2 research outputs found

    A Distributed Asynchronous Method of Multipliers for Constrained Nonconvex Optimization

    Get PDF
    This paper presents a fully asynchronous and distributed approach for tackling optimization problems in which both the objective function and the constraints may be nonconvex. In the considered network setting each node is active upon triggering of a local timer and has access only to a portion of the objective function and to a subset of the constraints. In the proposed technique, based on the method of multipliers, each node performs, when it wakes up, either a descent step on a local augmented Lagrangian or an ascent step on the local multiplier vector. Nodes realize when to switch from the descent step to the ascent one through an asynchronous distributed logic-AND, which detects when all the nodes have reached a predefined tolerance in the minimization of the augmented Lagrangian. It is shown that the resulting distributed algorithm is equivalent to a block coordinate descent for the minimization of the global augmented Lagrangian. This allows one to extend the properties of the centralized method of multipliers to the considered distributed framework. Two application examples are presented to validate the proposed approach: a distributed source localization problem and the parameter estimation of a neural network.Comment: arXiv admin note: substantial text overlap with arXiv:1803.0648

    Nonlinear Programming Methods for Distributed Optimization

    Get PDF
    In this paper we investigate how standard nonlinear programming algorithms can be used to solve constrained optimization problems in a distributed manner. The optimization setup consists of a set of agents interacting through a communication graph that have as common goal the minimization of a function expressed as a sum of (possibly non-convex) differentiable functions. Each function in the sum corresponds to an agent and each agent has associated an equality constraint. By re-casting the distributed optimization problem into an equivalent, augmented centralized problem, we show that distributed algorithms result naturally from applying standard nonlinear programming tech- niques. Due to the distributed formulation, the standard assumptions and convergence results no longer hold. We emphasize what changes are necessary for convergence to still be achieved for three algorithms: two algorithms based on Lagrangian methods, and an algorithm based the method of multipliers. The changes in the convergence results are necessary mainly due to the fact that the (local) minimizers of the lifted optimization problem are not regular, as a results of the distributed formulation. Unlike the standard algorithm based on the method of multipliers, for the distributed version we cannot show that the theoretical super-linear convergence rate can be achieved
    corecore