5 research outputs found

    An Efficient Local Search for Partial Latin Square Extension Problem

    Full text link
    A partial Latin square (PLS) is a partial assignment of n symbols to an nxn grid such that, in each row and in each column, each symbol appears at most once. The partial Latin square extension problem is an NP-hard problem that asks for a largest extension of a given PLS. In this paper we propose an efficient local search for this problem. We focus on the local search such that the neighborhood is defined by (p,q)-swap, i.e., removing exactly p symbols and then assigning symbols to at most q empty cells. For p in {1,2,3}, our neighborhood search algorithm finds an improved solution or concludes that no such solution exists in O(n^{p+1}) time. We also propose a novel swap operation, Trellis-swap, which is a generalization of (1,q)-swap and (2,q)-swap. Our Trellis-neighborhood search algorithm takes O(n^{3.5}) time to do the same thing. Using these neighborhood search algorithms, we design a prototype iterated local search algorithm and show its effectiveness in comparison with state-of-the-art optimization solvers such as IBM ILOG CPLEX and LocalSolver.Comment: 17 pages, 2 figure

    Massively parallel hybrid search for the partial Latin square extension problem

    Full text link
    The partial Latin square extension problem is to fill as many as possible empty cells of a partially filled Latin square. This problem is a useful model for a wide range of relevant applications in diverse domains. This paper presents the first massively parallel hybrid search algorithm for this computationally challenging problem based on a transformation of the problem to partial graph coloring. The algorithm features the following original elements. Based on a very large population (with more than 10410^4 individuals) and modern graphical processing units, the algorithm performs many local searches in parallel to ensure an intensified exploitation of the search space. It employs a dedicated crossover with a specific parent matching strategy to create a large number of diversified and information-preserving offspring at each generation. Extensive experiments on 1800 benchmark instances show a high competitiveness of the algorithm compared with the current best performing methods. Competitive results are also reported on the related Latin square completion problem. Analyses are performed to shed lights on the understanding of the main algorithmic components. The code of the algorithm will be made publicly available

    On local search and LP and SDP relaxations for k-Set Packing

    Get PDF
    Set packing is a fundamental problem that generalises some well-known combinatorial optimization problems and knows a lot of applications. It is equivalent to hypergraph matching and it is strongly related to the maximum independent set problem. In this thesis we study the k-set packing problem where given a universe U and a collection C of subsets over U, each of cardinality k, one needs to find the maximum collection of mutually disjoint subsets. Local search techniques have proved to be successful in the search for approximation algorithms, both for the unweighted and the weighted version of the problem where every subset in C is associated with a weight and the objective is to maximise the sum of the weights. We make a survey of these approaches and give some background and intuition behind them. In particular, we simplify the algebraic proof of the main lemma for the currently best weighted approximation algorithm of Berman ([Ber00]) into a proof that reveals more intuition on what is really happening behind the math. The main result is a new bound of k/3 + 1 + epsilon on the integrality gap for a polynomially sized LP relaxation for k-set packing by Chan and Lau ([CL10]) and the natural SDP relaxation [NOTE: see page iii]. We provide detailed proofs of lemmas needed to prove this new bound and treat some background on related topics like semidefinite programming and the Lovasz Theta function. Finally we have an extended discussion in which we suggest some possibilities for future research. We discuss how the current results from the weighted approximation algorithms and the LP and SDP relaxations might be improved, the strong relation between set packing and the independent set problem and the difference between the weighted and the unweighted version of the problem.Comment: There is a mistake in the following line of Theorem 17: "As an induced subgraph of H with more edges than vertices constitutes an improving set". Therefore, the proofs of Theorem 17, and hence Theorems 19, 23 and 24, are false. It is still open whether these theorems are tru

    Approximation algorithms for distributed and selfish agents

    Get PDF
    Thesis (Ph. D.)--Massachusetts Institute of Technology, Dept. of Mathematics, 2005.Includes bibliographical references (p. 157-165).Many real-world systems involve distributed and selfish agents who optimize their own objective function. In these systems, we need to design efficient mechanisms so that system-wide objective is optimized despite agents acting in their own self interest. In this thesis, we develop approximation algorithms and decentralized mechanisms for various combinatorial optimization problems in such systems. First, we investigate the distributed caching and a general set of assignment problems. We develop an almost tight LP-based ... approximation algorithm and a local search ... approximation algorithm for these problems. We also design efficient decentralized mechanisms for these problems and study the convergence of the corresponding games. In the following chapters, we study the speed of convergence to high quality solutions on (random) best-response paths of players. First, we study the average social value on best response paths in basic-utility, market sharing, and cut games. Then, we introduce the sink equilibrium as a new equilibrium concept. We argue that, unlike Nash equilibria, the selfish behavior of players converges to sink equilibria and all strategic games have a sink equilibrium. To illustrate the use of this new concept, we study the social value of sink equilibria in weighted selfish routing (or weighted congestion) games and valid-utility (or submodular-utility) games. In these games, we bound the average social value on random best-response paths for sink equilibria.. Finally, we study cross-monotonic cost sharings and group-strategyproof mechanisms.(cont.) We study the limitations imposed by the cross-monotonicity property on cost-sharing schemes for several combinatorial optimization games including set cover and metric facility location. We develop a novel technique based on the probabilistic method for proving upper bounds on the budget-balance factor of cross-monotonic cost sharing schemes, deriving tight or nearly-tight bounds for these games. At the end, we extend some of these results to group-strategyproof mechanisms.by Vahab S. Mirrokni.Ph.D
    corecore