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Abstract Clustering algorithms help identify homogeneous subgroups from
data. In some cases, additional information about the relationship among some
subsets of the data exists. When using a semi-supervised clustering algorithm,
an expert may provide additional information to constrain the solution based
on that knowledge and, in doing so, guide the algorithm to a more useful and
meaningful solution. Such additional information often takes the form of a
cannot-link constraint (i.e., two data points cannot be part of the same clus-
ter) or a must-link constraint (i.e., two data points must be part of the same
cluster). A key challenge for users of such constraints in semi-supervised learn-
ing algorithms, however, is that the addition of inaccurate or conflicting con-
straints can decrease accuracy and little is known about how to detect whether
expert-imposed constraints are likely incorrect. In the present work, we intro-
duce a method to score each must-link and cannot-link pairwise constraint as
likely incorrect. Using synthetic experimental examples and real data, we show
that the resulting impact score can successfully identify individual constraints
that should be removed or revised.
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selection · Lagrangian duality.
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1 Introduction

A common typology is to consider machine learning algorithms as being of
one of two paradigms: (i) unsupervised learning, when the objective is to pro-
vide the best underlying description of the data when no label information is
available; (ii) supervised learning, when the objective is to use labeled train-
ing data to create an input-output function to map inputs to those labels1.
Thus, in both cases, the objective is to identify a classification function but
the paradigms differ in whether labels are available for all the training data
points (supervised learning) or none of the training data points (unsupervised
learning). Both learning paradigms face challenges. Although supervised learn-
ing techniques can obtain minimal error measures, the labels it requires are
time-consuming/expensive to generate as, in most cases, a human expert must
act as an annotator. As for unsupervised learning, it suffers from assumptions
on the underlying structure of the dataset that are imposed when selecting a
specific algorithm to work with it.

Semi-supervised learning presents a third paradigm for which one can incor-
porate limited information about how training data points should be related to
one another. For instance, one may not know precisely all the labels of all the
data points as in supervised learning, but one may know that some subsets of
points belong (or do not belong) to the same classes. Thus, in semi-supervised
learning, one can generate a classification function using both labeled and un-
labeled data. Typically, incomplete labeling information is obtained from the
knowledge of domain experts who provide a set of constraints that the classi-
fication function must satisfy (Zhu et al., 2009; Anil et al., 2015). Performing
the supervision through expert-provided constraints thus aims to combine the
advantages of unsupervised and supervised learning.

To formally illustrate how semi-supervised learning incorporates such ex-
ternal knowledge, we do so by building on the most popular unsupervised
learning model: clustering. Given a set O = {o1, . . . , on} of n unlabeled data
points in a s-dimensional space, clustering methods identify subsets of data
points, called clusters, which are homogeneous or well separated (Hansen and
Jaumard, 1997). Among clustering methods, partitioning focuses on splitting
O into k clusters (Pk = {C1, C2, . . . , Ck}) such that:

(i) Cj 6= ∅ for all j = 1, . . . , k,

(ii) Ci ∩ Cj = ∅ for all 1 ≤ i < j ≤ k, and

(iii)
k⋃
j=1

Cj = O,

and where the set of all k-partitions of O is denoted P(O, k). If the number of
clusters k is known, and thus fixed, clustering can be formulated as a math-
ematical optimization problem whose objective function f : P(O, k) → R,

1 We focus on discrete labels (e.g., classes) for simplicity of exposition, although there are
numerous unsupervised (e.g., latent trait models) and supervised models (e.g., regression)
which focus on continuous outcomes.
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usually called clustering criterion, defines the optimal solution for the prob-
lem given by the following (e.g. Christou, 2011):

min{f(P ) : P ∈ P(O, k)}. (1)

The choice of function f is critical to how homogeneity and separation will
be expressed in the resulting clusters. For example, homogeneity of a cluster
can be measured by its diameter (i.e., the maximum dissimilarity between
two data points part of the same cluster) and separation can be measured by
the split (i.e., the minimum dissimilarity between two points part of different
clusters). Such clustering criteria can be expressed in the form of thresholds,
min-sum or max-sum functions. For example, the minimum sum-of-squares
clustering criterion (MSSC), in which is based the optimization performed by
the popular k -means algorithm, seeks to minimize the sum of squared distances
from each data point to the representative of the cluster to which it belongs.
In minimizing the sum of squared distances, the criterion indirectly imposes a
constraint on the output that all clusters have a spherical shape. The user of
the algorithm rarely has evidence or external data to support that choice.

In Semi-Supervised Clustering, the domain expert’s information is used to
circumvent the potential shortcomings associated with the choice of a partic-
ular clustering model. It has been suggested (Anil et al., 2015) that a domain
expert could provide, whenever possible, auxiliary information regarding the
data distribution, thus leading to better clustering solutions that are more in
line with their knowledge, beliefs, and expectations. In this context, a differ-
ent kind of assumption about the data distribution is made. Specifically, it is
often assumed that a non-zero subset of objects have cluster labels that are
known due to external knowledge. This type of supervision is called point-
wise information and is usually easy to incorporate in existing unsupervised
clustering algorithms (Aggarwal, 2015), for instance, by using pre-determined
labels for the initialization of an existing unsupervised clustering algorithm
like k-means (Basu et al., 2002). As an expert may not have knowledge of pre-
cise label assignments but rather the pairwise similarity between data points,
a form of supervision that is more likely to be used by experts is to provide
information regarding whether two points can (or cannot) belong to the same
clusters (i.e., must-link and cannot-link constraints, respectively). Formally, a
must-link constraint for data points oi and oj requires that oi and oj must
be assigned to the same cluster, and a cannot-link constraint on the same
data points requires that oi and oj must be assigned to different clusters. The
definition and integration of such constraints when reasoning on background
knowledge allows the user to incorporate extra requirement as well as directing
the clustering model output in a declarative way (Grossi et al., 2017a).

Moreover, such information that experts have to provide is common to
many types of applications. Basu et al. (2006) discuss an example in the con-
text of clustering protein sequences in which it is easy to identify proteins that
co-occur in other proteins (i.e., must-link constraints) even if the class label is
unknown or uncertain for these proteins. In image segmentation applications,
cannot-link constraints are added for pixels that are in very distant regions
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of an image or when there is a frontier visible to the expert’s eye. Kim et al.
(2013) provide an example of how managers may have prior knowledge to im-
pose constraints into Bayesian mixture models to render solutions that are
eventually actionable by businesses. Nonetheless, working with pairwise con-
straints is typically more complex than incorporating pointwise information,
and the problem of whether it is possible to satisfy a given set of cannot-link
constraints with k clusters is NP-complete (Davidson and Ravi, 2005).

It would be sensible to assume that if input data is augmented by that
of an expert, it should improve clustering performance. However, the pres-
ence of inaccurate or conflicting pairwise constraints has been shown to de-
grade it (Davidson et al., 2006; Davidson and Ravi, 2006). Degradation can
be because it is generally assumed that when an expert provides information,
the expert must be correct. However, in many cases, the labels provided by
experts themselves are subject to errors of human judgments (e.g., a single
human judge determines whether two proteins must co-occur ). Such human
judgment errors are especially likely when multiple experts are used to arrive
at a consensus judgment. As the accuracy of constraints imposed to the al-
gorithm ultimately impacts clustering accuracy (Ares et al., 2012), and that
inaccuracy of constraints can occur due to human judgment errors and is an
important problem, methods that can help users identify which constraints are
likely to be subject to errors should be helpful in improving accuracy (Anil
et al., 2015).

To illustrate the consequences of having inaccurate constraints, we show
in Figure 1 clustering solutions from the two principal components of an ap-
plication to the Iris dataset (Fisher, 1936). Figure 1(a) illustrates the ground-
truth partition, whereas Figure 1(b) shows the optimal partition obtained with
MSSC. Whereas MSSC recovers perfectly the cluster depicted in light blue, it
does not well separate the two other clusters. Figure 1(c) illustrates the parti-
tion obtained by using the popular COP-Kmeans algorithm (Wagstaff et al.,
2001) executed with a random set of 60 correct pairwise constraints extracted
from the ground-truth partition. We observe that it is more consistent with the
ground-truth partition. However, we also show in Figure 1(d) that a solution
with 10 erroneous constraints can significantly deteriorate the performance of
a clustering algorithm to a point that is worse than when no constraint was
imposed.

Our objective in this paper is to provide a method for quantifying the likely
accuracy of pairwise constraints. Specifically, we define an impact score for each
pairwise constraint based on the solution of the dual of a integer program. In
doing so, we provide a quantitative measure (i.e., Lagrangian-based impact
score) that can help a user identify which must-link or cannot-link constraints
degrade the clustering solution and should be removed or revised.

