
Florida International University Florida International University

FIU Digital Commons FIU Digital Commons

FIU Electronic Theses and Dissertations University Graduate School

6-20-2022

Anomaly Detection in Sequential Data: A Deep Learning-Based Anomaly Detection in Sequential Data: A Deep Learning-Based

Approach Approach

Jayesh Soni
Florida International University, jsoni002@fiu.edu

Follow this and additional works at: https://digitalcommons.fiu.edu/etd

 Part of the Artificial Intelligence and Robotics Commons, Data Science Commons, Information

Security Commons, and the Theory and Algorithms Commons

Recommended Citation Recommended Citation
Soni, Jayesh, "Anomaly Detection in Sequential Data: A Deep Learning-Based Approach" (2022). FIU
Electronic Theses and Dissertations. 5052.
https://digitalcommons.fiu.edu/etd/5052

This work is brought to you for free and open access by the University Graduate School at FIU Digital Commons. It
has been accepted for inclusion in FIU Electronic Theses and Dissertations by an authorized administrator of FIU
Digital Commons. For more information, please contact dcc@fiu.edu.

https://digitalcommons.fiu.edu/
https://digitalcommons.fiu.edu/etd
https://digitalcommons.fiu.edu/ugs
https://digitalcommons.fiu.edu/etd?utm_source=digitalcommons.fiu.edu%2Fetd%2F5052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/143?utm_source=digitalcommons.fiu.edu%2Fetd%2F5052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1429?utm_source=digitalcommons.fiu.edu%2Fetd%2F5052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.fiu.edu%2Fetd%2F5052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/1247?utm_source=digitalcommons.fiu.edu%2Fetd%2F5052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://network.bepress.com/hgg/discipline/151?utm_source=digitalcommons.fiu.edu%2Fetd%2F5052&utm_medium=PDF&utm_campaign=PDFCoverPages
https://digitalcommons.fiu.edu/etd/5052?utm_source=digitalcommons.fiu.edu%2Fetd%2F5052&utm_medium=PDF&utm_campaign=PDFCoverPages
mailto:dcc@fiu.edu

FLORIDA INTERNATIONAL UNIVERSITY

Miami, Florida

ANOMALY DETECTION IN SEQUENTIAL DATA:

A DEEP LEARNING-BASED APPROACH

A dissertation submitted in partial fulfillment of

the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

COMPUTER SCIENCE

by

Jayesh Soni

2022

ii

To: Dean John L. Volakis

 College of Engineering and Computing

This dissertation, written by Jayesh Soni, and entitled Anomaly Detection in Sequential

Data: A Deep Learning-Based Approach, having been approved in respect to style and

intellectual content, is referred to you for judgment.

We have read this dissertation and recommend that it be approved.

 Hadi Amini

Leonardo Bobadilla

Ajeet Kaushik

Ananda Mondal

 Himanshu Upadhyay

Nagarajan Prabakar, Major Professor

Date of Defense: June 20th, 2022

The dissertation of Jayesh Soni is approved.

 Dean John L. Volakis

 College of Engineering and Computing

 Andres G. Gil

 Vice President for Research and Economic Development and

 Dean of the University Graduate School

Florida International University, 2022

iii

© Copyright 2022 by Jayesh Soni

All rights reserved.

iv

DEDICATION

To my family members for their supports and sacrifices

v

ACKNOWLEDGMENTS

First and foremost, I owe my deepest gratitude to my supervisor Professor Nagarajan

Prabakar for his generous supervision, guidance, and encouragement during my Ph.D. He

was always patient enough to discuss anything with enthusiasm and guided me in the right

direction. I am also deeply grateful to Professor Himanshu Upadhyay for supporting,

mentoring, and helping in all the stages. I would also like to thank Professor Leonardo

Bobadilla, Professor Hadi Amini, Professor Ananda Mondal, and Professor Ajeet Kaushik

for being on my doctoral committee. They have provided valuable suggestions. This work

is supported by DoD-TRMC. Many thanks to TRMC for providing me the financial

support. I want to thank Mr. Clint Miller for always supporting me in solving the issues

with the computational servers in the lab. I would also like to thank my lab-mates and all

of my co-authors with whom I have worked together. It was my great pleasure to work

with them. I am also thankful for the administrative and advising staff. I am also thankful

to the conference organizers, publishing editors, and reviewers for providing me the

constructive and valuable feedback and facilitating the publication of my research. Finally,

I am grateful to my parents. Without their inspiration, it would not be possible to finish my

study.

vi

ABSTRACT OF THE DISSERTATION

ANOMALY DETECTION IN SEQUENTIAL DATA:

A DEEP LEARNING-BASED APPROACH

by

Jayesh Soni

Florida International University, 2022

Miami, Florida

Professor Nagarajan Prabakar, Major Professor

Anomaly Detection has been researched in various domains with several applications in

intrusion detection, fraud detection, system health management, and bio-informatics.

