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Gaussian Approximation Based Mixture Reduction for
Joint Channel Estimation and Detection in MIMO Systems

Yugang Jia, Student Member, IEEE, Christophe Andrieu, Robert J. Piechocki, Member, IEEE,
and Magnus Sandell, Member, IEEE

Abstract— A novel Gaussian approximation based mixture
reduction algorithm is proposed for semi-blind joint channel
tracking and symbol detection for spatial multiplexing multiple-
input multiple-output (MIMO) systems with frequency-flat time-
selective channels. The proposed algorithm is based on a modified
sequential Gaussian approximation detector (SGA) [1] which
takes into account channel uncertainty, and the first order gener-
alized pseudo-Bayesian (GPB1) channel estimator [2]. Simulation
results show that the proposed algorithm performs better than
the conventional and computationally expensive decision-directed
method with Kalman filter based channel estimation and a
posteriori probability (APP) symbol detection.

Index Terms— Joint estimation and detection, MIMO systems,
multiple model estimation, multiuser detection, time-varying
channels.

I. INTRODUCTION

THE information theoretic results of multiple-input
multiple-output (MIMO) systems promise very high data

rates with low error probabilities. The performance improve-
ments have also been confirmed in real systems [3] where
accurate channel state information (CSI) plays a key role.

A considerable amount of research has been devoted to
semi-blind joint channel estimation and detection for MIMO
systems with time-selective channels [4], [5]. These methods
follow a decision based estimation strategy, i.e. perform sym-
bol detection first and then run a single filter to estimate the
channels based on the hard/soft outputs of the symbols. The
drawback of these kinds of methods is that the possible symbol
detection errors are not fully accounted for in the channel
estimation.

An alternative approach is based on the multiple model
approach where one operates a bank of Kalman filters for each
possible symbol combination and collapses the estimation
results from different models into a single Gaussian distri-
bution [6]. However, applying the multiple model algorithm
to spatial multiplexing MIMO systems is still computationally
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prohibitive for large systems. Suppose the MIMO system has
NT transmit antennas, NR receive antennas and a modulation
symbol alphabet with N symbols: we need to operate NNT

Kalman filters at each time instant where each one has a
complexity of O((NTNR)3). It is however most often the case
that the model probabilities of most of the Kalman filters, i.e.
the a posteriori probabilities of most symbol combinations,
are very small and their outputs contribute very little to the
final result of channel estimation as well as symbol detection
(marginal posterior probabilities) in each time instant.

In this paper, we propose a novel joint channel estima-
tion and detection algorithm for spatial multiplexing MIMO
systems with frequency-flat time-selective channels. Firstly,
we modify the sequential Gaussian approximation (SGA)
algorithm [1] to take into account channel uncertainty to
identify the M most significant symbol combinations. To the
best of our knowledge, the sphere decoders (SD) [7] [8] [9],
which are also efficient symbol detectors with perfect CSI,
have not been extended to take channel uncertainty into
consideration for MIMO systems with time-varying channels.
We will justify the benefit of considering channel uncertainty
in symbol detection in Section V-A. Secondly, we compute
channel estimates via a bank of Kalman filters associated
with those significant symbol combinations and collapse those
estimates via the GPB1 algorithm [2]. To further reduce
the complexity, we made the assumption that the rows in
channel matrix are independent even when conditioned on
the observations (i.e. posterior distribution). Thus, the total
complexity of our algorithm is reduced from O(M(NTNR)3)
to O(MNRN

2
T ) as shown in Section V-B.

II. SYSTEM MODEL

Consider a narrowband spatial multiplexing MIMO system
with frequency-flat time-selective channels. At each time
instant k, the system model is:

y(k) = H(k)x(k) + n(k), (1)

where H(k) is the NR × NT Rayleigh flat fading channel
matrix with h(i,j)(k) as its (i, j)th entry, which is the channel
gain from transmit antenna j to receive antenna i; i =
1, . . . , NR and j = 1, . . . , NT ; x(k) def= [x1(k), . . . , xNT (k)]T

( [∗]T means transpose, [∗]∗ means conjugate and [∗]H means
conjugate transpose); a symbol xj(k) transmitted from the
j-th antenna is taken from a modulation constellation A =
{a1, a2, . . . , aN}; n(k) is a NR × 1 zero-mean complex
circular symmetric Gaussian noise vector with variance matrix
σ2

nI (I is the identity matrix).

