7,565 research outputs found

    The Devil of Face Recognition is in the Noise

    Full text link
    The growing scale of face recognition datasets empowers us to train strong convolutional networks for face recognition. While a variety of architectures and loss functions have been devised, we still have a limited understanding of the source and consequence of label noise inherent in existing datasets. We make the following contributions: 1) We contribute cleaned subsets of popular face databases, i.e., MegaFace and MS-Celeb-1M datasets, and build a new large-scale noise-controlled IMDb-Face dataset. 2) With the original datasets and cleaned subsets, we profile and analyze label noise properties of MegaFace and MS-Celeb-1M. We show that a few orders more samples are needed to achieve the same accuracy yielded by a clean subset. 3) We study the association between different types of noise, i.e., label flips and outliers, with the accuracy of face recognition models. 4) We investigate ways to improve data cleanliness, including a comprehensive user study on the influence of data labeling strategies to annotation accuracy. The IMDb-Face dataset has been released on https://github.com/fwang91/IMDb-Face.Comment: accepted to ECCV'1

    A Lagrangian-based score for assessing the quality of pairwise constraints in semi-supervised clustering

    Get PDF
    ABSTRACT: Clustering algorithms help identify homogeneous subgroups from data. In some cases, additional information about the relationship among some subsets of the data exists. When using a semi-supervised clustering algorithm, an expert may provide additional information to constrain the solution based on that knowledge and, in doing so, guide the algorithm to a more useful and meaningful solution. Such additional information often takes the form of a cannot-link constraint (i.e., two data points cannot be part of the same cluster) or a must-link constraint (i.e., two data points must be part of the same cluster). A key challenge for users of such constraints in semi-supervised learning algorithms, however, is that the addition of inaccurate or conflicting constraints can decrease accuracy and little is known about how to detect whether expert-imposed constraints are likely incorrect. In the present work, we introduce a method to score each must-link and cannot-link pairwise constraint as likely incorrect. Using synthetic experimental examples and real data, we show that the resulting impact score can successfully identify individual constraints that should be removed or revised

    An exploration of methodologies to improve semi-supervised hierarchical clustering with knowledge-based constraints

    Get PDF
    Clustering algorithms with constraints (also known as semi-supervised clustering algorithms) have been introduced to the field of machine learning as a significant variant to the conventional unsupervised clustering learning algorithms. They have been demonstrated to achieve better performance due to integrating prior knowledge during the clustering process, that enables uncovering relevant useful information from the data being clustered. However, the research conducted within the context of developing semi-supervised hierarchical clustering techniques are still an open and active investigation area. Majority of current semi-supervised clustering algorithms are developed as partitional clustering (PC) methods and only few research efforts have been made on developing semi-supervised hierarchical clustering methods. The aim of this research is to enhance hierarchical clustering (HC) algorithms based on prior knowledge, by adopting novel methodologies. [Continues.
    • …
    corecore