The rest of the paper is organized as follows. Section 2 provides an overview
of prior research regarding the difficulty of substantiating whether a constraint
set is informative. Then, section 3 presents the proposed impact score, and sec-
tion 4 reports our experiments regarding the effectiveness of the score. Finally,
concluding remarks are given in the last section of the paper.
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(c)(a) (b) (d)

Solution produced by COP-k-means 
with 60 correct pairwise constraints


Solution produced by COP-k-means 
with 60 correct and 10 erroneous 
pairwise constraints
Ground-truth solution
 Solution produced by MSSC


(a) Ground-truth parti-
tion

(c)(a) (b) (d)

Solution produced by COP-k-means 
with 60 correct pairwise constraints


Solution produced by COP-k-means 
with 60 correct and 10 erroneous 
pairwise constraints
Ground-truth solution
 Solution produced by MSSC


(b) Solution produced
by MSSC

(c)(a) (b) (d)

Solution produced by COP-k-means 
with 60 correct pairwise constraints


Solution produced by COP-k-means 
with 60 correct and 10 erroneous 
pairwise constraints
Ground-truth solution
 Solution produced by MSSC


(c) Solution produced
by COP-Kmeans with
60 correct pairwise
constraints

(c)(a) (b) (d)

Solution produced by COP-k-means 
with 60 correct pairwise constraints


Solution produced by COP-k-means 
with 60 correct and 10 erroneous 
pairwise constraints
Ground-truth solution
 Solution produced by MSSC


(d) Solution produced
by COP-Kmeans with
60 correct and 10 er-
roneous pairwise con-
straints

Fig. 1 Illustration of the effects of clustering in the presence of erroneous constraints.
The solution obtained with COP-Kmeans and 60 correct constraints in (c) is closer to the
the ground-truth partition (a) than the unsupervised MSSC solution presented in (b). In
contrast, the insertion of 10 erroneous constraints deteriorates the clustering solution as
shown in (d).

2 Constraint inclusions in learning models

When using semi-supervised clustering (SSC), obtaining useful constraints is
challenging as relying on domain experts can be difficult to scale for large
classification problems (Wagstaff, 2007). One approach taken is the use of
active learning methods which automatically generate constraints to reduce
the amount of information that a domain expert needs to provide. Yet, even
active learning methods require some a-priori domain knowledge provided by
an expert to identify the additional (or redundant) constraints. For example,
the widely used PCKmeans (Basu et al., 2004) identifies the pairs of data
points which are farthest from each other and queries an oracle to determine
whether a cannot-link constraint should be added. The oracle is a function
that analyzes the known pairwise constraints to investigate if the dissimilarity
between the queried pair of data points is sufficient to impose a new cannot-link
constraint. In Mallapragada et al. (2008), the authors also use the similarity
between a pair of data points as a proxy for the confidence level that one
should have in adding a must-link constraint. In Xiong et al. (2014), the
authors uses pairwise constraints to build neighborhoods of data points in the
same cluster (must-link constraints) and neighborhoods of points in different
clusters (cannot-link constraints). Then, they use an active learning method
to expand these neighborhoods by selecting informative points and querying
the oracle about their relationship with their neighbors. In both Mallapragada
et al. (2008) and Xiong et al. (2014), it is important to note that the active
learning methods must still begin with a small set of pairwise information that
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are assumed to be correct and direct the algorithm in the correct course (Xiong
et al., 2017).

Regardless of whether constraint information was originated from the do-
main expert or was generated by an active learning method, there is no guar-
antee that its inclusion will improve the clustering solutions. As such, one must
have a way to identify whether the added constraints are helpful. Davidson
et al. (2006) propose two measures that evaluate the informativeness and co-
herence of a constraint set. Informativeness aims to capture the incremental
effect of adding the constraints to a solution. Specifically, informativeness is
operationalized as the fraction of pairwise constraints that are violated once
added to a clustering solution obtained without any constraints. The higher
is the proportion of violated constraints, the more informative is the con-
straint set. Coherence is a measure of the agreement of a constraint set based
on the adopted dissimilarity metric. Specifically, it aims to identify pairs of
constraints, one must-link and one cannot-link constraint, which overlap when
the constraint vectors (i.e., vectors connecting their associated points) are pro-
jected onto each other. Figure 2 illustrates two constraints with an overlapping
segment when the cannot-link vector is projected onto the must-link vector.
The constraint set with the highest proportion of null projections (when there
is no overlapping segment) is considered as the most coherent set. For both
measures, the idea is that constraint sets with the higher informativeness and
coherence should improve the clustering solution. Wagstaff (2007) has found
partial support for this hypothesis, suggesting that more properties related
with the utility of pairwise constraints should be further developed.

Must-link constraint

Cannot-link constraint

Projection

Overlapping segment

Fig. 2 Illustration of Coherence measure proposed by Davidson et al. (2006): projection of
must-link and cannot-link constraint vectors onto each other.

Informativeness and coherence are not the only measures available to eval-
uate the helpfulness of constraints. For instance, Davidson (2012) proposes
two other measures. For the first, he suggests counting the number of feasible
clustering solutions using Markov Chain Monte Carlo samplers - with the goal
of eliminating constraints which are difficult to satisfy and whose inclusions
often leads to few feasible clustering solutions across the samplers. For the
second, he suggests to eliminate constraints based on the fractional chromatic
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number of the constraint graph. The constraint graph contains one vertex for
each data point and an edge for each cannot-link constraint. Data points in-
volved in one or more must-link constraints are merged into a single vertex. As
determining the chromatic number of this graph is equivalent to determining
the minimum number of clusters required to make the problem feasible, and
as finding the chromatic number of a graph is a NP-hard problem, the author
suggests to solve a linear relaxation of the problem in which every vertex can
be associated with more than one color (i.e., more than one cluster) to iden-
tify constraints to eliminate. As a final step, the second approach proceeds to
pruning constraints by the following: if a vertex has many fractional colors,
i.e., it is part of many independent sets, the constraints associated with the
vertex are not hard to satisfy and can remain. However, if a vertex is part of
only one independent set (i.e., its assignment is not fractional), the associated
constraints are hard to satisfy and should be removed.

We have outlined three existing measures (fractional chromatic number,
informativeness, and coherence). An important commonality is that all three
measures focus on identifying good constraint sets based on the ability to
satisfy them. More importantly, they cannot speak to the quality of individual
pairwise constraints contained in the proposed constraint sets. As such, such
measures cannot speak to how constraints interact, and thus cannot help assess
the global quality of each constraint for the target clustering model. In the
next section, we introduce our Lagrangian-based impact score to assess the
individual quality of each pairwise constraint.

3 A Lagrangian-based scoring of the effect of individual pairwise
constraints

Consider the following general integer programming formulation of a semi-
supervised clustering problem:

Z = min
X

f(x) (2)

subject to

xci + xcj ≤ 1 ∀(oi, oj) ∈ CL, ∀c = 1, . . . , k (3)

xci − xcj = 0 ∀(oi, oj) ∈ML, ∀c = 1, . . . , k (4)

xci ∈ {0, 1} ∀i = 1, ..., n; ∀c = 1, . . . , k (5)

where f is the clustering criterion to be minimized, and where every binary
decision variables xci of the solution space X indicates whether data point oi
is assigned to cluster c. Typically, X is composed of the set P(O, k) of all
k-partitions of O for a given k predetermined number of clusters. In such a
model, pairwise constraints are included via (3) and (4) where CL and ML
represent the sets of pairs of data objects involved in cannot-link and must-link
constraints, respectively.
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To avoid situations where constraints (3) and (4) are satisfied with equality,
we can replace them by the following equivalent constraints where ε is any real
number in ]0, 1[:

xci + xcj ≤ 1 + ε ∀(oi, oj) ∈ CL, ∀c = 1, . . . , k (3’)

xci − xcj ≤ ε ∀(oi, oj) ∈ML, ∀c = 1, . . . , k (4’)

xcj − xci ≤ ε ∀(oi, oj) ∈ML, ∀c = 1, . . . , k. (4”)

The choice of function f has a significant impact on the computational com-
plexity of any clustering problem. Whereas, for example, split maximization
is polynomially solvable in time O(n2) (Delattre and Hansen, 1980), diameter
minimization is NP-hard for more than two clusters (Brucker, 1978). For ex-
ample, from Huygen’s theorem (Edwards and Cavalli-Sforza, 1965), MSSC is
expressed within (2)-(5) by:

f(x) =

k∑
c=1

n−1∑
i=1

n∑
j=i+1

‖oi − oj‖2xcixcj∑n
i=1 x

c
i

, (6)

which is a non-convex quadratic function, making (2)-(5) NP-hard even for
two clusters in general Euclidean dimension (Aloise et al., 2009). For the k-
medoids model (see e.g. Kaufman and Rousseeuw (2009)), f can be expressed
by:

f(x) =

k∑
c=1

n∑
i=1

n∑
j=1

‖oi − oj‖xciycj , (7)

after adding binary variables yci which are equal to 1 if the object oi is the
medoid for cluster c, and 0 otherwise, and constraints:

xci ≤ yci ∀i, j = 1, . . . , n (8)
n∑
i

yci = k. (9)

The k-medoids model is also NP-hard (Kariv and Hakimi, 1979). Algorithms
for finding the optimal solution of the problem for large data sets are presented
by Avella et al. (2007) and Garćıa et al. (2011), while efficient heuristics are
proposed by Hansen et al. (2009) and Resende and Werneck (2007).