Conventional anomaly detection methods analyze each data instance independently

(univariate or multivariate) and ignore the sequential characteristics of the data. Often,

anomalies in the sequential data can be detected when the individual data instances are

analyzed by grouping them into a sequence and hence cannot be detected by a conventional

way of anomaly detection. Currently: (1) Deep learning-based algorithms are widely used

for anomaly detection purposes. However, significant computational overhead time is

incurred during the training process due to static constant batch size and learning rate

parameters for each epoch, (2) the threshold to decide whether an event is normal or

malicious is often set as static. This can drastically increase the false alarm rate if the

threshold is set low or decrease the True Alarm rate if it is set to a remarkably high value,

(3) Real-life data is messy. It is impossible to learn the data features by training just one

vii

algorithm. Therefore, several one-class-based algorithms need to be trained. The final

output is the ensemble of the output from all the algorithms. The prediction accuracy can

be increased by giving a proper weight to each algorithm's output. By extending the state-

of-the-art techniques in learning-based algorithms, this dissertation provides the following

solutions: (i) To address (1), we propose a hybrid, dynamic batch size and learning rate

tuning algorithm that reduces the overall training time of the neural network. (ii) As a

solution for (2), we present an adaptive thresholding algorithm that reduces high false

alarm rates. (iii) To overcome (3), we propose a multilevel hybrid ensemble anomaly

detection framework that increases the anomaly detection rate of the high dimensional

dataset.