1536-1276/07$25.00 c© 2007 IEEE
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The first order AR model (AR1) is widely used for mod-
elling time selective fading channels [5] and will be adopted
here for computational reasons (explained in Section V-C):

h(i,j)(k) = αh(i,j)(k − 1) + v(i,j)(k), (2)

where the noise v(i,j)(k) is a zero-mean iid complex circular
symmetric Gaussian noise with variance σ2

v .
The system described in Eq. (1) and Eq. (2) can be rewritten

as follows:

H(k) = αH(k − 1) + v(k), (3)

y(k) = X (k)H(k) + n(k) (4)

where X (k) def= Diag(x(k)T
, . . . ,x(k)T ),

H(k) def= [h(1,1)(k) . . . h(1,NT )(k)

h(2,1)(k) . . . h(2,NT )(k) . . . h(NR,NT )(k)]T

and v(k) def= [v(1,1)(k) . . . v(NR,NT )(k)]T . We use Diag(.) for
(block) diagonal matrix.

The full a posteriori probability density of the channels for
the system described in Eq. (1)-(2) is a Gaussian mixture with
the number of components exponential in NT :

p(H(k)|Y1:k) =
∑
x(1)

. . .
∑
x(k)

p
(H(k)|Y1:k,x(1), . . . ,x(k)

)
p
(
x(1), . . . ,x(k)|Y1:k

)
, (5)

where Y1:k
def= {y(1), . . . ,y(k)}.

At the kth time instant, we are interested in sequen-
tially updating the a posteriori probabilities of the channel
p(H(k)|Y1:k) as well as the marginal symbol probabilities
p(xj(k)|Y1:k) (for use in channel decoder). This can be
achieved using the following:

p(H(k)|Y1:k) =
∑
x(k)

p
(H(k)|Y1:k,x(k)

)
p
(
x(k)|Y1:k

)
, (6)

p(xj(k)|Y1:k) =
∑

x1(k)

. . .
∑

xj−1(k)

∑
xj+1(k)

. . .
∑

xNT
(k)

p(x1(k), . . . , xj(k), . . . , xNT (k)|Y1:k) (7)

where the distribution p (H(k)|Y1:k,x(k)) is a Gaussian
mixture and the likelihood is given by p (y(k)|Y1:k−1,x(k)).

Propagating all the sufficient statistics of the Gaussian
distributions is computationally prohibitive. Hence, suboptimal
algorithms are sought. In the next section, we introduce
strategies to efficiently approximate Eq. (6) and Eq. (7) and
outline the main steps of our algorithm.

III. ALGORITHM OUTLINE

A. M best approximation based symbol detection

It is seen that the summations in Eq. (6) and Eq. (7)
require a sum of all possible symbol combinations, which
is computationally prohibitive for large system. However, the
probabilities of most of the symbol combinations are typically
very small and contribute very little to the final result. It is pos-
sible to replace the summation over all possible symbol com-
binations with only a subset of M dominant symbol combi-
nations ΘNT

def= {x(m)(k) def= [x(m)
1 (k), . . . , x(m)

NT
(k)]T ,m =

1, . . . ,M} as in [1]. This will result in the following approx-
imation:

Approximation 1: The summation of NNT combinations
can be approximated with that of the M dominant ones:

p(H(k)|Y1:k) ≈
∑
m

p
(H(k)|Y1:k,x(m)(k)

)
p
(
x(m)(k)|Y1:k

)
,

(8)

p(xj(k)|Y1:k)

≈
∑
m

p
(
x

(m)
1 (k), . . . , x(m)

j (k), . . . , x(m)
NT

(k)|Y1:k

)

×I

(
x

(m)
j (k) = xj(k)

)
(9)

where I

(
x

(m)
j (k) = xj(k)

)
is the indicator function for the

event
(
x

(m)
j (k) = xj(k)

)
.