Classical Lagrangian duality theory associates penalty terms, named La-
grangian multipliers, to the problem constraints. Applied to SSC, regardless of
the choice of clustering criterion f , the Lagrangian function L(η, λ, γ) associ-
ated with the above integer programming problem is obtained by introducing
penalty terms ηcij , λ

c
ij and γcij for the violation of constraints (3’), (4’), and

(4”). Specifically, the Lagrangian function is defined as follows:
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L(η, λ, γ) = min
X

(
f(x) +

∑
(oi,oj)∈CL

k∑
c=1

ηcij(1 + ε− xci − xcj)

+
∑

(oi,oj)∈ML

k∑
c=1

λcij(ε+ xci − xcj)

+
∑

(oi,oj)∈ML

k∑
c=1

γcij(ε+ xcj − xci )

)
(10)

and the dual of the integer program (2)-(5) can be expressed as follows:

LD = max
η,λ,γ≤0

L(η, λ, γ) (11)

where η, λ and γ correspond to its dual variables. The weak duality theo-
rem (see e.g. Bertsimas and Tsitsiklis (1997)) asserts that LD is the best lower
bound for the optimal value Z of the integer program (2)-(5).

To illustrate how the Lagrangian function penalizes constraint violations,
consider a cannot-link constraint (oi, oj) ∈ CL and a cluster c ∈ {1, . . . , k}.
Given that ηcij ≤ 0, we penalize situations where xci + xcj > 1 (i.e., the corre-
sponding constraint (3) is violated). If xci +xcj ≤ 1, we have 1 + ε−xci −xcj > 0
and the optimal value LD is therefore obtained by setting ηcij = 0. Analo-
gously, for a must-link constraint (oi, oj) ∈ ML, both λcij and γcij are equal
to 0 in an optimal solution of the dual problem when xci = xcj , while exactly
one of λcij and γcij is strictly negative (and the other one is equal to 0) when
xci 6= xcj .

3.1 Scoring constraints from the dual’s information

The difference between Z and LD is the duality gap. The values of the dual
variables in an optimal solution of the dual problem provide information about
the difficulty to satisfy a constraint and are of particular usefulness when the
duality gap is small which is often the case in clustering models (Kochetov
and Ivanenko, 2005; Aloise et al., 2010).

To illustrate, consider any cannot-link constraint (ou, ov) ∈ CL. Assume
that the constraints (3’) imposing xcu + xcv ≤ 1 + ε for all c ∈ {1 . . . k} are
replaced by the following constraints:

xcu + xcv ≤ 1 + ε+ b ∀c = 1, . . . , k (12)

In doing so, we added a non-negative value b to the right-hand side of the
cannot-link constraints which involve objects ou and ov. As b increases, the
cannot-link constraint for data objects ou and ov becomes more relaxed. Let
us denote Zb the optimal solution value of this modified problem, with Zb = Z
for b = 0, and Zb ≤ Z, otherwise.
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The objective function of the Lagrangian function, parameterized in b, is
given by:

LCLuv (η, λ, γ, b) = L(η, λ, γ) +

k∑
c=1

bηcuv (13)

which is a lower bound to Zb. Its partial derivative

∂LCLuv (η, λ, γ, b)

∂b
=

k∑
c=1

ηcuv. (14)

provides then an approximation of the effect on Zb of deactivating the cannot-
link constraint for data objects ou and ov. Likewise, given a must-link con-
straint (ou, ov) ∈ ML, we add a positive value b to the right-hand side of
the must-link constraints (4’) and (4”) for objects ou and ov. The Lagrangian
function LMLuv (η, λ, γ, b) becomes:

LMLuv (η, λ, γ, b) = L(η, λ, γ) +

k∑
c=1

b(λcuv + γcuv) (15)

and the approximated effect on Zb of deactivating the must-link constraint
between data points ou and ov is given by:

∂LMLuv (η, λ, γ, b)

∂b
=

k∑
c=1

(λcuv + γcuv). (16)

Negative values for the partial derivatives (14) and (16) suggest that a user
can likely improve Z if the constraints are removed from the SSC model. Zero
values for the partial derivatives suggest that the corresponding constraint is
intrinsic to the underlying structure of the data or is redundant due to the
inclusion of other constraints.

Based on these observation, we propose the following impact score Iuv for
a pairwise constraint associated with objects ou and ov:

Iuv =


k∑
c=1

ηcuv if (ou, ov) ∈ CL

k∑
c=1

(λcuv + γcuv) if (ou, ov) ∈ML.
(17)

In the next section, we discuss how to solve the dual problem (11) to
calculate the impact score (17).
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3.2 Solving the dual problem

The sub-gradient optimization algorithm (Shor et al., 1985; Held et al., 1974)
is a widely used technique for optimizing non-differentiable optimization prob-
lems such as (11). To minimize a function g : U ⊂ R→ R, the domain variables
are iteratively updated by setting

w ← w + α`s(w), (18)

where w ∈ U and s(w) is any subgradient of g(w), i.e., any vector that satisfies
the inequality g(y) ≥ g(w) + sT (y−w) for all y ∈ U . The step size for the `-th
iteration is defined by α`.

Algorithm 1 Subgradient method for optimizing the dual problem (11)
Initialize variables ηcuv , λ

c
uv , and γcuv to 0.

Set the upper bound Z̄∗ on Z equal to the value of the best availabe feasible solution.
for all ` = 1 to m do

Lower bounding step.
Use current values of the dual variables and equation (10) to determine a lower bound
solution x of cost Z.
if Z is the largest lower bound ever found then

Save the dual variables in vectors ηbest, λbest and γbest.
end if

Upper bounding step.
Let R be a routine able to transform any solution x ∈ X into a feasible solution to
(3)-(5) Run R(x) to obtain an upper bound solution of cost Z̄. If Z̄ < Z̄∗ then set
Z̄∗ ← Z̄.

Updating step.
α` = 1√

`

for all (ou, ov) ∈ CL and all c ∈ {1, . . . , k} do
ηcuv ← ηcuv + α`

(Z̄∗−Z)∑
(i,j)∈CL

∑k
c′=1

(1+ε−xc′i −x
c′
j )2

(1 + ε− xcu − xcv).

end for
for all (ou, ov) ∈ML and all c ∈ {1, . . . , k} do
λcuv ← λcuv + α`

(Z̄∗−Z)∑
(i,j)∈ML

∑k
c′=1

(ε+xc
′

i −x
c′
j )2

(ε+ xcu − xcv)

γcuv ← γcuv + α`
(Z̄∗−Z)∑

(i,j)∈ML
∑k

c′=1
(ε+xc

′
j −x

c′
i )2

(ε+ xcv − xcu).

end for
end for

Algorithm 1 describes the steps of the sub-gradient method for solving (11).
The algorithm begins by defining initial values for the Lagrangian multipliers
ηcuv, λ

c
uv and γcuv. As a common practice when working with Lagrangian relax-

ation, we initialize these penalty terms with zero (Fisher, 1981), which means
that we impose no prior cost on the objective function. We next make the
resonable assumption that there are solutions that satisfy constraints (3)-(5)
and that it is not difficult to determine some of them. The initial upper bound
Z̄∗ on Z is thus set equal to the value of the best available feasible solution.
Then, the algorithm begins its main loop wherein three steps take place for a
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predefined number m of iterations. In the first step, a lower bound for (2)-(5) is
obtained by solving model (10) with fixed values of the Lagrangian multipliers.
In other words, this step aims to solve the unsupervised clustering problem
with predefined penalty terms for violating pairwise constraints. If the lower
bound obtained is the best obtained so far, values of the Lagrangian multipli-
ers are stored in vectors ηbest, λbest, and γbest. The next step uses the lower
bound solution to recover a feasible solution to (2)-(5). This routine can be as
simple as the procedure described in Algorithm 2. This algorithm cannot offer
any guarantee that it will converge to a feasible solution, because the problem
of determining whether such a solution exists is NP-complete. Convergence is
however ensured in our case thanks to our reasonable assumption that it is
not difficult to generate solutions that satisfy constraints (3)-(5). If a situation
arises for which it is difficult to recover feasibility, we can stop Algorithm 2
after a time limit of a few seconds and thus give up updating the upper bound
Z̄∗. Finally, the last step updates the dual variables with respect to their sub-
gradient for a step size α` which is updated at each iteration with a decreasing
rule.

