10 research outputs found

    Iterative Near-Maximum-Likelihood Detection in Rank-Deficient Downlink SDMA Systems

    No full text
    Abstract—In this paper, a precoded and iteratively detected downlink multiuser system is proposed, which is capable of operating in rankdeficient scenarios, when the number of transmitters exceeds the number of receivers. The literature of uplink space division multiple access (SDMA) systems is rich, but at the time of writing there is a paucity of information on the employment of SDMA techniques in the downlink. Hence, we propose a novel precoded downlink SDMA (DL-SDMA) multiuser communication system, which invokes a low-complexity nearmaximum-likelihood sphere decoder and is particularly suitable for the aforementioned rank-deficient scenario. Powerful iterative decoding is carried out by exchanging extrinsic information between the precoder’s decoder and the outer channel decoder. Furthermore, we demonstrate with the aid of extrinsic information transfer charts that our proposed precoded DL-SDMA system has a better convergence behavior than its nonprecoded DL-SDMA counterpart. Quantitatively, the proposed system having a normalized system load of Ls = 1.333, i.e., 1.333 times higher effective throughput facilitated by having 1.333 times more DL-SDMA transmitters than receivers, exhibits a “turbo cliff” at an Eb/N0 of 5 dB and hence results in an infinitesimally low bit error rate (BER). By contrast, at Eb/N0 = 5 dB, the equivalent system dispensing with precoding exhibits a BER in excess of 10%. Index Terms—Iterative decoding, maximum likelihood detection, space division multiple access (SDMA) downlink, sphere decoding

    Reduced-Complexity Maximum-Likelihood Detection in Downlink SDMA Systems

    Get PDF
    The literature of up-link SDMA systems is rich, but at the time of writing there is a paucity of information on the employment of SDMA techniques in the down-link. Hence, in this paper a Space Division Multiple Access (SDMA) down-link (DL) multi-user communication system invoking a novel low-complexity Maximum Likelihood (ML) space-time detection technique is proposed, which can be regarded as an advanced extension of the Complex Sphere Decoder (CSD). We demonstrate that as opposed to the previously published variants of the CSD, the proposed technique may be employed for obtaining a high effective throughput in the so-called “over-loaded” scenario, where the number of transmit antennas exceeds that of the receive antennas. The proposed method achieves the optimum performance of the ML detector even in heavily over-loaded scenarios, while the associated computational complexity is only moderately increased. As an illustrative example, the required Eb/N0 increased from 2 dB to 9 dB, when increasing the normalized system load from unity, representing the fully loaded system, to a normalized load of 1.556

    Gaussian approximation based mixture reduction for joint channel estimation and detection in MIMO systems

    Get PDF

    Circular Sphere Decoding: A Low Complexity Detection for MIMO Systems with General Two-dimensional Signal Constellations

    Full text link
    We propose a low complexity complex valued Sphere Decoding (CV-SD) algorithm, referred to as Circular Sphere Decoding (CSD) which is applicable to multiple-input multiple-output (MIMO) systems with arbitrary two dimensional (2D) constellations. CSD provides a new constraint test. This constraint test is carefully designed so that the element-wise dependency is removed in the metric computation for the test. As a result, the constraint test becomes simple to perform without restriction on its constellation structure. By additionally employing this simple test as a prescreening test, CSD reduces the complexity of the CV-SD search. We show that the complexity reduction is significant while its maximum-likelihood (ML) performance is not compromised. We also provide a powerful tool to estimate the pruning capacity of any particular search tree. Using this tool, we propose the Predict-And-Change strategy which leads to a further complexity reduction in CSD. Extension of the proposed methods to soft output SD is also presented.Comment: Published in IEEE Trans. Vehicular Technolog

    Cooperative Partial Detection for MIMO Relay Networks

    Get PDF
    This paper was submitted by the author prior to final official version. For official version please see http://hdl.handle.net/1911/64372Cooperative communication has recently re-emerged as a possible paradigm shift to realize the promises of the ever increasing wireless communication market; how- ever, there have been few, if any, studies to translate theoretical results into feasi- ble schemes with their particular practical challenges. The multiple-input multiple- output (MIMO) technique is another method that has been recently employed in different standards and protocols, often as an optional scenario, to further improve the reliability and data rate of different wireless communication applications. In this work, we look into possible methods and algorithms for combining these two tech- niques to take advantage of the benefits of both. In this thesis, we will consider methods that consider the limitations of practical solutions, which, to the best of our knowledge, are the first time to be considered in this context. We will present complexity reduction techniques for MIMO systems in cooperative systems. Furthermore, we will present architectures for flexible and configurable MIMO detectors. These architectures could support a range of data rates, modulation orders and numbers of antennas, and therefore, are crucial in the different nodes of cooperative systems. The breadth-first search employed in our realization presents a large opportunity to exploit the parallelism of the FPGA in order to achieve high data rates. Algorithmic modifications to address potential sequential bottlenecks in the traditional bread-first search-based SD are highlighted in the thesis. We will present a novel Cooperative Partial Detection (CPD) approach in MIMO relay channels, where instead of applying the conventional full detection in the relay, the relay performs a partial detection and forwards the detected parts of the message to the destination. We will demonstrate how this approach leads to controlling the complexity in the relay and helping it choose how much it is willing to cooperate based on its available resources. We will discuss the complexity implications of this method, and more importantly, present hardware verification and over-the-air experimentation of CPD using the Wireless Open-access Research Platform (WARP).NSF grants EIA-0321266, CCF-0541363, CNS-0551692, CNS-0619767, EECS-0925942, and CNS-0923479, Nokia, Xilinx, Nokia Siemens Networks, Texas Instruments, and Azimuth Systems

