394 research outputs found

    Cryptanalysis and Modification of an Improved Self-Certified Digital Signature Scheme with Message Recovery

    Get PDF
    Digital signature plays a key role in bringing authenticity to cryptographic communications. A signature scheme with message recovery has two characteristics. The public key of the signer can be authenticated while verifying the signature, and the receiver is able to obtain the message. In 2013, Wu and Xu presented a self-certified digital signature scheme with message recovery by combining the two concepts of digital signature with message recovery and self-certified public key. They also claimed that their scheme provides provable security against man-in-the-middle attack, forgery attack, and message leakage. This paper first reviews the scheme of Wu and Xu, and then presents an insider forgery attack to this scheme. It will be shown that this scheme is not secure against insider forgery attack. A modification is proposed in order to overcome this weakness

    Constructing a pairing-free certificateless proxy signature scheme from ECDSA

    Get PDF
    Proxy signature is a kind of digital signature, in which a user called original signer can delegate his signing rights to another user called proxy signer and the proxy signer can sign messages on behalf of the original signer. Certificateless proxy signature (CLPS) means proxy signature in the certificateless setting in which there exists neither the certificate management issue as in traditional PKI nor private key escrow problem as in Identity-based setting. Up to now, a number of CLPS schemes have been proposed, but some of those schemes either lack formal security analysis or turn out to be insecure and others are less efficient because of using costly operations including bilinear pairings and map-to-point hashing on elliptic curve groups. In this paper, we formalize the definition and security model of CLPS schemes. We then construct a pairing-free CLPS scheme from the standard ECDSA and prove its security in the random oracle model under the discrete semi-logarithm problem’s hardness assumption as in the provable security result of ECDSA

    Security in Key Agreement: Two-Party Certificateless Schemes

    Get PDF
    The main goal of cryptography is to enable secure communication over a public channel; often a secret shared among the communicating parties is used to achieve this. The process by which these parties agree on such a shared secret is called key agreement. In this thesis, we focus on two-party key agreement protocols in the public-key setting and study the various methods used to establish and validate public keys. We pay particular attention to certificateless key agreement schemes and attempt to formalize a relevant notion of security. To that end, we give a possible extension of the existing extended Canetti-Krawzcyk security model applicable to the certificateless setting. We observe that none of the certificateless protocols we have seen in the literature are secure in this model; it is an open question whether such schemes exist. We analyze several published certificateless key agreement protocols, demonstrating the existence of key compromise impersonation attacks and even a man-in-the-middle attack in one case, contrary to the claims of the authors. We also briefly describe weaknesses exhibited by these protocols in the context of our suggested security model

    A comprehensive meta-analysis of cryptographic security mechanisms for cloud computing

    Get PDF
    The file attached to this record is the author's final peer reviewed version. The Publisher's final version can be found by following the DOI link.The concept of cloud computing offers measurable computational or information resources as a service over the Internet. The major motivation behind the cloud setup is economic benefits, because it assures the reduction in expenditure for operational and infrastructural purposes. To transform it into a reality there are some impediments and hurdles which are required to be tackled, most profound of which are security, privacy and reliability issues. As the user data is revealed to the cloud, it departs the protection-sphere of the data owner. However, this brings partly new security and privacy concerns. This work focuses on these issues related to various cloud services and deployment models by spotlighting their major challenges. While the classical cryptography is an ancient discipline, modern cryptography, which has been mostly developed in the last few decades, is the subject of study which needs to be implemented so as to ensure strong security and privacy mechanisms in today’s real-world scenarios. The technological solutions, short and long term research goals of the cloud security will be described and addressed using various classical cryptographic mechanisms as well as modern ones. This work explores the new directions in cloud computing security, while highlighting the correct selection of these fundamental technologies from cryptographic point of view

    Certificateless Designated Verifier Proxy Signature

    Get PDF
    Proxy signature (PS) is a kind of digital signature, in which an entity called original signer can delegate his signing rights to another entity called proxy signer. Designated verifier signature (DVS) is a kind of digital signature where the authenticity of any signature can be verified by only one verifier who is designated by the signer when generating it. Designated verifier proxy signature (DVPS) combines the idea of DVS with the concept of proxy signature (PS) and is suitable for being applied in many scenarios from e-tender, e-voting, e-auction, e-health and e-commerce, etc. Many DVPS schemes have been proposed and Identity-based DVPS (IBDVPS) schemes have also been discussed. Certificateless public-key cryptography (CL-PKC) is acknowledged as an appealing paradigm because there exists neither the certificate management issue as in traditional PKI nor private key escrow problem as in Identity-based setting. A number of certificateless designated verifier signature (CLDVS) schemes and many certificateless proxy signature (CLPS) schemes have been proposed. However, to the best of our knowledge, the concept of Certificateless Designated Verifier Proxy Signature (CLDVPS) has not been appeared in the literature. In this paper, we formalize the definition and the security model of CLDVPS schemes. We then construct the first CLDVPS scheme and prove its security

    Society-oriented cryptographic techniques for information protection

    Get PDF
    Groups play an important role in our modern world. They are more reliable and more trustworthy than individuals. This is the reason why, in an organisation, crucial decisions are left to a group of people rather than to an individual. Cryptography supports group activity by offering a wide range of cryptographic operations which can only be successfully executed if a well-defined group of people agrees to co-operate. This thesis looks at two fundamental cryptographic tools that are useful for the management of secret information. The first part looks in detail at secret sharing schemes. The second part focuses on society-oriented cryptographic systems, which are the application of secret sharing schemes in cryptography. The outline of thesis is as follows

    A Decentralised Digital Identity Architecture

    Get PDF
    Current architectures to validate, certify, and manage identity are based on centralised, top-down approaches that rely on trusted authorities and third-party operators. We approach the problem of digital identity starting from a human rights perspective, with a primary focus on identity systems in the developed world. We assert that individual persons must be allowed to manage their personal information in a multitude of different ways in different contexts and that to do so, each individual must be able to create multiple unrelated identities. Therefore, we first define a set of fundamental constraints that digital identity systems must satisfy to preserve and promote privacy as required for individual autonomy. With these constraints in mind, we then propose a decentralised, standards-based approach, using a combination of distributed ledger technology and thoughtful regulation, to facilitate many-to-many relationships among providers of key services. Our proposal for digital identity differs from others in its approach to trust in that we do not seek to bind credentials to each other or to a mutually trusted authority to achieve strong non-transferability. Because the system does not implicitly encourage its users to maintain a single aggregated identity that can potentially be constrained or reconstructed against their interests, individuals and organisations are free to embrace the system and share in its benefits.Comment: 30 pages, 10 figures, 3 table
    • …
    corecore