114,822 research outputs found

    Ranking algorithms for implicit feedback

    No full text
    This report presents novel algorithms to use eye movements as an implicit relevance feedback in order to improve the performance of the searches. The algorithms are evaluated on "Transport Rank Five" Dataset which were previously collected in Task 8.3. We demonstrated that simple linear combination or tensor product of eye movement and image features can improve the retrieval accuracy

    Optimal Scheduling of Trains on a Single Line Track

    Get PDF
    This paper describes the development and use of a model designed to optimise train schedules on single line rail corridors. The model has been developed with two major applications in mind, namely: as a decision support tool for train dispatchers to schedule trains in real time in an optimal way; and as a planning tool to evaluate the impact of timetable changes, as well as railroad infrastructure changes. The mathematical programming model described here schedules trains over a single line track. The priority of each train in a conflict depends on an estimate of the remaining crossing and overtaking delay, as well as the current delay. This priority is used in a branch and bound procedure to allow and optimal solution to reasonable size train scheduling problems to be determined efficiently. The use of the model in an application to a 'real life' problem is discussed. The impacts of changing demand by increasing the number of trains, and reducing the number of sidings for a 150 kilometre section of single line track are discussed. It is concluded that the model is able to produce useful results in terms of optimal schedules in a reasonable time for the test applications shown here

    Fast computation: a steady-state simulation of railways ballasted track settlement

    Get PDF
    Geometryofballastedrailwaystrackisamajorconcerninrailroadssafetyand efficiency. Settlement of railways ballast has been studied to help railway infrastructure managers to keep infrastructures in shape and to prevent accidents. In this paper, we present an innovative numerical approach to study railways ballast settlement. Commonly used models representing a moving load need huge computation time. On the other hand, assuming static cyclic loading representation leads to discrepancies. Indeed, it does not conceder particularities of moving load. With this new model we want to avoid the drawbacks of previously developed methods. We developed a steady state algorithm to compute plastic strain in geomaterials and to study behaviour of ballasted railways track with an Eulerian approach. This way we improved model efficiency by drastically reducing computation time while considering mobile load specificities

    Speech-driven Animation with Meaningful Behaviors

    Full text link
    Conversational agents (CAs) play an important role in human computer interaction. Creating believable movements for CAs is challenging, since the movements have to be meaningful and natural, reflecting the coupling between gestures and speech. Studies in the past have mainly relied on rule-based or data-driven approaches. Rule-based methods focus on creating meaningful behaviors conveying the underlying message, but the gestures cannot be easily synchronized with speech. Data-driven approaches, especially speech-driven models, can capture the relationship between speech and gestures. However, they create behaviors disregarding the meaning of the message. This study proposes to bridge the gap between these two approaches overcoming their limitations. The approach builds a dynamic Bayesian network (DBN), where a discrete variable is added to constrain the behaviors on the underlying constraint. The study implements and evaluates the approach with two constraints: discourse functions and prototypical behaviors. By constraining on the discourse functions (e.g., questions), the model learns the characteristic behaviors associated with a given discourse class learning the rules from the data. By constraining on prototypical behaviors (e.g., head nods), the approach can be embedded in a rule-based system as a behavior realizer creating trajectories that are timely synchronized with speech. The study proposes a DBN structure and a training approach that (1) models the cause-effect relationship between the constraint and the gestures, (2) initializes the state configuration models increasing the range of the generated behaviors, and (3) captures the differences in the behaviors across constraints by enforcing sparse transitions between shared and exclusive states per constraint. Objective and subjective evaluations demonstrate the benefits of the proposed approach over an unconstrained model.Comment: 13 pages, 12 figures, 5 table

    Modelling single line train operations

    Get PDF
    Scheduling of trains on a single line involves using train priorities for the resolution of conflicts. The mathematical programming model described in the first part of this paper schedules trains over a single line track when the priority of each train in a conflict depends on an estimate of the remaining crossing and overtaking delay. This priority is used in a branch and bound procedure to allow the determination of optimal solutions quickly. This is demonstrated with the use of an example. Rail operations over a single line track require the existence of a set of sidings at which trains can cross and/ or overtake each other. Investment decisions on upgrading the number and location of these sidings can have a significant impact on both customer service and rail profitability. Sidings located at insufficient positions may lead to high operating costs and congestion. The second part of this paper puts forward a model to determine the optimal position of a set of sidings on a single track rail corridor. The sidings are positioned to minimise the total delay and train operating costs of a given cyclic train schedule. The key feature of the model is the allowance of non-constant train velocities and non-uniform departure times

    Collective Robot Reinforcement Learning with Distributed Asynchronous Guided Policy Search

    Full text link
    In principle, reinforcement learning and policy search methods can enable robots to learn highly complex and general skills that may allow them to function amid the complexity and diversity of the real world. However, training a policy that generalizes well across a wide range of real-world conditions requires far greater quantity and diversity of experience than is practical to collect with a single robot. Fortunately, it is possible for multiple robots to share their experience with one another, and thereby, learn a policy collectively. In this work, we explore distributed and asynchronous policy learning as a means to achieve generalization and improved training times on challenging, real-world manipulation tasks. We propose a distributed and asynchronous version of Guided Policy Search and use it to demonstrate collective policy learning on a vision-based door opening task using four robots. We show that it achieves better generalization, utilization, and training times than the single robot alternative.Comment: Submitted to the IEEE International Conference on Robotics and Automation 201
    corecore