Algorithm 2 Routine for restoring feasibility
for each violated must-link constraints (oi, oj) ∈ML do

Move oi and oj to the best cluster w.r.t. f .
end for
while at least one cannot-link constraint is violated do

Choose a data point oi at random among those involved in a violated cannot-link
constraint, and let c be the cluster that contains oi.
Move oi to the best cluster c′ 6= c w.r.t. f , prioritizing the clusters that do not contain
a data point oj with (oi, oj) ∈ CL.
if oi is involved in must-link constraints with other data points then

Move these data points to cluster c′ (where oi has also been moved).
end if

end while

An execution of this algorithm produces optimal values for the dual vari-
ables, and these values are used to compute the impact score Iuv for each
pairwise constraint. Unfortunately, solving (10) to optimality might be NP-
hard for a wide variety of clustering criteria. Thus, for the lower bounding step
of Algorithm 1, one likely must resort to heuristics or valid relaxations to find
good approximations.

4 Computational Experiments

To evaluate the usefulness of the impact score defined in (17), we first report
experiments conducted with synthetic data. Second, we compare our method
with näıve approaches. Third, we evaluate the proposed method with real
datasets and discuss the convergence of our algorithm. Lastly, we demonstrate
the ability of the proposed methodology to identify the best constraint sets
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when a collection of constraint sets is available using real data. All datasets
are available on a public repository: https://github.com/rodrigorandel/
ssc_lagrangian_score.

4.1 Experiments with synthetic data

The first experiment follows the fractional factorial experimental design simi-
lar to that used in Blanchard et al. (2012) and Santi et al. (2016). The process
involves generating 500 two-dimensional datasets with known clustering solu-
tions (i.e., ground-truth labels). Having a set of known ground-truth labels
allows the generation of constraint sets with correct and erroneous pairwise
information. The parameters used to generate these datasets are given in Ta-
ble 1: for every dataset, we first randomly choose its size n and its number k
of clusters in {100, 200, 300, 400, 500} and {2, 5, 10, 15}, respectively. Second,
we generate p pairwise constraints, q among them being erroneous, and the
other p− q being correct, with p chosen at random in { 5n

100 ,
10n
100 ,

15n
100 ,

20n
100 } and

q in {d 5p
100e, d

10p
100e, d

15p
100e, d

20p
100e}. The results was 17415 pairwise constraints,

among which 2219 (12.7%) are erroneous. Although on a real application the
amount of erroneous constraints is expected to be smaller (i.e. less than 10%),
this experiment also aimed to investigate more complex configuration, and
thus, the ratio q of erroneous constraints was allowed up to 20%.

The data generation mechanism is as follows. For each cluster k of each
dataset, we first draw coordinates xk and yk from a normal distributionN (0, 5).
Then, the x and y coordinates of each data point associated with cluster k are
obtained by samplingN (xk, 0.5) andN (yk, 0.5) respectively. The pairwise con-
straints (correct and erroneous) are randomly generated with an equal number
of cannot-link and must-link constraints. More precisely, the erroneous con-
straints are obtained by flipping their meaning in the ground-truth, i.e., given
a pair of data points, a cannot-link constraint is created if the points have the
same ground-truth label. Otherwise, a must-link constraint is created.

Table 1 Experimental Design.

Characteristics Values

Size n of the dataset {100, 200, 300, 400, 500}
Number k of clusters {2, 5, 10, 15}
Number p of pairwise constraints (as a percentage of n) {5%, 10%, 15%, 20%}
Number q of erroneous constraints (as a percentage of p) {5%, 10%, 15%, 20%}

For each one of these 500 two-dimensional datasets, we use the sub-gradient
optimization method in Algorithm 1 with m = 1000 (number of iterations) and
ε = 0.5. The Euclidean distance is considered as dissimilarity metric between
data points. For data clustering, we use the k -medoids model (Kaufman and
Rousseeuw, 2009). To accelerate the lower bounding step, we opt for relaxing
the integrality constraints (5) by xci ∈ [0, 1] for all i = 1, . . . , n and c = 1, . . . , k,

https://github.com/rodrigorandel/ssc_lagrangian_score
https://github.com/rodrigorandel/ssc_lagrangian_score
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and equation (10) is then solved using CPLEX 12.8. Algorithm 2 is used to
restore feasibility at the upper bounding step of the sub-gradient algorithm.
Upon completion of the optimization, we consider every pair of data points
ou and ov associated with a pairwise constraint and compute the impact score
Iuv according to (17), using ηbest, λbest and γbest. If Iuv < 0, the constraint
associated with the pair (ou, ov) is predicted as erroneous, whereas if Iuv = 0,
the constraint is predicted as correct.

To assess the accuracy of the proposed impact score, we begin by computing
the true positive, true negative, false positive and false negative counts across
all the constraints: a correct constraint predicted as correct is a true positive
(TP ), an erroneous constraint predicted as erroneous is a true negative (TN),
an erroneous constraint predicted as correct is a false positive (FP ), and a
correct constraint predicted as erroneous is a false negative (FN). Using these
numbers, we can evaluate the accuracy of the proposed impact score via the
three following standard measures:

– Precision = TN
TN+FN ;

– Recall = TN
TN+FP ;

– F1-score = 2Precision×Recall
Precision+Recall .

Across all datasets, we counted TN = 2205, TP = 15130, FN = 66, and
FP = 14 which provide a Precision of 0.97, a Recall of 0.99 and a F1-score of
0.98. These numbers clearly demonstrate that the proposed Lagrangian-based
impact score is able to assess the informativeness of pairwise constraints, as
only 0.63% of erroneous constraints and 0.43% of correct constraints were
misclassified. We also investigated why some correct pairwise constraints were
mistakenly predicted as erroneous. We found that the majority of these false
negatives are attributable to an overlapping of two or more clusters in the
ground-truth data. In such situations, the clustering model prefers to merge
data objects belonging to different classes, which presumably yields cannot-
link constraints to be predicted as incorrect.

In these experiments, we assumed that the number of clusters k was known
to the user. It is interesting to note that the proposed Lagrangian-based impact
score can also offer a mechanism to provide information about the number of
clusters likely present in the grouth-truth data generating mechanism. Indeed,
one can consider the proportion of pairwise constraints predicted as erroneous
as a tool to predict the right number of clusters, following the idea that a high
number of erroneous constraints is an indication that an incorrect number of
clusters was adopted by the model. To illustrate, Figure 3 shows the fraction
of constraints predicted as erroneous for the experimental datasets with five
clusters. The proposed algorithm was executed for each of these instances by
varying the number k of clusters from 2 to 10. We observe that the lowest ratio
is reached with k = 5. We can also observe that the F1-score is maximized
with k = 5, which provides support for the suggestion of the proportion of
constraints predicted as erroneous by the impact score as an additional tool
for selecting the right number of clusters. Likewise, if a very large amount of
pairwise constraints are classified as erroneous by our impact score, this could
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indicate to the clustering analyst that the model used is not the most adequate
for the data.

Number of clusters

2 3 4 5 6 7 8 9 10

44%

50%

57%

68%

80%

99%

80%

62%

41%

32%

31%

27%

23%

19%

14%

17%

23%

31%

Fraction of erroneous constraints 
F1-Score (%)

Fig. 3 Fraction of constraints predicted as erroneous and F1-Score obtained by our impact
score as a function of the number of clusters. A small proportion of constraints predicted as
erroneous suggests the appropriated number of clusters.

4.2 Comparison with optimistic and pessimistic näıve approaches

Whereas we believe that the proposed approach is easy to implement, it may
be that some näıve approaches that do not require solving the dual can achieve
the same level of accuracy on individual pairwise constraint predictions. We
detail here two such (baseline) approaches, and evaluate their performance on
the same synthetic datasets.

The optimistic approach. Let C = CL ∪ ML denote the constraint set. As-
suming that the semi-supervision provided by the expert is correct, the op-
timistic approach first solves the integer program (2)-(5) for the whole set C
and considers its optimal value ZB as the base cost of the objective function.
Then, for each constraint (ou, ov) ∈ C, the integer program is solved again, but
with C ′ = C \ {(ou, ov)} as constraint set which allows an updated optimal
value denoted Zuv. The impact score of the optimistic approach is defined as
Iouv = Zuv−ZB , and we use it as follows. If Iouv < 0, the constraint associated
with the pair (ou, ov) is predicted as erroneous. If Iouv = 0, the constraint is
redundant and predicted as correct.

With this approach, even if a constraint is erroneous, removing it from the
constraint set may have no impact on the solution cost because the clustering
solution can be tied up by other constraints (i.e., assignments will not change).
To illustrate, Figure 4(a) shows one erroneous must-link constraint and one



16 Rodrigo Randel et al.

erroneous cannot-link constraint. The optimal MSSC partition is shown in
Figure 4(b). However, if one tries to partition the illustrated data with COP-
k-means taking into account the two erroneous constraints, the data point that
contains both cannot-link and must-link constraints is misclassified. The prob-
lem with the optimistic approach is thus that if the erroneous must-link con-
straint is discarded, the solution obtained remains unchanged (i.e., Zuv = ZB)
due to the erroneous cannot-link constraint, and the opposite also holds. Con-
sequently, the optimistic approach would yield two false positives by predict-
ing both erroneous constraints as correct (Figure 4(c)). For comparison, the
execution of the proposed Lagrangian-based method correctly predicts both
constraints as erroneous (Figure 4(d)), and the optimal clustering solution
produced by MSSC can thus be retrieved.