viii

TABLE OF CONTENTS

CHAPTER PAGE

1. INTRODUCTION .. 1

1.1 Challenges ... 3

1.2 The objective of this Dissertation ... 7

1.3 Contributions... 7

1.3.1 SysCallNet: Behavioral Analysis of System Calls using Deep Learning-

based Algorithms for Anomaly Detection .. 8

1.3.2 P-BoSC: An Extension of Bag of System Call Technique for Detection of

Anomalous Points ... 8

1.3.3 DynaB: An Enhanced and Dynamic Batch Size Tuning for LSTM Neural

Network .. 9

1.3.4 DynaB-LR: A Hybrid Algorithm for Dynamic Batch Size and Learning

Rate tuning for an optimized training of Neural Network 9

1.3.5 Machine Learning-based Cyber Threat Anomaly Detection in Virtualized

Application Processes ... 10

1.3.6 AdaThres: An Adaptive Thresholding Method to Mitigate the False

Alarms .. 11

1.3.7 EA-Net: A Hybrid and Ensemble Multi-Level Approach for Robust

Anomaly Detection ... 11

2. SYSCALL-NET: BEHAVIORAL ANALYSIS OF SYSTEM CALLS USING

DEEP LEARNING-BASED ALGORITHMS FOR ANOMALY DETECTION . 13

2.1 Introduction ... 13

2.1.1 Summary of Contribution ... 14

2.1.2 Organization of the Chapter ... 15

2.2 Related Work .. 15

2.3 Overview of System Call Extraction Using VMI ... 16

2.4 Feature Extraction Technique for System Call Sequence 18

2.5 Detection Algorithms Based on Behavioral Aspects .. 18

2.5.1 Temporal aspects: Long Short Term Memory (LSTM) Seq-Seq 19

2.5.2 Frequency aspects: Cosine Similarity .. 22

2.5.3 Commonality aspects: Jaccard Similarity .. 23

ix

2.6 Experimental Setup ... 24

2.7 Results ... 25

2.7.1 Result analysis of LSTM Seq-Seq Model .. 25

2.7.2 Result analysis of Cosine Similarity anomaly detection algorithm 27

2.7.3 Result Analysis of Jaccard Similarity anomaly detection algorithm 29

2.8 Conclusion .. 30

3. P-BOSC: AN EXTENSION OF BAG OF SYSTEM CALL TECHNIQUE FOR

DETECTION OF ANOMALOUS POINTS .. 32

3.1 Introduction ... 32

3.2 Related Work .. 34

3.3 System Overview .. 36

3.3.1 Architecture .. 36

3.3.2 Proposed Methodology ... 38

3.4 Feature Engineering .. 38

3.5 Proposed Algorithm .. 40

3.5.1 Anomaly Detection Algorithm ... 40

3.5.2 Anomalous Window Detection Algorithm ... 41

3.6 Environmental Setup ... 42

3.7 Results Analysis ... 43

3.7.1 Anomalous Process Detection Algorithm .. 43

3.7.2 Anomalous Window Detection Algorithm ... 45

3.8 Conclusion .. 46

4. DYNA-B: AN ENHANCED AND DYNAMIC BATCH SIZE TUNING FOR

LSTM NEURAL NETWORK ... 47

4.1 Introduction ... 48

4.1.1 Summary of contribution .. 49

4.1.2 Organization of the chapter .. 49

4.2 Related Work .. 49

4.3 Problem Formulation .. 50

4.4 Gradient Descent and its variants ... 52

x

4.4.1 Optimizers .. 54

4.5 Dataset Description ... 56

4.6 Evaluation Metrics .. 58

4.7 Algorithm Analysis ... 59

4.8 Proposed Dynamic BatchSize Algorithm ... 63

4.9 Experimental Results .. 65

4.10 Conclusion .. 68

5. DYNAB-LR: A HYBRID ALGORITHM FOR DYNAMIC BATCH SIZE AND

LEARNING RATE TUNING FOR AN OPTIMIZED TRAINING OF NEURAL

NETWORK .. 69

5.1 Introduction ... 69

5.1.1 Summary of contribution .. 71

5.1.2 Organization of the chapter .. 71

5.2 Related Work .. 72

5.3 Problem Formulation .. 73

5.4 Preliminaries ... 75

5.4.1 Learning Rate Techniques .. 77

5.5 Algorithm Analysis ... 79

5.6 Impact of Window Size .. 80

5.7 Proposed Dynamic BatchSize with Dynamic Learning Rate Algorithm.............. 81

5.8 Experimental Results .. 83

5.9 Conclusion .. 86

6. MACHINE LEARNING-BASED CYBER THREAT ANOMALY DETECTION

IN VIRTUALIZED APPLICATION PROCESSES .. 88

6.1 Introduction ... 89

6.2 Related Work .. 91

6.3 Proposed Methodology ... 92

6.3.1 Stage-I: Data Extraction ... 93

6.3.2 Stage-II: Data Pre-Processing .. 97

6.3.3 Stage-III: Detection Algorithm Training .. 100

xi

6.4 Experiments and Results ... 103

6.4.1 Mahalanobis Classifier ... 103

6.4.2 Isolation Forest ... 104

6.4.3 Agglomerative Clustering .. 104

6.4.4 OCSVM .. 105

6.5 Ensemble Approach .. 106

6.6 Conclusion .. 108

6.7 Future Work .. 109

7. ADA-THRES: AN ADAPTIVE THRESHOLDING METHOD TO MITIGATE

THE FALSE ALARMS ... 111

7.1 Introduction ... 112

7.2 Related Work .. 113

7.3 Contribution of the work ... 114

7.4 Organization of the chapter ... 115

7.5 Problem Formulation .. 115

7.5.1 Challenges .. 117

7.5.2 Types of Anomaly .. 118

7.6 Static Threshold Approach ... 119

7.7 Proposed Adaptive Thresholding Algorithm .. 121

7.7.1 Training Phase .. 122

7.7.2 Testing Phase .. 124

7.8 Experimental Results .. 126

7.9 Conclusion .. 128

8. EA-NET: A HYBRID AND ENSEMBLE MULTI-LEVEL APPROACH FOR

ROBUST ANOMALY DETECTION ... 129

8.1 Introduction ... 130

8.2 Literature Review ... 131

8.3 Contribution of the work .. 132

8.4 Organization of the chapter .. 132

8.5 Learning Based Algorithms .. 133

xii

8.5.1 One Class Classifiers .. 133

8.5.2 Dimensionality Reduction .. 135

8.6 Information Theory .. 137

8.7 Datasets .. 138

8.8 Proposed Ensemble Anomaly Detection Algorithm .. 139

8.8.1 Hybrid Feature Extraction .. 140

8.8.2 Anomaly Detector .. 142

8.9 Experimental Results Analysis ... 142

8.10 Conclusion .. 145

9. CONCLUSION .. 146

BIBLIGRAPHY ... 148

VITA .. 163

xiii

LIST OF TABLES

TABLE PAGE

 2.1 Accuracy with Windows Size .. 26

 2.2 Loss with Windows Size .. 26

 3.1 Sample Sequence ... 38

 3.2 Numeric Mapping of System Calls .. 39

 3.3 Vector of Frequencies .. 39

 3.4 CS Evaluated Results ... 44

 4.1 JMPS Dataset Information ... 57

 4.2 ADFA-LD Dataset Distribution for Normal Category .. 57

 4.3 ADFA-LD Dataset Distribution for Attack Category ... 58

 4.4 UNM Dataset Distribution ... 58

 4.5 Static BatchSize Algorithm Results ... 61

 4.6 Static BatchSize Algorithm Results Analysis .. 61

 4.7 Static BatchSize Algorithm Results Analysis with Multiple LR 62