We will present a suboptimal Gaussian approximation based
mixture reduction method to find the M dominant symbol
combinations in Section IV-A. Then this suboptimal identifica-
tion procedure and Approximation 1 (Eq. (9)) will be justified
via computer simulations in Section V-A.

B. Reduced Complexity Kalman Filter Based Channel Esti-
mator

The update of p
(H(k)|Y1:k,x(m)(k)

)
in Eq. (8) requires

operating Kalman filters associated with a specific symbol
combination x(m)(k) which has a complexity of (NTNR)3.
To further reduce the complexity, we propose the following
approximation:

Approximation 2: The joint distribution of the rows in
H(k) can be approximated with the product of the marginal
distributions of each row:

p
(
H(1,:)(k), . . . ,H(NR,:)(k)|Y1:k

) ≈∏
i

p
(
H(i,:)(k)|Y1:k

)
(10)

where H(i,:)(∗) is the ith row of H(∗).
Hence we focus on the approximation of the marginal

probabilities p
(
H(i,:)(k)|Y1:k

)
that is, more specifically,

the approximation of the two moments Ĥ(i,:)(k|k) def=

E
(
H(i,:)(k)|Y1:k

)
and Pi(k|k) def= E

((
H(i,:)(k) −

Ĥ(i,:)(k|k)
)T(

H(i,:)(k) − Ĥ(i,:)(k|k)
)∗

|Y1:k

)
for i =

N1, . . . , NT . Using this approximation, the complexity of the
Kalman filter is dramatically reduced to O(NTN

2
R) with only

slight performance degradation as shown in Sections V-A and
V-B.

The final channel estimates at the k-th time instant is
obtained via the GPB1 algorithm which collapses the channel
estimates from M Kalman filters, which will be described in
Section IV-B. A general introduction of the GPB1 (multiple
model) algorithm can be found in [2] [10] and a detailed
description of our system can also be found in [11].

IV. ALGORITHM DESCRIPTION

We first start this section with some notations related to
p(H(k)), and in particular introduce a representation of H(k)
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used in the sequel. Suppose that at time k−1, the distribution
of interest p(H(k − 1)|Y1:k−1) can be approximated as a
complex circular symmetric Gaussian distribution with mean
Ĥ(k − 1|k − 1) and covariance P(k − 1|k − 1) defined as
follows:

Ĥ(k − 1|k − 1) def= E
(H(k − 1)|Y1:k−1

)
,

P(k − 1|k − 1) def= E

((
Ĥ(k − 1|k − 1) −H(k − 1)

)

×
(
Ĥ(k − 1|k − 1) −H(k − 1)

)H

|Y1:k−1

)
.

As a result of Approximation 2, the variance matrix P(k −
1|k − 1) = Diag(P1(k − 1|k − 1), . . . ,PNR(k − 1|k − 1)) is
a block diagonal matrix.

With the Kalman predictor for AR1 model in Eq. (2), we
can obtain channel prediction Ĥ(k|k− 1) = αĤ(k− 1|k− 1)
and prediction variance P(k|k−1) = α2P(k−1|k−1)+σ2

vI
with Ĥ(∗) = [ĤT

(1,:)(∗) . . . ĤT
(NR,:)(∗)] and Ĥ(∗) =

[Ĥ(1,1)(∗) . . . Ĥ(1,NT )(∗) . . . Ĥ(NR,1)(∗) . . . Ĥ(NR,NT )(∗)]T .
Hence one can represent H(k) = Ĥ(k|k − 1) + H̃(k|k − 1)
where H̃(k|k−1) is a zero mean circular symmetric Gaussian
random variable with variance P(k|k − 1) and rewrite Eq.
(1) as follows:

y(k) = Ĥ(k|k − 1)x(k) + X (k)H̃(k|k − 1) + n(k). (11)