Erroneous cannot-link constraint

Erroneous must-link constraint

(a) Example where the optimistic approach
fails.

Cluster 1
Cluster 2

(b) Optimal clustering using the MSSC
model.

Erroneous cannot-link constraint

Erroneous must-link constraint

Erroneous cannot-link constraint predicted as erroneous

Erroneous must-link constraint predicted as erroneous

(c) Predictions using the optimistic ap-
proach.

Erroneous cannot-link constraint

Erroneous must-link constraint

Erroneous cannot-link constraint predicted as erroneous

Erroneous must-link constraint predicted as erroneous

(d) Predictions using the Lagrangian-based
impact score.

Fig. 4 Illustration of a case where the optimistic approach fails to identify erroneous
constraints. In this example, both the erroneous cannot-link constraint and the erroneous
must-link constraint are predicted as correct by the baseline method.

The pessimistic approach. The pessimistic approach begins by assuming that
all constraints are erroneous. It begins by defining the base cost ZB by solving
the integer program without any pairwise constraint. Then, for every (ou, ov) ∈
C, the integer program is solved again with only (ou, ov) as pairwise constraint
and the updated score is denoted Zuv. The impact score of the pessimistic
approach is defined as Ipuv = ZB − Zuv, and we use it as follows. If Ipuv < 0,
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the constraint associated with the pair (ou, ov) is predicted as erroneous. If
Ipuv = 0, the constraint is redundant and predicted as correct.

Correct cannot-link constraint

Correct must-link constraint

(a) Configuration where the pessimistic ap-
proach fails.

Cluster 1
Cluster 2

(b) Optimal clustering using the MSSC
model.

Correct cannot-link constraint

Correct must-link constraint

Correct cannot-link constraint predicted as erroneous

Correct must-link constraint predicted as erroneous

(c) Predictions using the pessimistic ap-
proach.

Correct cannot-link constraint

Correct must-link constraint

Correct cannot-link constraint predicted as erroneous

Correct must-link constraint predicted as erroneous

(d) Predictions using the Lagrangian-based
impact score.

Fig. 5 Illustration of a case where the pessimistic approach fails to identify correct con-
straints. In this example, all constraints are incorrectly predicted as erroneous by the baseline
method.

With this approach, only one constraint is considered at a time. It is thus
possible that every constraint is predicted as erroneous whereas the combina-
tion of several constraints would show that they are all correct. To illustrate,
consider the data points in Figure 5(a) for which all pairwise constraints are
correct. Still adopting the k-means clustering criterion, all constraints would
be predicted as erroneous given that the optimal unsupervised clustering so-
lution groups the eight data points on the right into a unique cluster. Doing
so leaves a single data point alone, as illustrated in Figure 5(b). Separating
the single point produces a low cost for ZB , which leads to Zuv > ZB for
all (ou, ov) ∈ C. As shown in Figure 5(c), the pessimistic approach yields five
false negatives given that the five correct constraints are predicted as erro-
neous. However, as shown in Figure 5(d), the Lagrangian-based method only
predicts the must-link constraint as erroneous. It does so because when the
blue data point associated to the cannot-link constraints is grouped with the
blue data point at the bottom left, the cannot-link constraints are no longer
necessary. The fact that the Lagrangian-based impact score is computed while
simultaneously considering all constraints allows correct identification.
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The proposed Lagrangian-based impact score Iuv can be seen as a combi-
nation of both the pessimistic and optimistic approaches. By considering the
whole constraint set, the Lagrangian-based impact score can identify redun-
dant constraints that would be predicted as incorrect in situations like the one
shown in Figure 5(a). Besides, it does not experience tied solutions as the one
illustrated in Figure 4(a), where erroneous constraints are predicted as cor-
rect by the optimist approach. In some scenarios, the optimist and pessimistic
approaches may behave in a complimentary fashion as the false positives pre-
dicted by the optimistic approach would be correctly predicted as erroneous by
the pessimistic approach, whereas the false negatives predicted by the latter
would be correctly predicted as correct by the optimistic approach.

It is important to note that the use of heuristics to compute ZB and Zuv
could lead to situations where the impact scores Iouv and Ipuv are slightly
smaller than 0, whereas optimal values would have given non-negative scores
and thus opposite predictions. To mitigate such a risk, we can adapt the pre-
diction process as follows. Let sCL and sML be the smallest scores reached by
a constraint in CL and ML respectively. The impact scores Iouv and Ipuv are
normalized by dividing by sCL if (ou, ov) ∈ CL, and by sML if (ou, ov) ∈ML.
All normalized impact scores are now at most equal to 1, and a constraint
is predicted as erroneous if and only if its normalized impact score is larger
than a given threshold τ . We tested this modification of the algorithm via
1000 different values for τ and we report in Figure 6 the F1-scores obtained
when using the normalized impact scores. The optimistic approach reaches its
maximum F1-score with τ = 0.15, whereas the best F1-score of the pessimistic
approach is reached with τ = 0. We have also determined the best threshold
value τ for the Lagrangian-based approach based on normalized impact scores,
with

sCL = min
(ou,ov)∈CL

Iuv and sML = min
(ou,ov)∈ML

Iuv.

As was the case for the pessimistic approach, the best results are obtained
with τ = 0.

In Figure 7, we compare the pessimistic and optimistic (with τ = 0.15) ap-
proaches with the Lagrangian-based method, for the same 500 experimental
datasets. The values of ZB and Zuv for the two baseline approaches were ob-
tained with the Variable Neighborhood Search (VNS) designed in Randel et al.
(2019) for the k-medoids clustering model. VNS is a metaheuristic method
that systematically explores increasing neighborhoods from the current solu-
tion in order to escape from local optima. In the case of clustering the VNS
neighborhoods can be defined by increasing the number of data points that
have changed their cluster membership. VNS increases its neighborhood ex-
ploration whenever its local descent is not able to find a better solution inside
the current neighborhood (see e.g. Costa et al. (2017); Hansen et al. (2009)).

For each baseline method, we give the Precision, Recall and F1-score mea-
sures. We find that both the optimistic and pessimistic approaches produce
results that are inferior to that of the proposed Lagrangian-based method. As
expected, we see from the Recall values that the optimistic approach yields
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Fig. 6 F1-score obtained by the baseline approaches when predicting erroneous constraints
as a function of the threshold (τ). The latter is used for filtering slightly negative scores.

more false positives than the other methods (i.e., erroneous constraints pre-
dicted as correct). The pessimistic approach obtains fair results, but with
slightly worse classification scores than the Lagrangian-based approach.

Precision Recall F1-Score

98.3%99.4%97.1% 97.7%99.2%96.2%
87.6%90.6%

84.9%

Optimistic Pessimistic Lagrangian-based score

Fig. 7 Performance comparison between the two baseline approaches and the Lagrangian-
based method.

4.3 Performance and convergence on real data

In the next series of experiments, we analyze the algorithm’s performance
for a set of real datasets. The objective of these experiments is threefold: (i)
investigate whether the sub-gradient algorithm converges, i.e., verify if the
relaxed model (10) can approximate the original problem (2)-(5); (ii) check
if the proposed methodology succeeds in determining which constraints are
erroneous; and (iii) observe execution time.
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We consider eight benchmark datasets, listed in Table 2, that are available
at the UCI Machine Learning Repository (Dua and Graff, 2017). For each,
as with the synthetic data experiment, we generated p pairwise constraints
from which q = d 13pe are erroneous and p − q are correct with respect to the
known ground-truth partitions. We have considered p = d 15n100 e and p = d 20n100 e
which give two constraint sets for every dataset. The final set of constraints for
p = d 20n100 e is obtained by adding new constraints to the set used for p = d 15n100 e.

Table 2 Benchmark real datasets

Samples Classes Features

Iris 150 3 4
Wine 178 3 13
Glass 214 3 10
Ionosphere 351 2 34
Control 600 6 60
Balance 625 3 4
Cardiotocography 2126 10 23
Optical 3823 10 61

We obtained the impact scores considering MSSC as underlying clustering
model. The lower bounding step of the subgradient method was obtained by
solving (10) with a simple adaptation of the k-means heuristic. In particu-
lar, instead of iteratively assigning data points to their closest centers, each
data point is assigned to the cluster that yields the largest reduction in the
expression:

k∑
c=1

n−1∑
i=1

n∑
j=i+1

‖oi − oj‖2xcixcj∑n
i=1 x

c
i

+
∑

(oi,oj)∈CL

k∑
c=1

ηcij(1 + ε− xci − xcj)

+
∑

(oi,oj)∈ML

k∑
c=1

λcij(ε+ xci − xcj)

+
∑

(oi,oj)∈ML

k∑
c=1

γcij(ε+ xcj − xci ).

