3 research outputs found

    Knowledge-driven Biometric Authentication in Virtual Reality

    Get PDF
    With the increasing adoption of virtual reality (VR) in public spaces, protecting users from observation attacks is becoming essential to prevent attackers from accessing context-sensitive data or performing malicious payment transactions in VR. In this work, we propose RubikBiom, a knowledge-driven behavioural biometric authentication scheme for authentication in VR. We show that hand movement patterns performed during interactions with a knowledge-based authentication scheme (e.g., when entering a PIN) can be leveraged to establish an additional security layer. Based on a dataset gathered in a lab study with 23 participants, we show that knowledge-driven behavioural biometric authentication increases security in an unobtrusive way. We achieve an accuracy of up to 98.91% by applying a Fully Convolutional Network (FCN) on 32 authentications per subject. Our results pave the way for further investigations towards knowledge-driven behavioural biometric authentication in VR

    Picture Passwords in Mixed Reality

    Get PDF
    We present HoloPass, a mixed reality application for the HoloLens wearable device, which allows users to perform user authentication tasks through gesture-based interaction. In particular, this paper reports the implementation of picture passwords for mixed reality environments, and highlights the development procedure, lessons learned from common design and development issues, and how they were addressed. It further reports a between-subjects study (N=30) which compared usability, security, and likeability aspects of picture passwords in mixed reality vs. traditional desktop contexts aiming to investigate and reason on the viability of picture passwords as an alternative user authentication approach for mixed reality. This work can be of value for enhancing and driving future implementations of picture passwords in mixed reality since initial results are promising towards following such a research line

    Biomove: Biometric user identification from human kinesiological movements for virtual reality systems

    Get PDF
    © 2020 by the authors. Licensee MDPI, Basel, Switzerland. Virtual reality (VR) has advanced rapidly and is used for many entertainment and business purposes. The need for secure, transparent and non-intrusive identification mechanisms is important to facilitate users’ safe participation and secure experience. People are kinesiologically unique, having individual behavioral and movement characteristics, which can be leveraged and used in security sensitive VR applications to compensate for users’ inability to detect potential observational attackers in the physical world. Additionally, such method of identification using a user’s kinesiological data is valuable in common scenarios where multiple users simultaneously participate in a VR environment. In this paper, we present a user study (n = 15) where our participants performed a series of controlled tasks that require physical movements (such as grabbing, rotating and dropping) that could be decomposed into unique kinesiological patterns while we monitored and captured their hand, head and eye gaze data within the VR environment. We present an analysis of the data and show that these data can be used as a biometric discriminant of high confidence using machine learning classification methods such as kNN or SVM, thereby adding a layer of security in terms of identification or dynamically adapting the VR environment to the users’ preferences. We also performed a whitebox penetration testing with 12 attackers, some of whom were physically similar to the participants. We could obtain an average identification confidence value of 0.98 from the actual participants’ test data after the initial study and also a trained model classification accuracy of 98.6%. Penetration testing indicated all attackers resulted in confidence values of less than 50% (\u3c50%), although physically similar attackers had higher confidence values. These findings can help the design and development of secure VR systems
    corecore