A. M Best Significant Symbol Combinations Identification and
Marginal Symbol Probabilities Computation

First, we explain how to identify the M most significant
symbol combinations via a modified SGA algorithm [1] with
channel uncertainty. Given that we have identified M signif-
icant combinations Θj−1(k)

def= {x(m)
1 (k), . . . , x(m)

j−1(k),m =
1, 2, . . . ,M} for antenna 1, 2, . . . , j − 1 at the (j − 1)-th step
of the algorithm. We would like to calculate

p
(
x

(m)
1 (k), . . . , x(m)

j−1(k), xj(k)|Y1:k

)
∝ p

(
y(k)|x(m)

1 (k), . . . , x(m)
j−1(k), xj(k),Y1:k−1

)

× p (xj(k))
j−1∏
l=1

p
(
x

(m)
l (k)

)
def= ψm

(
xj(k)

)
for all m = 1, . . . ,M and xj(k) ∈ A in order to select
Θj(k) which contains M symbol combinations of the largest
probabilities, among the MN possibilities.

However, the computation of MN likelihoods is still pro-
hibitive for large systems. We can rewrite Eq. (11) as follows,

y(k) =
j∑

l=1

Ĥ(:,l)(k|k − 1)xl(k)

+
NT∑

l=j+1

Ĥ(:,l)(k|k − 1)xl(k)

+ X (k)H̃(k|k − 1) + n(k)

def=
j∑

l=1

Ĥ(:,l)(k|k − 1)xl(k) + ñj(k). (12)

where H(:,l)(∗) is the lth column of H(∗) for l = 1, . . . , NT .
Here we approximate the interference noise term ñj(k)

as a moment matched Gaussian distribution which is
known as probabilistic data association (PDA) in the litera-
ture [12] [13] [14] [15] [16]. We can calculate an approxima-
tion to ψm

(
xj(k)

)
as follows:

ψm

(
xj(k)

) ≈ exp
(
−
(
w(m)

j (k)
)H

Π−1
j (k)w(m)

j (k)
)

× p
(
xj(k)

) j−1∏
l=1

p
(
x

(m)
l (k)

)
(13)

w(m)
j (k) = y(k) −

j−1∑
l=1

Ĥ(:,l)(k|k − 1)x(m)
l (k)

−Ĥ(:,j)(k|k − 1)xj(k),

Π−1
j (k)

=

⎛
⎝Π(k) + γ

NT∑
l=j+1

Ĥ(:,l)(k|k − 1)
(
Ĥ(:,l)(k|k − 1)

)H

⎞
⎠

−1

,

Π(k) = σ2
nI + Var

(
X (k)H̃(k|k − 1)

)
,

Var
(
X (k)H̃(k|k − 1)

)
= γDiag (Tr(P1(k|k − 1)), . . . ,Tr(PNR(k|k − 1))) ,

where the mean of the modulation alphabet A is zero and its
variance is γ (w.r.t. a uniform distribution) and Tr(∗) means
the trace of a matrix. The matrix Π−1

j (k) for j = 1, . . . , NT −
1 can be computed sequentially via the matrix inversion lemma
given in [11].

Then M symbol combinations with the largest ψm

(
xj(k)

)
are selected among the MN possible symbol combinations,
resulting in a new set Θj(k). At the end of this selection
process, we can obtain the set ΘNT (k) which contains M
of the most significant symbol combinations x(m)(k),m =
1, . . . ,M .

Then, the marginal symbol probabilities can be computed
from the MN likelihoods ψm

(
xNT (k)

)
,m = 1, . . . ,M

and xNT (k) ∈ A with approximation 1 (Eq.(9)). For j =
1, . . . , NT − 1:

p
(
xj(k)|Y1:k

) ≈ 1
Z(k)

∑
xNT

(k)∈A

∑
m

ψm

(
xNT (k)

)

× I

(
x

(m)
j (k) = xj(k)

)
(14)

where Z(k) is a normalizing constant. For the NT th antenna,
p
(
xNT (k)|Y1:k

) ≈ 1
Z(k)

∑
m ψm

(
xNT (k)

)
.