The upper bound solution was computed only once with COP-k-means at the
start of the algorithm. For these experiments, the stopping criterion of the
algorithm was the execution time. Table 3 presents the time allocated to each
dataset. For comparison, the baseline methods decribed in Section 4.2 were
tested on the same instances. Specifically, COP-k-means was used to test each
constraint individually, each run having a time limit fixed to Tb = 1

pTs, where
Ts is the time limit of the subgradient method.

The results are summarized in Table 3 where we report the final dual
gaps at the end of the subgradient algorithm, as well as the F1-scores of our
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Table 3 Results for the selected benchmark datasets.

Impact Score Baselines (F1-score)

Time(s) p Gap F1-score Pessimistic Optimistic

Iris 120
23 0.000% 0.799 0.799 0.615
30 0.000% 0.758 0.733 0.647

Wine 120
27 0.000% 0.705 0.666 0.555
36 0.000% 0.702 0.685 0.611

Glass 120
33 0.000% 0.842 0.800 0.736
43 0.001% 0.790 0.790 0.723

Ionosphere 120
53 0.001% 0.727 0.606 0.545
71 0.001% 0.725 0.691 0.658

Control 240
90 0.000% 0.757 0.709 0.612
120 0.002% 0.705 0.691 0.685

Balance 240
94 0.002% 0.704 0.704 0.612
125 0.003% 0.684 0.671 0.624

Cardiotocography 1800
319 0.006% 0.693 0.648 0.608
426 0.007% 0.659 0.595 0.583

Optical 1800
574 0.005% 0.734 0.723 0.688
765 0.005% 0.721 0.707 0.696

proposed impact score and those obtained by the pessimistic and optimistic
approaches. We note from the table that the final dual gaps are quite negligible
(max. 0.007%) which means that the final dual values are a rich source of
information for the considered clustering problem. Additionally, such small
gaps demonstrate that Algorithm 1 converges well in all tested instances. In
sum, we find that our Lagrangian-based impact score seems to better assess
quality of pairwise constraints than the baseline approaches.

Finally, Figure 8 illustrates the convergence of the subgradient algorithm
for the Iris and Wine datasets with p = d 15n100 e. The figure shows in blue the
evolution of the lower bound as the algorithm progresses, and in dark green
the evolution of the F1-score based on the values of the dual variables. The
algorithm is able to quickly tighten the gap between the upper and lower
bounds, suggesting that it could be stopped earlier. Given that the the F1-
score shows that stopping our algorithm prematurely may lead to very bad
results, it may be ill-advised to do so. A less compromised stopping condition
might be to stop the algorithm after the obtained lower bounds appear to
stabilize.

4.4 Evaluation of entire constraint sets

As last experiment, we show how to use our Lagrangian-based impact score to
evaluate the quality of entire constraint sets. To do so, we use the four datasets
Iris, Wine, Glass and Ionosphere (see Table 2)

We begin by noting that pairwise constraints are ultimately used in semi-
supervised clustering to guide clustering methods towards obtaining groups
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Kmeans - Iris - vnskmeans_vns_iris

Iteration LBS UBS F1-score

1 55.36100067903900 64.20719681529240 0.2

2 55.87933209199940 64.20719681529240 0.2

3 56.381090604670600 64.20719681529240 0.2

4 56.83945808471900 64.20719681529240 0.2

5 57.27719905777950 64.20719681529240 0.2

6 57.683170244017800 64.20719681529240 0.2

7 58.07752733538040 64.20719681529240 0.2

8 58.43795418500400 64.20719681529240 0.2

9 58.79433618507500 64.20719681529240 0.2

10 62.665093392009300 64.20719681529240 0.2

11 62.81446353383800 64.20719681529240 0.2

12 62.95521384607090 64.20719681529240 0.34782608695652200

13 63.07803471494400 64.20719681529240 0.34782608695652200

14 63.1863680064824 64.20719681529240 0.34782608695652200

15 63.29350044960090 64.20719681529240 0.34782608695652200

16 63.379878227229400 64.20719681529240 0.4210526315789470

17 63.4658047212698 64.20719681529240 0.4210526315789470

18 63.539392646549100 64.20719681529240 0.4210526315789470

19 63.60523110132130 64.20719681529240 0.4210526315789470

20 63.69034702322430 64.20719681529240 0.4210526315789470

21 63.71887408850700 64.20719681529240 0.4210526315789470

22 63.77999485485150 64.20719681529240 0.4210526315789470

23 63.801965795658300 64.20719681529240 0.4210526315789470

24 63.8570592088605 64.20719681529240 0.4210526315789470

25 63.873262547170300 64.20719681529240 0.4210526315789470

26 63.919487492527100 64.20719681529240 0.7999

27 63.93823426853050 64.20719681529240 0.7999

28 63.958908405723 64.20719681529240 0.7999

29 63.99352046861240 64.20719681529240 0.7999

30 64.02257124940010 64.20719681529240 0.5714285714285710

31 64.02789542147180 64.20719681529240 0.5714285714285710

32 64.04166598114520 64.20719681529240 0.5714285714285710

33 64.05832483106010 64.20719681529240 0.5714285714285710

34 64.08354213995280 64.20719681529240 0.7999

35 64.09155689078980 64.20719681529240 0.7999

36 64.11061332878590 64.20719681529240 0.7999

37 64.12346837117900 64.20719681529240 0.7999

38 64.11348433991950 64.20719681529240 0.7999

39 64.13433252768170 64.20719681529240 0.7999

40 64.14634207628350 64.20719681529240 0.7999

41 64.14095006138580 64.20719681529240 0.7999

42 64.15762823885410 64.20719681529240 0.7999

43 64.160852722004 64.20719681529240 0.7999

44 64.16378928279690 64.20719681529240 0.7999

45 64.17030073265390 64.20719681529240 0.7999

46 64.16293290597930 64.20719681529240 0.7999

47 64.16295267789920 64.20719681529240 0.7999

48 64.16932760045170 64.20719681529240 0.7999

49 64.17982453241620 64.20719681529240 0.7999

50 64.18748425362440 64.20719681529240 0.7999

51 64.18016327702750 64.20719681529240 0.7999

52 64.17915979736450 64.20719681529240 0.7999

53 64.2055440780043 64.20719681529240 0.7999

54 64.18153576336450 64.20719681529240 0.7999

55 64.19749416190740 64.20719681529240 0.7999

56 64.1966116016139 64.20719681529240 0.7999

57 64.19441154912900 64.20719681529240 0.7999

58 64.2055657660121 64.20719681529240 0.7999

59 64.19057676213860 64.20719681529240 0.7999

60 64.18871777062030 64.20719681529240 0.7999

61 64.1979259426104 64.20719681529240 0.7999

62 64.20645042107730 64.20719681529240 0.7999

63 64.20374535578770 64.20719681529240 0.7999

64 64.20796251029160 64.20719681529240 0.7999

65 64.20183456910740 64.20719681529240 0.7999

66 64.19371628685780 64.20719681529240 0.7999

67 64.22004962632080 64.20719681529240 0.7999

68 64.20227777569930 64.20719681529240 0.7999

69 64.19703230499020 64.20719681529240 0.7999

70 64.20332376089970 64.20719681529240 0.7999

71 64.21250030696690 64.20719681529240 0.7999

72 64.19186505839850 64.20719681529240 0.7999

73 64.20965989412710 64.20719681529240 0.7999

74 64.21607160424290 64.20719681529240 0.7999
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Iteration LBS UBS Precision LBS UBS