    Distributed Quasi-Orthogonal Space-Time coding in wireless cooperative relay networks

    Get PDF
    Cooperative diversity provides a new paradigm in robust wireless re- lay networks that leverages Space-Time (ST) processing techniques to combat the effects of fading. Distributing the encoding over multiple relays that potentially observe uncorrelated channels to a destination terminal has demonstrated promising results in extending range, data- rates and transmit power utilization. Specifically, Space Time Block Codes (STBCs) based on orthogonal designs have proven extremely popular at exploiting spatial diversity through simple distributed pro- cessing without channel knowledge at the relaying terminals. This thesis aims at extending further the extensive design and analysis in relay networks based on orthogonal designs in the context of Quasi- Orthogonal Space Time Block Codes (QOSTBCs). The characterization of Quasi-Orthogonal MIMO channels for cooper- ative networks is performed under Ergodic and Non-Ergodic channel conditions. Specific to cooperative diversity, the sub-channels are as- sumed to observe different shadowing conditions as opposed to the traditional co-located communication system. Under Ergodic chan- nel assumptions novel closed-form solutions for cooperative channel capacity under the constraint of distributed-QOSTBC processing are presented. This analysis is extended to yield closed-form approx- imate expressions and their utility is verified through simulations. The effective use of partial feedback to orthogonalize the QOSTBC is examined and significant gains under specific channel conditions are demonstrated. Distributed systems cooperating over the network introduce chal- lenges in synchronization. Without extensive network management it is difficult to synchronize all the nodes participating in the relaying between source and destination terminals. Based on QOSTBC tech- niques simple encoding strategies are introduced that provide compa- rable throughput to schemes under synchronous conditions with neg- ligible overhead in processing throughout the protocol. Both mutli- carrier and single-carrier schemes are developed to enable the flexi- bility to limit Peak-to-Average-Power-Ratio (PAPR) and reduce the Radio Frequency (RF) requirements of the relaying terminals. The insights gained in asynchronous design in flat-fading cooperative channels are then extended to broadband networks over frequency- selective channels where the novel application of QOSTBCs are used in distributed-Space-Time-Frequency (STF) coding. Specifically, cod- ing schemes are presented that extract both spatial and mutli-path diversity offered by the cooperative Multiple-Input Multiple-Output (MIMO) channel. To provide maximum flexibility the proposed schemes are adapted to facilitate both Decode-and-Forward (DF) and Amplify- and-Forward (AF) relaying. In-depth Pairwise-Error-Probability (PEP) analysis provides distinct design specifications which tailor the distributed- STF code to maximize the diversity and coding gain offered under the DF and AF protocols. Numerical simulation are used extensively to confirm the validity of the proposed cooperative schemes. The analytical and numerical re- sults demonstrate the effective use of QOSTBC over orthogonal tech- niques in a wide range of channel conditions

    Smart Antenna-Aided Multicarrier Transceivers for Mobile Communications

    Get PDF
    In spite of an immense interest from both the academic and the industrial communities, a practical multipleinput multiple-output (MIMO) transceiver architecture, capable of approaching channel capacity boundaries in realistic channel conditions remains largely an open problem. Consequently, in this treatise I derive an advanced iterative, so called turbo multi-antenna-multi-carrier (MAMC) receiver architecture. Following the philosophy of turbo processing, our turbo spacial division multiplexed (SDM)-orthogonal frequency division multiplexed (OFDM) receiver comprises a succession of soft-input-soft-output detection modules, which iteratively exchange soft bit-related information and thus facilitate a substantial improvement of the overall system performance. In this treatise, I explore two major aspects of the turbo wireless mobile receiver design. Firstly, I consider the problem of soft-decision-feedback aided acquisition of the propagation conditions experienced by the transmitted signal and secondly, I explore the issue of the soft-input-soft-output detection of the spatially-multiplexed information-carrying signals
    corecore