 4.8 Dynamic BS with Default LR .. 66

 4.9 Dynamic BS with Multiple LR .. 66

 5.1 Loss with window size ... 81

 5.2 Loss with Default Learning Rate ... 84

 5.3 Loss with Different Learning Rate .. 84

 6.1 Extracted Features .. 94

 6.2 Sample PS Dataset ... 96

 6.3 Benign and Malicious Dataset Size ... 97

xiv

 6.4 Four Unique TestCase Results .. 106

 7.1 FPR for JMPS Dataset .. 126

 7.2 FPR for ADFA-LD Dataset .. 126

 7.3 FPR for UNM Dataset ... 127

 8.1 Metrics for CIC-IDS2017 Dataset ... 142

 8.2 Metrics for UNSW-NB15 Dataset ... 143

 8.3 Metrics for NSL-KDD Dataset .. 144

xv

LIST OF FIGURES

FIGURE PAGE

2.1 Behavior Detection Algorithm ... 19

2.2 Overview of LSTM Model Building ... 20

2.3 Anomalous window detection.. 23

2.4 Accuracy with Epoch for Individual Sequence Length ... 26

2.5 Loss with Epoch for Individual Sequence Length ... 26

2.6 Time per Epoch for Individual Sequence Length .. 27

2.7 Top Seven SystemCalls in Benign and Malicious Data .. 28

2.8 Cosine Similarity for Benign Data ... 28

2.9 Cosine Similarity for Malicious Data .. 29

2.10 Jaccard Similarity... 29

 3.1 Cosine Similarity Between Batches…………………………………......................42

3.2 Environmental Framework .. 43

3.3 Top System Calls with highest frequency in Baseline Data 44

3.4 Top System Calls with highest frequency in Test Data ... 44

3.5 Cosine Similarity between Normal and Malicious Process 45

3.6 Cosine Similarity with Sequence Length ... 45

3.7 Cosine Similarity with varying scan duration .. 46

4.1 BatchSize Training Problem……………………………………………….............52

4.2 Brute Force BS for JMPS .. 62

4.3 Brute Force BS for ADFA-LD .. 63

xvi

4.4 Brute Force BS for UNM .. 63

4.5 Dynamic BS for JMPS .. 67

4.6 Dynamic BS for ADFA-LD .. 67

 4.7 Dynamic BS for UNM .. 67

5.1 Learning Rate Problem Outline………………………………………….................74

5.2 Gradient Descent with small learning rate .. 76

5.3 Gradient Descent with large learning rate .. 76

5.4 Dynamic BS_LR for JMPS ... 85

5.5 Dynamic BS_LR for ADFA-LD ... 85

5.6 Dynamic BS_LR for UNM ... 85

6.1 Proposed Anomaly Detection Framework…………...……………………………93

6.2 Architectural diagram of the Data extraction mechanism .. 94

6.3 Mahalanobis Distance Metric Results .. 104

6.4 Isolation Forest Results ... 104

6.5 Agglomerative Clustering Results (Normal) .. 105

6.6 Agglomerative Clustering Results (Malicious) .. 105

6.7 OCSVM Results (Normal) .. 106

6.8 OCSVM Results (Malicious) .. 106

6.9 Ensemble Decision for each TestCase Scenario ... 107

7.1 Static Threshold Approach………………………………………………………..120

7.2 Adaptive Threshold Training Phase.. 122

7.3 Adaptive Threshold Testing Phase ... 125

8.1 Ensemble Anomaly Framework…………………………………………………..139

xvii

8.2: Weight Mechanism .. 141

1

CHAPTER 1

INTRODUCTION

Security breaches due to ransomware, virus, Trojans, etc., have been reportedly increasing

in recent years [1]. A security vulnerability has been reported on a continuous basis which

can be seen as a failure by the cybersecurity analysts towards mitigating such attacks.

Malware also known as malicious code can be described as "a code written and executed

intentionally to harm the system by either adding, modifying or deleting some of its

parameters" [2]. A malware can either be a standalone program or attached to the known

program.

There are numerous reasons for the creation of malware. Some malware is developed as a

concept to avoid future vulnerability. Such types of malware do not cause any harmful

attacks on the systems. Some other types of malware created by cyber attackers are solely

for stealing private information, infecting the system's main code, etc. There are many

sensitive data stored in various current systems and numerous quantities. These give high

opportunities to cyber attackers to gain profit illegally out of such legitimate systems. Since

the early 2000s, the increase in malware has been exponential. With the migration of

traditional office-based work to remote work, high-level targeted attacks have been

performed against companies' critical infrastructure.

To identify such malware, anti-virus software provides solutions in two main methods:

signature-based, which utilizes the already known malware database to detect the new

malware, and anomaly-based, which makes use of the normal patterns behavior of the

program to discriminate between malicious and legitimate program [3]. Signature-based

2

methods can detect only the known malware, whereas anomaly-based methods can detect

any malware. Signature-based methods need a labeled dataset of benign and malware code

and thus are inefficient in identifying new malware in current world scenarios since most

datasets are highly imbalanced. Anomaly-based methods need only a benign class of

dataset, and anything that deviates from the normal class is considered anomalous. Thus

anomaly-based detection methods are highly efficient in identifying new unknown

malware.

Machine Learning and Deep Learning-based anomaly detection algorithms have shown

promising results [4, 5, 6, 7]. These learning-based methods have high capabilities in

learning the feature representations of complex data. Graph-based data, Spatial-temporal

data, and high dimensional data are some examples of complex data. Deep learning for

anomaly detection utilizes neural networks to learn the explicit feature representations for

detecting the anomaly. In a wide variety of applications, such learning-based anomaly

detection methods have also outperformed the traditional anomaly detection methods.

There are numerous ways to develop models that can capture the behavior of the process.