B. GPB1 Channel Estimation

Operating a Kalman filter for each identified significant
symbol combination x(m),m = 1, . . . ,M , we can get channel
estimation Ĥ(m)

(i,:)(k|k), estimation variance P(m)
i (k|k), mea-

surement residual v(m)
i (k) and residual variance Ω(m)

i (k) for
i = 1, . . . , NT as described in [11].
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Then the model probabilities can be computed as follows:

p
(
x(m)(k)|Y1:k

)
= φm(k)/

∑
m

φm(k), (15)

φm(k) = exp

(
−
∑

i

(
|v(m)

i (k)|2/Ω(m)
i (k)

))

×
∏
j

p
(
x

(m)
j (k)

)
/
∏

i

Ω(m)
i (k).

Collapsing the channel estimates via the GPB1 algorithm,
we get H(k|k) for the next time instant:

Ĥ(i,:)(k|k) =
∑
x(k)

E
(
H(i,:)(k)|Y1:k,x(k)

)
× p (x(k)|Y1:k)

≈
∑
m

Ĥ(m)
(i,:)(k|k)p

(
x(m)(k)|Y1:k

)
.

The co-variance P(k|k) for the next time instant is shown in
top of the next page where the underlined term is known as
the “spread-of-the-means” term [2][11].

V. SIMULATION RESULTS

In this section, we provide computer simulation examples to
compare the performance of the proposed SGAGPB algorithm
(M = 20) with that of the APP detector with known CSI for
each time instant (APPKnowChan), the genie aided method
(performance bound) and the baseline system which used
the APP / SD [9] detectors and a Kalman filter channel
estimation based on soft symbol decisions (SDKal/APPKal).
The channel uncertainty is not included in symbol detection in
the SDKal/APPKal algorithms. In the genie-aided approach,
we estimate the channels using a randomly generated symbol
sequence known to the receiver via a Kalman filter and
then detect the symbols via the APP detector with channel
estimation. In order to validate the approximations, we also
provide simulation results for the modified SGA algorithm
(M = 20) with a Kalman filter based channel estima-
tor (SGAKal) and GPB1 based channel estimator with full
covariance (SGAGPB-FullCov) respectively. The SGAGPB-
FullCov algorithm works without approximation 2 but with
approximation 1.

The simulation is based on a coded MIMO system with soft
non-iterative decoding and detection (i.e. the MIMO detector
processes the data only once) [17]. We set NT = NR =
4 and consider a 16QAM modulation with 1152 bits per
frame before channel coding. A 1/2 rate Turbo Coder with
generators 7 and 5 in octal notation is used at the transmitter
and a BCJR channel decoder with 4 iterations is used at
the receiver. For each block, the Rayleigh fading channel is
generated by Clarke’s model [18] with a normalized maximum
Doppler spread fd = 1e − 3. The channels related to each
transmitter and receiver pair are generated independently. The
SNR is defined as E{||Hx||2}/E{||n||2} = γNT /σ

2
n.

The initial channel estimation Ĥ(0|0) for all the algorithms
is computed from the training sequence via maximum likeli-
hood estimation [19] Ĥ(0|0) = Y(0)X(0)H where X(0) is a
NT ×NT orthogonal training sequence known to the receiver
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Fig. 1. Uncoded BER performance of various algorithms for a 16QAM,
4 × 4 MIMO system with fd = 10−3.

and Y(0) is the observation matrix at receiver. The initial
channel estimation variance is P(0|0) = 0.002I and α ≈ 1.

It is possible that some of the marginal symbol probabilities
calculated from the SGA based algorithms via Approximation
1 in Eq. (9) will be zero. Thus a limit is set for the soft output
(Log likelihood ratio (LLR) = [−20, 20]) of the SGA based
algorithms to get the best performance.