1 2.72202594033831E+07 2.99195953449628E+07 0.147 126.863408695278 139.444

2 2.74090453854155E+07 2.99195953449628E+07 0.147 127.743269274106 139.444

3 2.75883433190499E+07 2.99195953449628E+07 0.147 128.578909621827 139.444

4 2.77593008627019E+07 2.99195953449628E+07 0.147 129.375678543403 139.444

5 2.79095852003708E+07 2.99195953449628E+07 0.147 130.076097414056 139.444

6 2.8061158878088E+07 2.99195953449628E+07 0.147 130.782525414565 139.444

7 2.81996275655826E+07 2.99195953449628E+07 0.33 131.427875976175 139.444

8 2.83086534405835E+07 2.99195953449628E+07 0.33 131.936004643636 139.444

9 2.84359362314262E+07 2.99195953449628E+07 0.33 132.529221940917 139.444

10 2.85375095112527E+07 2.99195953449628E+07 0.33 133.002616860494 139.444

11 2.86335775582928E+07 2.99195953449628E+07 0.33 133.450353957103 139.444

12 2.87335195782865E+07 2.99195953449628E+07 0.33 133.916146187089 139.444

13 2.88098939767156E+07 2.99195953449628E+07 0.33 134.272098581891 139.444

14 2.89002328962682E+07 2.99195953449628E+07 0.33 134.693134366394 139.444

15 2.89662336967344E+07 2.99195953449628E+07 0.39 135.000739316064 139.444

16 2.90349830149353E+07 2.99195953449628E+07 0.39 135.321154074909 139.444

17 2.91048959538915E+07 2.99195953449628E+07 0.39 135.64699203319 139.444

18 2.91628074682522E+07 2.99195953449628E+07 0.39 135.916895857604 139.444

19 2.92120272073298E+07 2.99195953449628E+07 0.39 136.146290580922 139.444

20 2.92550704869224E+07 2.99195953449628E+07 0.39 136.346899145654 139.444

21 2.93105882142595E+07 2.99195953449628E+07 0.39 136.605646427545 139.444

22 2.93459657563687E+07 2.99195953449628E+07 0.39 136.770527868119 139.444

23 2.94048263453511E+07 2.99195953449628E+07 0.39 137.044854972996 139.444

24 2.94361414549855E+07 2.99195953449628E+07 0.63 137.190802941125 139.444

25 2.94736562735432E+07 2.99195953449628E+07 0.63 137.365645424743 139.444

26 2.94951637159869E+07 2.99195953449628E+07 0.63 137.465883538579 139.444

27 2.95226803927828E+07 2.99195953449628E+07 0.63 137.594128437445 139.444

28 2.95719810973832E+07 2.99195953449628E+07 0.63 137.823900510665 139.444

29 2.95768640512599E+07 2.99195953449628E+07 0.63 137.846658125283 139.444

30 2.96041558151439E+07 2.99195953449628E+07 0.63 137.973854789514 139.444

31 2.962385247417E+07 2.99195953449628E+07 0.63 138.065653521735 139.444

32 2.96478701550417E+07 2.99195953449628E+07 0.63 138.177590914366 139.444

33 2.96756617337867E+07 2.99195953449628E+07 0.63 138.307117027999 139.444

34 2.96829483628135E+07 2.99195953449628E+07 0.63 138.341077269984 139.444

35 2.9702686439177E+07 2.99195953449628E+07 0.63 138.433069032864 139.444

36 2.97312381020602E+07 2.99195953449628E+07 0.63 138.566137613277 139.444

37 2.97484541157784E+07 2.99195953449628E+07 0.63 138.646374989125 139.444

38 2.97422226536981E+07 2.99195953449628E+07 0.63 138.617332484095 139.444

39 2.97573100541295E+07 2.99195953449628E+07 0.63 138.687649192643 139.444

40 2.97692975695798E+07 2.99195953449628E+07 0.63 138.743518501207 139.444

41 2.97817285988332E+07 2.99195953449628E+07 0.63 138.801454861082 139.444

42 2.97834301192571E+07 2.99195953449628E+07 0.63 138.809385008908 139.444

43 2.97989366502727E+07 2.99195953449628E+07 0.705 138.881655127739 139.444

44 2.9803734154796E+07 2.99195953449628E+07 0.705 138.904014495004 139.444

45 2.9818842462108E+07 2.99195953449628E+07 0.705 138.974428642673 139.444

46 2.98241959810778E+07 2.99195953449628E+07 0.705 138.999379384507 139.444

47 2.98297467737502E+07 2.99195953449628E+07 0.705 139.025249544998 139.444

48 2.98475025799697E+07 2.99195953449628E+07 0.705 139.108002691019 139.444

49 2.98568066142472E+07 2.99195953449628E+07 0.705 139.151365301403 139.444

50 2.985236054148E+07 2.99195953449628E+07 0.705 139.130643825601 139.444

51 2.98678814287758E+07 2.99195953449628E+07 0.705 139.202980853663 139.444

52 2.98606210339509E+07 2.99195953449628E+07 0.705 139.169142879443 139.444

53 2.98626198727855E+07 2.99195953449628E+07 0.705 139.178458716748 139.444

54 2.98723315049263E+07 2.99195953449628E+07 0.705 139.223720987732 139.444

55 2.98677702846209E+07 2.99195953449628E+07 0.705 139.202462852489 139.444

56 2.98799787391604E+07 2.99195953449628E+07 0.705 139.259361875192 139.444

57 2.98688450388395E+07 2.99195953449628E+07 0.705 139.207471878364 139.444

58 2.98777241870975E+07 2.99195953449628E+07 0.705 139.248854254543 139.444

59 2.98865948782245E+07 2.99195953449628E+07 0.705 139.29019721521 139.444

60 2.98887320919003E+07 2.99195953449628E+07 0.705 139.300157965693 139.444

61 2.99053362217791E+07 2.99195953449628E+07 0.705 139.37754358071 139.444

62 2.98877179283612E+07 2.99195953449628E+07 0.705 139.295431330225 139.444

63 2.98946363951599E+07 2.99195953449628E+07 0.705 139.327675706299 139.444

64 2.98836043921866E+07 2.99195953449628E+07 0.705 139.276259682624 139.444

65 2.98861336790516E+07 2.99195953449628E+07 0.705 139.288047739031 139.444

66 2.98947028242132E+07 2.99195953449628E+07 0.705 139.327985307175 139.444

67 2.98940397036671E+07 2.99195953449628E+07 0.705 139.324894751291 139.444

68 2.98961827744187E+07 2.99195953449628E+07 0.705 139.334882799406 139.444

69 2.98966498740216E+07 2.99195953449628E+07 0.705 139.337059775273 139.444

70 2.98990666307405E+07 2.99195953449628E+07 0.705 139.348323370921 139.444

71 2.99020984981598E+07 2.99195953449628E+07 0.705 139.362453766588 139.444

72 2.9913195847758E+07 2.99195953449628E+07 0.705 139.414174346346 139.444

73 2.99091752837381E+07 2.99195953449628E+07 0.705 139.395436007049 139.444

74 2.9912070583401E+07 2.99195953449628E+07 0.705 139.408929911681 139.444

75 2.99219548292619E+07 2.99195953449628E+07 0.705 139.454996670403 139.444

76 2.99045502725107E+07 2.99195953449628E+07 0.705 139.37388056627 139.444

77 2.99015493904944E+07 2.99195953449628E+07 0.705 139.359894581933 139.444

78 2.99129755343838E+07 2.99195953449628E+07 0.705 139.41314754843 139.444

79 2.9914749574803E+07 2.99195953449628E+07 0.705 139.421415684725 139.444

80 2.99068749081474E+07 2.99195953449628E+07 0.705 139.384714820143 139.444

81 2.99214947234241E+07 2.99195953449628E+07 0.705 139.452852289849 139.444

82 2.99128501509622E+07 2.99195953449628E+07 0.705 139.412563183379 139.444

83 2.99058073932747E+07 2.99195953449628E+07 0.705 139.37973953414 139.444

84 2.99137289524688E+07 2.99195953449628E+07 0.705 139.416658947238 139.444

85 2.99068886158421E+07 2.99195953449628E+07 0.705 139.384778706561 139.444

86 2.9918420183548E+07 2.99195953449628E+07 0.705 139.438523013883 139.444

87 2.99222692329662E+07 2.99195953449628E+07 0.705 139.45646198802 139.444

88 2.99091388307052E+07 2.99195953449628E+07 0.705 139.39526611315 139.444

89 2.99169386575349E+07 2.99195953449628E+07 0.705 139.431618177404 139.444

90 2.99118655380147E+07 2.99195953449628E+07 0.705 139.407974272124 139.444

91 2.99223731971022E+07 2.99195953449628E+07 0.705 139.456946525822 139.444

92 2.9908271888085E+07 2.99195953449628E+07 0.705 139.391225619108 139.444

93 2.99148571066069E+07 2.99195953449628E+07 0.705 139.421916850088 139.444

94 2.99160252402963E+07 2.99195953449628E+07 0.705 139.427361082616 139.444

95 2.99345460630557E+07 2.99195953449628E+07 0.705 139.513679683489 139.444

96 2.99170240352082E+07 2.99195953449628E+07 0.705 139.432016090683 139.444

97 2.9915689236018E+07 2.99195953449628E+07 0.705 139.425795092834 139.444

98 2.99080689892936E+07 2.99195953449628E+07 0.705 139.390279984024 139.444

99 2.9914647052084E+07 2.99195953449628E+07 0.705 139.420937864826 139.444

100 2.99212824846038E+07 2.99195953449628E+07 0.705 139.451863124397 139.444

101 2.99174713294909E+07 2.99195953449628E+07 0.705 139.434100761389 139.444

102 2.99121591109814E+07 2.99195953449628E+07 0.705 139.409342505494 139.444

103 2.99125526094324E+07 2.99195953449628E+07 0.705 139.411176454027 139.444

104 2.99187134734795E+07 2.99195953449628E+07 0.705 139.439889928132 139.444

105 2.99236402519056E+07 2.99195953449628E+07 0.705 139.46285179252 139.444
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Fig. 8 Illustration of the algorithm’s evolution for datasets Iris and Wine. The figure shows
an upward progression of the F1-score associated to predicting erroneous constraints, and a
duality gap reduction as the subgradient algorithm progresses.

that agree with expert knowledge, more typically when unsupervised clustering
methods fail to obtain clusters that bear face validity. However, we argue that
(sets of) experts might be wrong or uncertain about data relationships and
interpretation. Besides, erroneous pairwise constraints can be inadvertently
added to a clustering model as a result of a data artifact or noise.