One possible approach is to effectively utilize the sequence of system call sequences [8].

The important observation is the underlying fact that for a malicious code to cause harmful

damage to the system, it has to interact with the operating system through system calls. If

a particular sequence of system calls deviates from the normal expected behavior, we can

assume an attack has happened. Thus it is essential to capture every single system call made

by a process to its operating system during its execution for analyzing the whole traces of

the system call. The anomaly detection methods have to take these sequences of system

3

calls to learn the normal behavior of the process and should be able to detect the

abnormality in case the process is injected with a malicious code.

A particular malicious code has to specify the target process to infect it with the malware.

Thus, to further enhance the anomaly detection rate, the executive process (_EPROCESS)

data structure can be considered. _EPROCESS is a kernel memory structure that contains

various distinct attributes pertaining to the process. Every individual operating system

process is represented by _EPROCESS. Each _EPROCESS structure has a Process

Environment Block (PEB). The Dynamic Link Library (DLLs) loaded by the process is

stored using three doubly-linked lists by PEB. MemoryOrderList, LoadOrderList and

InitOrderList are such three linked lists. Each list holds the DLLs for a particular process

differently. The MemoryOrderList uses the virtual memory address space of the loaded

DLL. The LoadOrderList stores the DLLs in the order they were loaded in the process.

The InitOrderList uses the order of the execution of the main function of each DLL.

Thus ensemble analysis of the sequence of system calls and different process attributes is

the key to efficient anomaly detection.

1.1 Challenges

Although the malware attacks are supposed to be identified by the underlying anti-malware

tools and software as part of their services, there are some challenges as follows:

(1) There are various learning-based models trained to detect whether there is an

anomaly in the process or not. However, there is a lack of research for contextual

point anomaly detection in the current literature.

4

The learning-based models [9, 10, 11] employed in the existing anomaly detection

approaches predict the whole sequence of system calls as benign or malicious.

However, to identify the real purpose of the calling actions behavior, an appropriate

infected subsequence of system calls needs to be identified. As an existing example,

Sequence Time-Delay Embedding (STIDE) [12], an extension of Time-Delay

Embedding (TIDE) [8], uses the three-tier system to detect the anomalous events.

The first two-stage of the three-tier approach utilizes the original input trace and

applies the sliding windows of length k to generate substrings of fixed length as

features, followed by database construction of the features for the training purpose.

The third stage uses the static threshold count on the number of mismatches to

decide whether a test sequence is anomalous or not. However, such methods lack

generalization capabilities and need large storage capacities. Furthermore, training

such models is a resource-intensive task that grows linearly with the length of the

number of training sequences.

(2) Currently, deep learning algorithms are trained for anomaly detection. However,

significant computational overhead time is incurred during the training process

due to static constant batch size and learning rate parameters for each epoch.

Most of the real-world analyses in the spatial and temporal context, such as text

analysis [13], intrusion detection [14], click fraud detection [15], and sensor

anomaly detection [16], are big data and are highly imbalanced. Training the neural

network such as Long Short Term Memory (LSTM) for a dataset using traditional

methods requires enormous computational resources and is time-consuming.

Furthermore, many hyper-parameters need to be tuned. One of the hyper-parameter

5

related to memory issues is the batch size. The number of data rows is used to

calculate the gradient and further update the neural network's weights in each

epoch. Currently, the batch size value is kept constant throughout the training

period. However, changing the batch size adaptively can reduce the training time

and further improve the utilization of the memory resources efficiently. The second

important hyper-parameter is the learning rate, allowing the model to converge to

global optima. Currently, adapting these two hyper-parameters is heavily

researched in the computer vision area where Convolution Neural Network (CNN)

is employed [17]. Several techniques are available [18, 19, 20, 21] to adaptively

tune those two parameters. AdaBatch [22] is one of the most popular adaptive batch

size techniques. Several variants of AdaBatch have been proposed in the recent past

to improve the training time and maintain accuracy. Such approaches are applied

to the image dataset [23, 24, 25]. However, very few studies have been performed

in the recent past on the time series applications which employ the LSTM

algorithm. One such study is the Dynamic Adaptive-Tuning Engine (DATE) [26].

However, they use constraints such as Sqrt Scaling and Linear Scaling, which are

helpful but do not always prove highly efficient when using specific metrics and

optimizers in the anomaly detection area since different optimizers require different

initialization of the hyperparameters.

(3) One class-based algorithm has shown high accuracy in detecting the anomaly.

However, the threshold to decide whether an event is normal or malicious is often

set as static. This can drastically increase the false alarm rate if the threshold is set

low or decrease the True Alarm rate if it is set to a remarkably high value.

6

Most of the existing anomaly detection work focuses on prediction than detection.

