3 research outputs found

    DEVELOPMENT OF SECUREPLUS ANTIVIRUS WITH THE ARTIFICIAL IMMUNE SYSTEMMODEL

    Get PDF
    This paper is about Malware proliferation in the wide and the development of an Antivirus called Secure Plus. Malware is a generic name for malfunctioned program codes that could wreak destructive impacts on Information Technology critical infrastructures. These malware usually use various techniques to avoid being detected; usually they are encrypted using hybridized cryptographic algorithms. Malware may be detected using antivirus that can scan the database signatures already accumulated and stored by antivirus vendors in some server. These stored databases signatures can then be compared with zero-day malware through comparison with the benign software. The zero-day malware are of sophisticated program codes that can transmute into different transforming patterns; yet retain their portent functionalities attributes and are now of billion categories by deverse clones. This paper after over viewing the literatures on ground (and they are of large numerical numbers), attempts to make its contribution to the design and development of Antivirus that can detect those zero-day or metamorphic malware. This proposed Antivirus being developed is christened Secure Plus that applies the heuristic Artificial Immune System Algorithm for the design and development. The tested experimental outputs are provided as prove of the Secure Plus effectual functionality worthy of application but need further works through to detect malware proactively

    Artificial immune systems based committee machine for classification application

    Get PDF
    This thesis was submitted for the degree of Doctor of Philosophy and awarded by Brunel University.A new adaptive learning Artificial Immune System (AIS) based committee machine is developed in this thesis. The new proposed approach efficiently tackles the general problem of clustering high-dimensional data. In addition, it helps on deriving useful decision and results related to other application domains such classification and prediction. Artificial Immune System (AIS) is a branch of computational intelligence field inspired by the biological immune system, and has gained increasing interest among researchers in the development of immune-based models and techniques to solve diverse complex computational or engineering problems. This work presents some applications of AIS techniques to health problems, and a thorough survey of existing AIS models and algorithms. The main focus of this research is devoted to building an ensemble model integrating different AIS techniques (i.e. Artificial Immune Networks, Clonal Selection, and Negative Selection) for classification applications to achieve better classification results. A new AIS-based ensemble architecture with adaptive learning features is proposed by integrating different learning and adaptation techniques to overcome individual limitations and to achieve synergetic effects through the combination of these techniques. Various techniques related to the design and enhancements of the new adaptive learning architecture are studied, including a neuro-fuzzy based detector and an optimizer using particle swarm optimization method to achieve enhanced classification performance. An evaluation study was conducted to show the performance of the new proposed adaptive learning ensemble and to compare it to alternative combining techniques. Several experiments are presented using different medical datasets for the classification problem and findings and outcomes are discussed. The new adaptive learning architecture improves the accuracy of the ensemble. Moreover, there is an improvement over the existing aggregation techniques. The outcomes, assumptions and limitations of the proposed methods with its implications for further research in this area draw this research to its conclusion
    corecore