The ultimate goal of our Lagrangian-based impact score is to determine
a list of constraints that are merit reviewing. If one follows our methodology
to calculate impact scores, constraints most needing of review would be those
with the smallest impact score (remember that our impact scores are always
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non-positive). When faced with a poorly scored (i.e., very negative) pairwise
constraint, an expert may decide to either discard it from the constraint set
or to keep it, expecting to improve the clustering method ability to retrieve
the intended data structures.

To provide an objective assessment of whether impact scores can be useful
at selecting pairwise constraints to review, we will use the standard Adjusted
Rand Index (ARI) (Hubert and Arabie, 1985), which is defined as follows.
Let X1, . . . , Xk be the ground-truth partition of a dataset of n points into k
clusters, and let Y1, . . . , Yk be the partition obtained by solving (2)-(5) with
constraint set C. Also, let ai = |Xi| and bi = |Yi| for all i = 1, . . . , k, and let
cij = |Xi ∩ Yj | for all i and j in {1, . . . , k}. The ARI is then computed as
follows:
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Further, let us define I(C) as the impact score of a constraint set C calcu-

lated as the sum of the impact scores over all constraints, that is

I(C) =
∑

(ou,ov)∈C

Iuv.

In the first part of our experiments, we generate for each benchmark
dataset 100 constraint sets, each composed by 25 randomly selected correct
constraints. As such, these pairwise constraints are all supposed to increase
the clustering performance (e.g. ARI). Once our methodology is applied, each
pairwise constraint is given an impact score. Recall that pairwise constraints
with negative impact scores are those that are most inconsistent with the un-
supervised clustering solution. Such negatively scored (but correct) constraints
are then called to be reexamined by the expert who should keep them within
the clustering model as they incorporate the expert’s knowledge in the clus-
tering solution.

Figure 9 shows for the k-medoids model ARIs with standard box-and-
whisker plots, when the whole collection of 100 constraint sets is used, and
when only the 50 constraint sets with smallest impact score are used. As
mentioned in Section 2, Davidson et al. (2006) propose to evaluate the quality
of a constraint set by using a coherence measure. We also show in Figure 9 the
ARIs for each data set when using the 50 constraint sets with highest coherence
measure. We can observe that the Lagrangian-based impact score performed
better on the task of identifying the correct constraint sets which are more
helpful to guide the algorithm towards the ground-truth partition. In fact, the
impact score was always capable of finding the best constraint set from the
entire collection of 100 constraint sets. More precisely, the best constraint set,
i.e. that one yielding the best ARI, was ranked #1 by our impact score for the
Iris and Wine datasets, #2 for Glass and #4 for Ionosphere.

Finally, we repeat the same approach except that we now generate con-
straint sets composed of 25 randomly generated erroneous constraints - con-
straints which should eventually be discarded by an expert after review. Figure
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Fig. 9 Comparison of the ARIs for the whole collection of 100 constraint sets of 25 correct
constraints, and for the top 50 constraint sets selected by the impact score and Davidson’s
coherence measure.

10 shows ARIs with standard box-and-whisker plots, when the whole collec-
tion of 100 constraint sets is used, and when only the 50 constraint sets with
highest impact score and smallest coherence measure are used.

The Lagrangian-based impact score proved to be more effective at identify-
ing the most degrading sets of erroneous constraints. For all datasets, its top 50
selection included the constraint set with the highest ARI, in addition of hav-
ing obtained the highest median ARI, overall. Furthermore, its worst selected
constraint set (lowest ARI) was always better than the worst set selected by
the coherence measure within its top 50.

As further analysis, we indicate in Table 4 the proportions of cannot-link
(columns CL) and must-link (columns ML) constraints in the selected sets.
We observe that these proportions are very similar for the three experimented
methods. Hence, the gain in performance obtained by using the Lagrangian-
based score rather than the coherence measure seems to be due to the quality
of the selected constraints.

In summary, we have shown that the impact score obtained from the pro-
posed Lagrangian-based model is capable of detecting the most informative
constraint sets, rejecting those that degrade the clustering performance and
keeping those that help finding the unknown group structures.
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Fig. 10 Comparison of the ARIs for the whole collection of 100 constraint sets of 25
erroneous constraints, and for the top 50 constraint sets selected by the impact score and
Davidson’s coherence measure.

Table 4 Proportion of cannot-link and must-link constraints in the selected sets.

Iris Wine Glass Ionosphere

CL ML CL ML CL ML CL ML

Whole Collection 33.6% 66.4% 34.8% 65.2% 24.6% 75.4% 53.4% 46.6%
Top 50 with Lagrangian score 33.2% 66.8% 34.5% 65.5% 23.1% 76.9% 54.2% 45.8%
Top 50 with coherence score 32.3% 67.7% 34.0% 66.0% 24.0% 76.0% 53.6% 46.4%

5 Conclusion

We proposed a Lagrangian-based procedure and impact score for assessing
the quality of semi-supervision in clustering. The procedure addresses an im-
portant issue in semi-supervised clustering applications: the incorporation by
experts of constraints which degrade the clustering solution. To help experts
identify which pairwise constraints from a set should be revised, the technique
estimates the quality of pairwise constraints by exploiting the dual variables of
the Lagrangian relaxation of a constrained integer programming formulation
of the clustering problem. The impact of each pairwise constraint is computed
using a sub-gradient algorithm that optimizes the Lagrangian relaxation. To
demonstrate the effectiveness of our approach, we conducted several exper-
iments on synthetic and real data. We also compared our approach to that
of prior methods, which do not enable the evaluation of individual pairwise
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constraints of a set but rather evaluate the set as a whole. We find across these
experiments that the method is robust.

In summary, our approach provides valuable information regarding the
usefulness of pairwise clustering constraints. The quality of this information
however depends on how much time the sub-gradient algorithm is allowed to
run in order to refine that information. Besides, our methodology is arguably
connected to the ability of the chosen clustering model to recover the under-
lying structure of the data. Therefore, our results are expected to be more
reliable if an appropriated clustering model is adopted.

Finally, we would like to remark that although our discussion in this paper
is focused on data partitioning with hard semi-supervised pairwise constraints,
i.e., which must be satisfied, our impact score can be adapted, for instance, to
fuzzy clustering (Bezdek, 1981; Pinheiro et al., 2020), for which the assignment
variables are relaxed allowing the data points to belong to more than one clus-
ter with different membership degrees that represent the likelihood of the data
point belonging to that cluster. Moreover, another option is to use the impact
score in conjunction with algorithms to soft-constrained clustering models in
which the pairwise constraints, namely should-link and should-not-link, do not
need to be necessarily satisfied (Campello et al., 2013; Grossi et al., 2017b).
We believe that in this setting our impact score might serve as a warm-start
information to SSC algorithms providing them in advance which are the most
critical constraints to be first explored for violation.
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median clustering problems by primal–dual variable neighborhood search.
Data Mining and Knowledge Discovery 19(3):351–375

Held M, Wolfe P, Crowder HP (1974) Validation of subgradient optimization.
Mathematical Programming 6(1):62–88, DOI 10.1007/bf01580223

Hubert L, Arabie P (1985) Comparing partitions. Journal of Classification
2(1):193–218, DOI 10.1007/BF01908075

Kariv O, Hakimi SL (1979) An algorithmic approach to network loca-
tion problems. II: the p-medians. SIAM J Appl Math 37:539–560, DOI
10.1137/0137041

Kaufman L, Rousseeuw PJ (2009) Finding groups in data: an introduction to
cluster analysis, vol 344. John Wiley & Sons

Kim S, Blanchard SJ, DeSarbo WS, Fong DK (2013) Implementing manage-
rial constraints in model-based segmentation: extensions of Kim, Fong, and
DeSarbo (2012) with an application to heterogeneous perceptions of service
quality. Journal of Marketing Research 50(5):664–673

Kochetov Y, Ivanenko D (2005) Computationally Difficult Instances for the
Uncapacitated Facility Location Problem, Springer US, Boston, MA, pp
351–367. Operations Research/Computer Science Interfaces Series

Mallapragada PK, Jin R, Jain AK (2008) Active query selection for semi-
supervised clustering. In: 2008 19th International Conference on Pattern
Recognition, IEEE, pp 1–4, DOI 10.1109/ICPR.2008.4761792

Pinheiro DN, Aloise D, Blanchard SJ (2020) Convex fuzzy k-medoids cluster-
ing. Fuzzy Sets and Systems 389:66–92
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