image on the left and a control panel on the right. Close up of
control panel for microtubule disorganisation (b) and axon (c): (1) dropdown
menu to select which type of region it is, whether microtubule disorganisa-
tion or axon. (2) Selection control, where the relevant points for path defini-
tion in the image can be selected. (3) Saving and closing options to keep or
discard the calculated values.

141

(a)

(b) (c)

Figure A.7: Example of path selection in the ROI window of ALFRED. (a)
Axon recognition with two input points; (b) Close up and recognition of full
microtubule disorganisation within the two selected points. (c) Trimming of
branches in the disorganisation. Blue is the recognised regions/paths for cal-
culation. Red and yellow dots represent the extremity of straight segments
calculated with Hough Transform (Section 4.2). Arrows are the user input
points.

142APPENDIX A. ALFRED: SOFTWARE IMPLEMENTATION AND USER MANUAL

(a)
(b)

(c)

Figure A.8: Microscope specifications window of ALFRED. Orange
emboxed areas indicate the type of conversion available: (a) use
metadata from the images provided by the image acquisition soft-
ware, (b) scaling factors associated with microscopes, from Figure
A.9 and (c) insert units manually.

Figure A.9: Example of scalingfactors.xlsx. The table is or-
ganised per microscope, optovar and binning options.

Figure A.10: Saving options pop-up of ALFRED. The user chooses
the values to save on the csv file.

143

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

1

1

1

1

0

0

0

0

0

1

(a) Skeleton

1

1

1

1

1

1

0

0

0

0

0

0

0

0

0

2

2

2

2

0

0

0

0

0

3

(b) Labelled Image

Figure A.11: Image Matrix Labelling. (a) Binary image (skeleton)
where points are either 1 or 0. (b) Labelled image, where each con-
nected component (8-connectivity) is attributed a number, the label,
by substituting 1 for that value.