One of the most common issues of fixed thresholds is a low detection rate or high

false alarm rate. Setting the threshold to an optimal value in the detection method

is an active research area. Parametric and Non-Parametric techniques are being

utilized to solve this problem. Parametric techniques such as calculating the

Gaussian distribution by employing maximum likelihood estimation [27], double

window scoring method [28], and p-value scoring [29] work on the assumption that

the distribution of the data is known. This is the limitation of such parametric-based

techniques. Non-parametric techniques such as distance-based [30] and residual

evaluation do not need to know the data distribution. Dynamic Thresholding can be

improved by performing some modifications (Anomaly Pruning [31]) or by adding

some extensions (USAD [32]).

(4) Real-life data is messy. It is impossible to learn the data features by training just

one algorithm. Therefore, several one-class-based algorithms need to be trained.

The final output is the ensemble of the output from all the algorithms. The

prediction accuracy can be increased by giving a proper weight to each algorithm's

output.

Ensemble approaches are heavily studied in supervised learning, where we have

training data with the target label. Ensembles for anomaly detection (unsupervised

learning) are an emerging topic. Normalization and Combination are two of the

issues common in the ensembles of unsupervised algorithms. Feature bagging [33]

ranks the anomaly detection algorithms from the highest anomaly detection rate to

the lowest detection rate. The major disadvantage of this approach is that it loses

7

information about the relative difference between the outlier scores. This can be

enhanced by considering the rank and the probability distribution of the value. The

choice of function needed to combine the output score is also equally important.

Maximum Function, Averaging Function, Damped Averaging, and Pruned

averaging are used. Currently, these combination function is dependent on the

individual algorithm. This can be extended by developing an algorithm that first

uses the normalization of the scores and then applies the combination approach to

produce an optimal anomaly score.

1.2 The objective of this Dissertation

To address the above-said challenges, in this dissertation, we propose Machine Learning

and Deep Learning-based solutions to improve the performance of the existing anomaly

detection methods. The following serve as the objectives of this dissertation:

 Proposing a hybrid adaptive Batch Size with a Learning Rate tuning algorithm for

training the neural network in an optimized way.

 To improve the existing state-of-the-art thresholding methods and reduce the false

alarm rate.

 Application of weighted ensemble approach as a hybrid solution for efficient

anomaly detection.

1.3 Contributions

This dissertation presents solutions to the anomaly detection problem by extending the

state-of-the-art techniques in unsupervised learning methods.

8

1.3.1 SysCallNet: Behavioral Analysis of System Calls using Deep Learning-based

Algorithms for Anomaly Detection

To partly address the challenge (1), we propose a two-dimensional framework to analyze

the behavior of the system calls for anomaly detection. We analyzed two types of behavior:

Temporal and Non-Temporal behavior. We trained sequential deep learning-based

algorithms for temporal behavior, namely Long Short Term Memory (LSTM). For training

the model, only a normal class of data was supplied. Next, the non-temporal behavior is

analyzed independently by evaluating frequency and commonality behavior. We applied

Cosine Similarity for analyzing frequency behavior and Jaccard Similarity for analyzing

the commonality behavior.

1.3.2 P-BoSC: An Extension of Bag of System Call Technique for Detection of

Anomalous Points

To fully address the challenge (1), prior works show that detecting the particular window

of system calls has not been commonly used in combination with Bag of System Calls

(BoSC). Hence, we propose an extension called Point-Bag of System Calls (P-BoSC), a

Natural Language Processing-based technique to detect the anomaly and output the

anomalous window. It is a hybrid method containing two steps. In the first step, we train

the cosine similarity algorithm to learn the normal behavior of the data. Next, in the second

step, if the output is anomalous while testing, the sequence is given input to PBoSC. PBoSC

algorithm analyzes the frequency behavior and detects an anomalous sequence window.

9

1.3.3 DynaB: An Enhanced and Dynamic Batch Size Tuning for LSTM Neural

Network

Concerning challenge (2), we present a dynamic tuning algorithm that can change the batch

size dynamically. The proposed algorithm consists of four stages: Gradient Warmup, Loss

derivation, calculating the weighted loss with the historical batch size, and updating the

batch size. The proposed work's objectives are, firstly, to model the time series sequence

data on LSTM Network by relying only on the system call sequences, without the need for

too many attributes. Secondly, warm up the gradient for the first two batches to derive the

loss using the optimizers. Then, we evaluate the loss in terms of the number of the sequence

of system calls predicted correctly. We evaluate Root Mean Square Error (RMSE), Mean

Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) as a wide variety of

loss functions. Next, using the historical batch size value with their incorporated loss, we

dynamically decide on the new batch size rather than keeping the batch size constant. We

go one depth further to achieve more granularity for calculating the loss gradient where

instead of at each epoch level, it is calculated at each batch level. We achieve three

significant benefits: Reduced training time, Optimized memory usage, and Loss reduction

at an early epoch stage.

