3 research outputs found

    An exploratory study into measuring the cortical bone thickness from CT in the presence of metal implants

    Get PDF
    Purpose The aim of this study was to develop and evaluate a method for measuring the cortical bone thickness from computed tomography (CT) scans with metallic implants and to assess the benefits of metal artefact removal software. Methods A previously validated technique based on the fitting of a cortical model was modified to also model metal structures when required. Cortical thickness measurements were taken over intact bone segments and compared with the corresponding contralateral bone segment. The evaluation dataset includes post-operative CT scans of a unipolar hemi-arthroplasty, a dynamic hip screw fixation, a bipolar hemi-arthroplasty, a fixation with cannulated screws and a total hip arthroplasty. All CT scans were analysed before and after processing with metal artefact removal software. Results Cortical thickness validity and accuracy were improved through the use of a modified metalwork-optimised model and metal artefact removal software. For the proximal femoral segments of the aforementioned cases, the cortical thickness was measured with a mean absolute error of 0.55, 0.39, 0.46, 0.53 and 0.69 mm. The hemi-pelvis produced thickness errors of 0.51, 0.52, 0.52, 0.47 and 0.67 mm, respectively. Conclusions The proposed method was shown to measure cortical bone thickness in the presence of metalwork at a sub-millimetre accuracy. This new technique might be helpful in assessing fracture healing near implants or fixation devices, and improve the evaluation of periprosthetic bone after hip replacement surgery.This study was funded by Eli Lilly, Europe. TW, GMT, AHG and KESP received research grants from Eli Lilly. KESP is also funded by the Cambridge NIHR Biomedical Research Centre (BRC). The Evelyn Trust funded GMT

    A new quantitative 3D approach to imaging of structural joint disease.

    Get PDF
    Imaging of joints with 2D radiography has not been able to detect therapeutic success in research trials while 3D imaging, used regularly in the clinic, has not been approved for this purpose. We present a new 3D approach to this challenge called joint space mapping (JSM) that measures joint space width in 3D from standard clinical computed tomography (CT) data, demonstrating its analysis steps, technical validation, and reproducibility. Using high resolution peripheral quantitative CT as gold standard, we show a marginal over-estimation in accuracy of +0.13 mm and precision of ±0.32 mm. Inter-operator reproducibility bias was near-zero at -0.03 mm with limits of agreement ±0.29 mm and a root mean square coefficient of variation 7.5%. In a technical advance, we present results from across the hip joint in 3D with optimum validation and reproducibility metrics shown at inner joint regions. We also show JSM versatility using different imaging data sets and discuss potential applications. This 3D mapping approach provides information with greater sensitivity than reported for current radiographic methods that could result in improved patient stratification and treatment monitoring

    An exploratory study into measuring the cortical bone thickness from CT in the presence of metal implants

    No full text
    Purpose The aim of this study was to develop and evaluate a method for measuring the cortical bone thickness from computed tomography (CT) scans with metallic implants and to assess the benefits of metal artefact removal software. Methods A previously validated technique based on the fitting of a cortical model was modified to also model metal structures when required. Cortical thickness measurements were taken over intact bone segments and compared with the corresponding contralateral bone segment. The evaluation dataset includes post-operative CT scans of a unipolar hemi-arthroplasty, a dynamic hip screw fixation, a bipolar hemi-arthroplasty, a fixation with cannulated screws and a total hip arthroplasty. All CT scans were analysed before and after processing with metal artefact removal software. Results Cortical thickness validity and accuracy were improved through the use of a modified metalwork-optimised model and metal artefact removal software. For the proximal femoral segments of the aforementioned cases, the cortical thickness was measured with a mean absolute error of 0.55, 0.39, 0.46, 0.53 and 0.69 mm. The hemi-pelvis produced thickness errors of 0.51, 0.52, 0.52, 0.47 and 0.67 mm, respectively. Conclusions The proposed method was shown to measure cortical bone thickness in the presence of metalwork at a sub-millimetre accuracy. This new technique might be helpful in assessing fracture healing near implants or fixation devices, and improve the evaluation of periprosthetic bone after hip replacement surgery
    corecore