4 research outputs found

    A hybrid constructive algorithm incorporating teaching-learning based optimization for neural network training

    Get PDF
    In neural networks, simultaneous determination of the optimum structure and weights is a challenge. This paper proposes a combination of teaching-learning based optimization (TLBO) algorithm and a constructive algorithm (CA) to cope with the challenge. In literature, TLBO is used to choose proper weights, while CA is adopted to construct different structures in order to select the proper one. In this study, the basic TLBO algorithm along with an improved version of this algorithm for network weights selection are utilized. Meanwhile, as a constructive algorithm, a novel modification to multiple operations, using statistical tests (MOST), is applied and tested to choose the proper structure. The proposed combinatorial algorithms are applied to ten classification problems and two-time-series prediction problems, as the benchmark. The results are evaluated based on training and testing error, network complexity and mean-square error. The experimental results illustrate that the proposed hybrid method of the modified MOST constructive algorithm and the improved TLBO (MCO-ITLBO) algorithm outperform the others; moreover, they have been proven by Wilcoxon statistical tests as well. The proposed method demonstrates less average error with less complexity in the network structure

    Anomaly Detection in Sequential Data: A Deep Learning-Based Approach

    Get PDF
    Anomaly Detection has been researched in various domains with several applications in intrusion detection, fraud detection, system health management, and bio-informatics. Conventional anomaly detection methods analyze each data instance independently (univariate or multivariate) and ignore the sequential characteristics of the data. Anomalies in the data can be detected by grouping the individual data instances into sequential data and hence conventional way of analyzing independent data instances cannot detect anomalies. Currently: (1) Deep learning-based algorithms are widely used for anomaly detection purposes. However, significant computational overhead time is incurred during the training process due to static constant batch size and learning rate parameters for each epoch, (2) the threshold to decide whether an event is normal or malicious is often set as static. This can drastically increase the false alarm rate if the threshold is set low or decrease the True Alarm rate if it is set to a remarkably high value, (3) Real-life data is messy. It is impossible to learn the data features by training just one algorithm. Therefore, several one-class-based algorithms need to be trained. The final output is the ensemble of the output from all the algorithms. The prediction accuracy can be increased by giving a proper weight to each algorithm\u27s output. By extending the state-of-the-art techniques in learning-based algorithms, this dissertation provides the following solutions: (i) To address (1), we propose a hybrid, dynamic batch size and learning rate tuning algorithm that reduces the overall training time of the neural network. (ii) As a solution for (2), we present an adaptive thresholding algorithm that reduces high false alarm rates. (iii) To overcome (3), we propose a multilevel hybrid ensemble anomaly detection framework that increases the anomaly detection rate of the high dimensional dataset
    corecore