1.3.4 DynaB-LR: A Hybrid Algorithm for Dynamic Batch Size and Learning Rate

tuning for an optimized training of Neural Network

As a solution to challenge (2), we propose a hybrid algorithm, Dynamic Batch Size and

Learning Rate (DynaB-LR), that tunes the batch size and learning rate dynamically and

consecutively. It is fast and can be applied to any time series-based dataset. At the same

10

time, it accounts for the learning algorithm obtaining the optimal value of these hyper-

parameters without the need for the user to manually input the number, unlike most of the

other established algorithms such as [34]. The algorithm works in four steps. First, we

simultaneously perform a gradual warmup for batch size and learning rate for the first two

epochs. Then, during the warmup procedure, the loss gradient is calculated using the

optimizer. In the third epoch, we dynamically change the batch size based on the loss

calculation. In the next epoch, the learning rate is updated. We continue to update batch

size and learning rate in alternate epochs till the model is trained successfully. Thus, this

approach of dynamically tuning batch size and the learning rate results in optimizing the

training time of the neural network.

1.3.5 Machine Learning-based Cyber Threat Anomaly Detection in Virtualized

Application Processes

To address the challenge (4), we developed a two-step hybrid framework. Host-based

systems frequently depend on various attributes of a process to describe the normal

behavior of any process. Multiple malicious vectors can be launched on a process with

different characteristics to infect it. First, we analyze ProcessList data structure and create

Principal Component Analysis (PCA) features known as Eigen traces used for training

multiple one-class anomaly detection models. These multiple models allow different

attributes of process data to be assessed from numerous and diverse standpoints. As the

anomaly scores of these models vary significantly, combining the scores to a single value

is often challenging. Therefore, we apply a majority voting approach for the final anomaly

score as the second step. This final score measures the occurrence of a malicious event. We

11

demonstrate the implementation of the proposed two-step approach using four different

one-class classifiers: Mahalanobis Classifier, One-Class Support Vector Machine

(OCSVM), Isolation Forest, and Dendrogram based Agglomerative Clustering.

1.3.6 AdaThres: An Adaptive Thresholding Method to Mitigate the False Alarms

To address the challenge (3), we develop an adaptive thresholding algorithm that can

mitigate the issue of high FPR. The proposed algorithm applies three scoring mechanisms.

They are Anomaly Pruning, Sequence Scoring, and Adaptive Thresholding. The model is

trained on sequential data. Anomaly Pruning gives a score to an individual data point. It

either rejects or accepts the data points to be considered for Sequence Scoring. This

Sequence Scoring will give a score to an individual sequence. Finally, an Adaptive

Thresholding is applied to the cumulative score of all the sequences to detect the anomalous

nature of the analyzed data. Multiple experiments have been conducted using various

optimizers to access our proposed approach. Using the proposed approach, we train a deep

learning-based LSTM algorithm widely adopted for sequential data. Furthermore, we

validate it with three different datasets of various sizes.

1.3.7 EA-Net: A Hybrid and Ensemble Multi-Level Approach for Robust Anomaly

Detection

As a solution to challenge (4), we design a multi-level hybrid ensemble anomaly

detection approach. At the First Level, we train several weak classifiers (weak one class

classifiers). Next, we utilize deep learning-based AutoEncoder to reduce the dimension

of the dataset. These are the two sets of hybrid features. Next, different one-class

classifiers have their strength and limitations. Thus, we propose an adaptive weightage

12

approach that gives the weight to each classifier. Next, this input is passed to the second

level. At this level, we have a deep neural network that learns the patterns of the dataset

and generates an adaptive dynamic threshold to discriminate the input feature as an

anomaly or benign. The major benefit of this approach is the reduced training time and

high anomaly detection rate.

13

CHAPTER 2

SYSCALL-NET: BEHAVIORAL ANALYSIS OF SYSTEM CALLS USING DEEP

LEARNING-BASED ALGORITHMS FOR ANOMALY DETECTION

With the advent of technology, sophisticated malware presents a significant threat to

computer security. This work proposes anomaly detection techniques that learn three

different behaviors of windows system-call sequences. We apply Long-Short-Term-

Memory (LSTM) for temporal behavior, Cosine Similarity for frequency distribution

behavior, and Jaccard Similarity for commonality behavior. The proposed framework

monitors the processes in a hypervisor-based environment to detect compromised virtual

machines. System call sequences of normal and malware-infected processes were extracted

with memory forensic techniques. Our proposed anomaly detection techniques learned the

above three behavior of the system call sequences with 99% accuracy.

2.1 Introduction

Virtualization is popular nowadays in distributed systems due to its usage and applicability.

Vast resource sharing and load balancing across multiple nodes are the significant

advantages of virtualization. With the invention of virtualization technologies, hypervisor-

based methods have evolved to scan virtual machines (VMs) and identify threats. Every

day, new malware is becoming more sophisticated and robust such that traditional malware

detection techniques are incapable of detecting it and thus fail in protecting the VMs.

