32,372 research outputs found

    Conditional Random Fields as Recurrent Neural Networks

    Full text link
    Pixel-level labelling tasks, such as semantic segmentation, play a central role in image understanding. Recent approaches have attempted to harness the capabilities of deep learning techniques for image recognition to tackle pixel-level labelling tasks. One central issue in this methodology is the limited capacity of deep learning techniques to delineate visual objects. To solve this problem, we introduce a new form of convolutional neural network that combines the strengths of Convolutional Neural Networks (CNNs) and Conditional Random Fields (CRFs)-based probabilistic graphical modelling. To this end, we formulate mean-field approximate inference for the Conditional Random Fields with Gaussian pairwise potentials as Recurrent Neural Networks. This network, called CRF-RNN, is then plugged in as a part of a CNN to obtain a deep network that has desirable properties of both CNNs and CRFs. Importantly, our system fully integrates CRF modelling with CNNs, making it possible to train the whole deep network end-to-end with the usual back-propagation algorithm, avoiding offline post-processing methods for object delineation. We apply the proposed method to the problem of semantic image segmentation, obtaining top results on the challenging Pascal VOC 2012 segmentation benchmark.Comment: This paper is published in IEEE ICCV 201

    3D Human Activity Recognition with Reconfigurable Convolutional Neural Networks

    Full text link
    Human activity understanding with 3D/depth sensors has received increasing attention in multimedia processing and interactions. This work targets on developing a novel deep model for automatic activity recognition from RGB-D videos. We represent each human activity as an ensemble of cubic-like video segments, and learn to discover the temporal structures for a category of activities, i.e. how the activities to be decomposed in terms of classification. Our model can be regarded as a structured deep architecture, as it extends the convolutional neural networks (CNNs) by incorporating structure alternatives. Specifically, we build the network consisting of 3D convolutions and max-pooling operators over the video segments, and introduce the latent variables in each convolutional layer manipulating the activation of neurons. Our model thus advances existing approaches in two aspects: (i) it acts directly on the raw inputs (grayscale-depth data) to conduct recognition instead of relying on hand-crafted features, and (ii) the model structure can be dynamically adjusted accounting for the temporal variations of human activities, i.e. the network configuration is allowed to be partially activated during inference. For model training, we propose an EM-type optimization method that iteratively (i) discovers the latent structure by determining the decomposed actions for each training example, and (ii) learns the network parameters by using the back-propagation algorithm. Our approach is validated in challenging scenarios, and outperforms state-of-the-art methods. A large human activity database of RGB-D videos is presented in addition.Comment: This manuscript has 10 pages with 9 figures, and a preliminary version was published in ACM MM'14 conferenc

    Semantic Video CNNs through Representation Warping

    Full text link
    In this work, we propose a technique to convert CNN models for semantic segmentation of static images into CNNs for video data. We describe a warping method that can be used to augment existing architectures with very little extra computational cost. This module is called NetWarp and we demonstrate its use for a range of network architectures. The main design principle is to use optical flow of adjacent frames for warping internal network representations across time. A key insight of this work is that fast optical flow methods can be combined with many different CNN architectures for improved performance and end-to-end training. Experiments validate that the proposed approach incurs only little extra computational cost, while improving performance, when video streams are available. We achieve new state-of-the-art results on the CamVid and Cityscapes benchmark datasets and show consistent improvements over different baseline networks. Our code and models will be available at http://segmentation.is.tue.mpg.deComment: ICCV 201

    Two Stream LSTM: A Deep Fusion Framework for Human Action Recognition

    Full text link
    In this paper we address the problem of human action recognition from video sequences. Inspired by the exemplary results obtained via automatic feature learning and deep learning approaches in computer vision, we focus our attention towards learning salient spatial features via a convolutional neural network (CNN) and then map their temporal relationship with the aid of Long-Short-Term-Memory (LSTM) networks. Our contribution in this paper is a deep fusion framework that more effectively exploits spatial features from CNNs with temporal features from LSTM models. We also extensively evaluate their strengths and weaknesses. We find that by combining both the sets of features, the fully connected features effectively act as an attention mechanism to direct the LSTM to interesting parts of the convolutional feature sequence. The significance of our fusion method is its simplicity and effectiveness compared to other state-of-the-art methods. The evaluation results demonstrate that this hierarchical multi stream fusion method has higher performance compared to single stream mapping methods allowing it to achieve high accuracy outperforming current state-of-the-art methods in three widely used databases: UCF11, UCFSports, jHMDB.Comment: Published as a conference paper at WACV 201
    • …
    corecore