190 research outputs found

    A Flexible 5G Frame Structure Design for Frequency-Division Duplex Cases

    Get PDF

    Performance Comparison of Dual Connectivity and Hard Handover for LTE-5G Tight Integration in mmWave Cellular Networks

    Get PDF
    MmWave communications are expected to play a major role in the Fifth generation of mobile networks. They offer a potential multi-gigabit throughput and an ultra-low radio latency, but at the same time suffer from high isotropic pathloss, and a coverage area much smaller than the one of LTE macrocells. In order to address these issues, highly directional beamforming and a very high-density deployment of mmWave base stations were proposed. This Thesis aims to improve the reliability and performance of the 5G network by studying its tight and seamless integration with the current LTE cellular network. In particular, the LTE base stations can provide a coverage layer for 5G mobile terminals, because they operate on microWave frequencies, which are less sensitive to blockage and have a lower pathloss. This document is a copy of the Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorzi. It will propose an LTE-5G tight integration architecture, based on mobile terminals' dual connectivity to LTE and 5G radio access networks, and will evaluate which are the new network procedures that will be needed to support it. Moreover, this new architecture will be implemented in the ns-3 simulator, and a thorough simulation campaign will be conducted in order to evaluate its performance, with respect to the baseline of handover between LTE and 5G.Comment: Master's Thesis carried out by Mr. Michele Polese under the supervision of Dr. Marco Mezzavilla and Prof. Michele Zorz

    Delay measurements In live 5G cellular network

    Get PDF
    Abstract. 5G Network has many important properties, including increased bandwidth, increased data throughput, high reliability, high network density, and low latency. This thesis concentrate on the low latency attribute of the 5G Standalone (SA) mode and 5G Non-Standalone (NSA) mode. One of the most critical considerations in 5G is to have low latency network for various delay-sensitive applications, such as remote diagnostics and surgery in healthcare, self-driven cars, industrial factory automation, and live audio productions in the music industry. Therefore, 5G employs various retransmission algorithms and techniques to meet the low latency standards, a new frame structure with multiple subcarrier spacing (SCS) and time slots, and a new cloud-native core. For the low latency measurements, a test setup is built. A video is sent from the 5G User Equipment (UE) to the multimedia server deployed in the University of Oulu 5G test Network (5GTN) edge server. The University of Oulu 5GTN is operating both in NSA and SA modes. Delay is measured both for the downlink and the uplink direction with Qosium tool. When calculating millisecond-level transmission delays, clock synchronization is essential. Therefore, Precision Time Protocol daemon (PTPd) service is initiated on both the sending and receiving machines. The tests comply with the specifications developed at the University of Oulu 5GTN for both the SA and the NSA mode. When the delay measurement findings were compared between the two deployment modes, it was observed that the comparison was not appropriate. The primary reason for this is that in the 5GTN, the NSA and the SA have entirely different data routing paths and configurations. Additionally, the author did not have sufficient resources to make the required architectural changes

    Agile 5G Scheduler for Improved E2E Performance and Flexibility for Different Network Implementations

    Get PDF
    In this article, we present a holistic overview of the agile multi-user scheduling functionality in 5G. An E2E perspective is given, including the enhanced QoS architecture that comes with 5G, and the large number of scheduling relatedoptions from the new access stratum sub-layer, MAC, and PHY layer. A survey of the 5G design agreements from the recently concluded 5G Study in 3GPP is presented, and it is explained how to best utilize all these new degrees of freedom to arrive at an agile scheduling design that offers superior E2E performance for a variety of services with highly diverse QoS requirements.Enhancements to ensure efficient implementation of the 5G scheduler for different Network architectures are outlined. Finally, state-of-the-art system level performance results are presented, showing the ability to efficiently multiplex services with highly diverse QoS requirements.In this article, we present a holistic overview of the agile multi-user scheduling functionality in 5G. An E2E perspective is given, including the enhanced QoS architecture that comes with 5G, and the large number of scheduling related options from the new access stratum sub-layer, MAC, and PHY layer. A survey of the 5G design agreements from the recently concluded 5G Study in 3GPP is presented, and it is explained how to best utilize all these new degrees of freedom to arrive at an agile scheduling design that offers superior E2E performance for a variety of services with highly diverse QoS requirements. Enhancements to ensure efficient implementation of the 5G scheduler for different network architectures are outlined. Finally, state-of-the-art system level performance results are presented, showing the ability to efficiently multiplex services with highly diverse QoS requirements

    LTE Multicodeword-MIMO; Hybrid-ARQ performance studies

    Get PDF
    Langattomassa tiedonsiirrossa on tällä hetkellä meneillään suuria muutoksia, sitten ensimmäisen matkapuhelinsukupolven käyttöönoton. Uusia datapuhelimia, kuten myös kämmentietokoneita käytetään internetin selaamiseen, videoiden katselemiseen ja pelaamiseen matkapuhelinverkon kautta. Voidaakseen tyydyttämään kuluttajien vaatimukset, tarve uusien langattoman tiedonsiirron normien luomiseen on merkittävä. Long Term Evolution (LTE) on, Third Generation Partership Project:in (3GPP) johtama, ehdokas seuraavaksi matkapuhelinsukupolven standardiksi. LTE:n ominaisuuksiin kuuluvat mm. korkea suoritusteho, matala latenssi, yksinkertaisuus ja alhaiset kustannukset. Tulevassa standardissa on aihealueita, joita ei ole varsinaisesti tutkittu akateemisessa maailmassa kuten Hybrid Automatic Repeat Request:in (HARQ) suorituskykyä. Koska langaton tiedonsiirto on epälineaarinen prosessi, sitä mallinnetaan simulaattorin avulla. Simulaattori on tehty MATLAB ympäristössä LTE:n standardien mukaisesti. Kolme eri Multiple Input Multiple Output (MIMO) downlink HARQ skenaariota luotiin ja niiden suorituskykyä arvioitiin. Pääpaino työn tutkimukselle kohdistuu kolmen HARQ:n suorituskykyyn, tosin simulaattorimallin todistaminen on myös keskeinen osa tätä työtä.Mobile communication is going through major changes since the introduction of first generation mobile phones. Not only phones, but various handheld devices are starting to use the mobile communication network for internet browsing, multimedia or even online gaming. There is a high need for fast mobile connection and therefore new standards and specifications need to be created to satisfy the consumer requirements. Long Term Evolution (LTE) is the latest candidate for the next mobile communication standard led by Third Generation Partnership Project (3GPP). LTEs main features are high throughput, low latency, simple architecture and low operating costs. Since mobile data transmission is a non linear process, a simulator is built to model the procedure. Simulator made for this thesis was written in MATLAB meeting the 3GPPs set standards for LTE. Three different Multiple Input Multiple Output (MIMO) downlink HARQ scenarios were created and their performance was evaluated. The main focus of this thesis is the performance comparison of the three downlink scenarios; however the verification of the simulator model plays also a significant role in this work

    Multi-Service Radio Resource Management for 5G Networks

    Get PDF
    corecore