A. Performance Comparison

Fig. 1 illustrates the uncoded BER performance of all the
algorithms. It can be seen that the SGAGPB algorithm is 1 dB
better than the APPKal algorithm and just 1 dB worse than
the genie-aided approach (performance bound) in the uncoded
case. Fig. 2 shows the channel estimation mean square error
(MSE) for different algorithms. The better channel estimation
provided by the SGAGPB algorithm results in good soft
decoding quality as shown in the coded BER performance
in Fig. 3. Simulation results for other MIMO systems (e.g.
NT = NR = 6 or turbo receiver systems)can be found in
[11].

B. Complexity Comparison

The Kalman filter used in the APPKal, SDKal, SGAKal
and SGAGPB algorithms has a total complexity of O(NRN

2
T )

(the covariance matrix P(k − 1|k − 1) is block diagonal).
The complexity of computing the MNNT likelihoods in
Eq. (13) is O(MNTN

2
R) complex operations. Therefore, the

overall complexity of the SGAGPB algorithm is approximately
O(MNTN

2
R) complex operations. Fig. 4 summarizes the

total number of operations (real ADD+MUL) of the APPKal,
SDKal, SGAKal, SGAGPB and SGAGPB-FullCov algorithms
for each time instant. The number of operations of the SD
algorithm is averaged from 1000 channel realizations with
SNR=22 dB. The complexity of the SGAGPB and SGAKal
algorithms increases far slower than that of the APPKal and
SDKal algorithms with increasing antenna numbers.
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Pi(k|k) =
∑
x(k)

E

((
H(i,:)(k) − Ĥ(i,:)(k|k)

)T (
H(i,:)(k) − Ĥ(i,:)(k|k)

)∗
|Y1:k,x(k)

)
p (x(k)|Y1:k)

≈
∑
m

((
Ĥ(m)

(i,:)(k|k) − Ĥ(i,:)(k|k)
)T (

Ĥ(m)
(i,:)(k|k) − Ĥ(i,:)(k|k)

)∗
+ P(m)

i (k|k)
)
p
(
x(m)(k)|Y1:k

)
.
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Fig. 2. Channel estimation MSE of various algorithms for a 16QAM, 4× 4
MIMO system with fd = 10−3.
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Fig. 3. Coded BER performance of various algorithms for a 16QAM, 4× 4
MIMO system with fd = 10−3.

C. Discussion

The performance of the SGAKal algorithm is better than
that of the SDKal and APPKal algorithms. This justifies
the proposed identification procedure and marginal symbol
probabilities computation method (Eq. (9) in Approximation
1) and shows that it is beneficial to take into account channel
uncertainty for symbol detection.

The SGAGPB algorithm outperforms the SGAKal algo-
rithm. This demonstrates that the GPB1 based multiple model
channel estimator works better than a Kalman filter channel
estimator at slightly increased complexity (Eq. (8) in Ap-
proximation 1). The complexity of the SGAGPB algorithm
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Fig. 4. Complexity comparison of various algorithms for a 16QAM, MIMO
system with different values of NT .

with Approximation 2 (SGAGPB) is much lower than that
of the SGAGPB-FullCov algorithm with slightly degraded
performance. This shows that there is a good tradeoff between
complexity and performance when using Approximation 2.

The proposed algorithm is based on the GPB1 algorithm
and only works for first order AR channel models. For l > 1-
th order AR channel model, it is necessary to consider l-th
order GPB algorithm and joint symbol detection of l time
instants which is not trivial for implementation. An efficient
suboptimal solution is still an open problem.

VI. CONCLUSIONS

We have proposed a new joint channel estimation and
symbol detection scheme for MIMO systems based on the
Gaussian approximation and the GPB1 algorithm. First, we
have modified the SGA algorithm for identification of the
M most significant symbol combinations in order to take
into account channel uncertainty. Then reduced complexity
Kalman filtering is performed for each symbol combination
and all the estimations from different models are collapsed
into a final one, which is propagated to the next time instant.
Simulation results show that the performance of the proposed
algorithm is much better than that of the APP detector with
single Kalman filter based channel estimation algorithm while
enjoying lower complexity.
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