9 research outputs found

    Lagrange interpolation and quasi-interpolation using trivariate splines on a uniform partition

    Get PDF
    We develop quasi-interpolation methods and a Lagrange interpolation method for trivariate splines on a regular tetrahedral partition, based on the Bernstein-Bézier representation of polynomials. The partition is based on the bodycentered cubic grid. Our quasi-interpolation operators use quintic C2 splines and are defined by giving explicit formulae for each coefficient. One operator satisfies a certain convexity condition, but has sub-optimal approximation order. A second operator has optimal approximation order, while a third operator interpolates the provided data values. The first two operators are defined by a small set of computation rules which can be applied independently to all tetrahedra of the underlying partition. The interpolating operator is more complex while maintaining the best-possible approximation order for the spline space. It relies on a decomposition of the partition into four classes, for each of which a set of computation rules is provided. Moreover, we develop algorithms that construct blending operators which are based on two quasi-interpolation operators defined for the same spline space, one of which is convex. The resulting blending operator satisfies the convexity condition for a given data set. The local Lagrange interpolation method is based on cubic C1 splines and focuses on low locality. Our method is 2-local, while comparable methods are at least 4-local. We provide numerical tests which confirm the results, and high-quality visualizations of both artificial and real-world data sets

    Collision Detection and Merging of Deformable B-Spline Surfaces in Virtual Reality Environment

    Get PDF
    This thesis presents a computational framework for representing, manipulating and merging rigid and deformable freeform objects in virtual reality (VR) environment. The core algorithms for collision detection, merging, and physics-based modeling used within this framework assume that all 3D deformable objects are B-spline surfaces. The interactive design tool can be represented as a B-spline surface, an implicit surface or a point, to allow the user a variety of rigid or deformable tools. The collision detection system utilizes the fact that the blending matrices used to discretize the B-spline surface are independent of the position of the control points and, therefore, can be pre-calculated. Complex B-spline surfaces can be generated by merging various B-spline surface patches using the B-spline surface patches merging algorithm presented in this thesis. Finally, the physics-based modeling system uses the mass-spring representation to determine the deformation and the reaction force values provided to the user. This helps to simulate realistic material behaviour of the model and assist the user in validating the design before performing extensive product detailing or finite element analysis using commercially available CAD software. The novelty of the proposed method stems from the pre-calculated blending matrices used to generate the points for graphical rendering, collision detection, merging of B-spline patches, and nodes for the mass spring system. This approach reduces computational time by avoiding the need to solve complex equations for blending functions of B-splines and perform the inversion of large matrices. This alternative approach to the mechanical concept design will also help to do away with the need to build prototypes for conceptualization and preliminary validation of the idea thereby reducing the time and cost of concept design phase and the wastage of resources

    Reduced Models for Optimal Control, Shape Optimization and Inverse Problems in Haemodynamics

    Get PDF
    The objective of this thesis is to develop reduced models for the numerical solution of optimal control, shape optimization and inverse problems. In all these cases suitable functionals of state variables have to be minimized. State variables are solutions of a partial differential equation (PDE), representing a constraint for the minimization problem. The solution of these problems induce large computational costs due to the numerical discretization of PDEs and to iterative procedures usually required by numerical optimization (many-query context). In order to reduce the computational complexity, we take advantage of the reduced basis (RB) approximation for parametrized PDEs, once the state problem has been reformulated in parametrized form. This method enables a rapid and reliable approximation of parametrized PDEs by constructing low-dimensional, problem-specific approximation spaces. In case of PDEs defined over domains of variable shapes (e.g. in shape optimization problems) we need to introduce suitable, low-dimensional shape parametrization techniques in order to tackle the geometrical complexity. Free-Form Deformations and Radial-Basis Functions techniques have been analyzed and successfully applied with this aim. We analyze the reduced framework built by coupling these tools and apply it to the solution of optimal control and shape optimization problems. Robust optimization problems under uncertain conditions are also taken into consideration. Moreover, both deterministic and Bayesian frameworks are set in order to tackle inverse identification problems. As state equations, we consider steady viscous flow problems described by Stokes or Navier-Stokes equations, for which we provide a detailed analysis and construction of RB approximation and a posteriori error estimation. Several numerical test cases are also illustrated to show efficacy and reliability of RB approximations. We exploit this general reduced framework to solve some optimization and inverse problems arising in haemodynamics. More specifically, we focus on the optimal design of cardiovascular prostheses, such as bypass grafts, and on inverse identification of pathological conditions or flow/shape features in realistic parametrized geometries, such as carotid artery bifurcations

    Ambient Approximation of Functions and Functionals on Embedded Submanifolds

    Get PDF
    While many problems of approximation theory are already well-understood in Euclidean space and its subdomains, much less is known about problems on submanifolds of that space. And this knowledge is even more limited when the approximation problem presents certain difficulties like sparsity of data samples or noise on function evaluations, both of which can be handled successfully in Euclidean space by minimisers of certain energies. On the other hand, such energies give rise to a considerable amount of techniques for handling various other approximation problems, in particular certain partial differential equations. The present thesis provides a deep going analysis of approximation results on submanifolds and approximate representation of intrinsic functionals: It provides a method to approximate a given function on a submanifold by suitable extension of this function into the ambient space followed by approximation of this extension on the ambient space and restriction of the approximant to the manifold, and it investigates further properties of this approximant. Moreover, a differential calculus for submanifolds via standard calculus on the ambient space is deduced from Riemannian geometry, and various energy functionals are presented and approximately handled by an approximate application of this calculus. This approximate handling of functionals is then employed in several penalty-based methods to solve problems such as interpolation in sparse data sites, smoothing and denoising of function values and approximate solution of certain partial differential equations

    MS FT-2-2 7 Orthogonal polynomials and quadrature: Theory, computation, and applications

    Get PDF
    Quadrature rules find many applications in science and engineering. Their analysis is a classical area of applied mathematics and continues to attract considerable attention. This seminar brings together speakers with expertise in a large variety of quadrature rules. It is the aim of the seminar to provide an overview of recent developments in the analysis of quadrature rules. The computation of error estimates and novel applications also are described

    Generalized averaged Gaussian quadrature and applications

    Get PDF
    A simple numerical method for constructing the optimal generalized averaged Gaussian quadrature formulas will be presented. These formulas exist in many cases in which real positive GaussKronrod formulas do not exist, and can be used as an adequate alternative in order to estimate the error of a Gaussian rule. We also investigate the conditions under which the optimal averaged Gaussian quadrature formulas and their truncated variants are internal
    corecore