© 2019. Reprinted, with permission, from J Soni, et al., Behavioral Analysis of System Call

Sequences using LSTM Seq-Seq, Cosine Similarity and Jaccard Similarity for Real-time Anomaly

Detection. In Proceedings of the 6th IEEE International Conference on Computational Science and

Computational Intelligence (CSCI), Las Vegas, Nevada, pp. 214-219, Dec 5-7, 2019. DOI:

https://doi.org/10.1109/CSCI49370.2019.00043

14

This complexity of malware becomes a cyber threat to organizations. To overcome this

problem, hypervisor-based malware detection techniques have evolved and are

outperforming compared to guest-based systems. Virtual Machine Introspection (VMI) is

the most effective host-based malware detection technique to monitor and analyze cyber

threats on virtual machines [35, 36, 37].

Anti-viruses and security patches are a few existing security techniques available to prevent

malicious attacks. Regardless of these techniques, there is still a possibility of unknown

attacks on the VM due to the delay in installing the latest updates of the anti-virus software

and security patches. Potential malware attacks are identified by studying the

characteristics of the program execution, which is known as behavioral analysis [38].

System call sequence analysis [8, 39] leads to several behavioral analyses for malware

detection.

2.1.1 Summary of Contribution

We propose a two-dimensional framework to analyze the behavior of the system calls for

anomaly detection. We analyzed two types of behavior: Temporal and Non-Temporal

behavior. For temporal behavior, we trained sequential deep learning-based algorithms,

namely Long Short Term Memory (LSTM). For training the model, only a normal class of

data was supplied. Next, the non-temporal behavior is analyzed independently by

evaluating frequency and commonality behavior. We applied Cosine Similarity for

analyzing frequency behavior and Jaccard Similarity for analyzing the commonality

behavior.

15

2.1.2 Organization of the Chapter

Section 2.2 discusses the state-of-the-art techniques related to the current approach. In

section 2.3, we present an overview of the system call extraction. The feature extraction

technique for the system call sequence is discussed in section 2.4. We provide an in-depth

understanding of the proposed anomaly detection algorithms in section 2.5. The

experimental setup is described in section 2.6. Next, in section 2.7, the results are

discussed. Finally, we present our conclusions in section 2.8.

2.2 Related Work

Host-based malware detection in any production system is crucial for the security of its

internal hardware and software components. Such host-based frameworks use the

knowledge of existing malware to detect malicious activities. There are two types of

malware analysis techniques: static and dynamic.

The static method analyzes a source file without executing the code [40]. In paper [41], Ye

et al. developed an Intelligent Malware Detection System (IMDS), which uses an

association mining algorithm to obtain import function information. In paper [42], Masud

et al. used the byte level code, containing five different static features extracted from

assembly instructions. Alarifi and Wolthusen [43] take sequences from a virtual machine

and then train the model using a Hidden Markov Model (HMM). Their HMM-based

method gave fewer detection rates since it required fewer training samples. Wang et al.

[44] use the probability score and threshold value.

16

However, techniques such as polymorphism, encryption, and advanced unknown malware

are not traceable by static-based anomaly detection methods due to their dynamic

characteristics. To overcome this limitation, we study the behavioral analysis of the

process. The basic idea is to analyze the execution sequence of the process.

Neural networks are extensively used for anomaly detection [45, 46]. Recently deep

learning-based techniques such as LSTM have been used for improving the anomaly

detection rate [47, 48, 49, 50]. However, they used a feature-based supervised classifier

that required pre-labeled malicious data, which inherently limits the detection of any

unknown attacks [51, 52, 53]. Moreover, their approach needs specific feature engineering

to generate meaningful feature representations for the supervised classification problem

[54, 55, 56, 57].

Our work proposes three unsupervised anomaly detection approaches by learning different

behaviors of system call sequences. Our approach utilizes a technique that trains on benign

(normal) data and checks for unusual activities that differ from normal behavior. Such

procedures identify unknown attacks on the system.

2.3 Overview of System Call Extraction Using VMI

The proposed framework consists of four platforms, namely Virtualization, Advanced

Cyber Analytics, Test Control Center, and Malware Repository. The following subsections

outline the details of the individual modules.

Virtualization Platform: This module uses the VMI API to introspect and perform memory

analysis. The extracted low-level data from the hypervisor-based virtual machine memory

17

is transferred to the agent listener. Introspection interface with hypervisors to add, delete,

or control virtual machines. Security agent with LibVMI library performs introspection to

extract data from the virtual machine and transfer it to the agent listener. Lastly, the data is

directed to a database server.

Cyber Analytics Platform: In this module, we fetch data from the database server for data

preprocessing and analysis. The module comprises of LSTM encoder-decoder algorithm

to train models on the processed data.

Test control center Platform: The operator in this module can control different operations

of the whole framework. The operator can create, delete, stop, or pause the VM. Further,

the operator can manage VMs by running benign and malware applications.

Malware Repository Platform: This repository is the database for different multifunctional

malware for Windows and Linux.

The security agent extracts system call traces of Processes Under Examination (PUE) from

the proposed framework. Agent listener stores the collected information in the database

through a socket established by introspection. System call sequence data is preprocessed

using feature engineering techniques and analyzed with anomaly detection algorithms.

We generate malicious data sets of system call sequences through custom DLL injections.

These custom malware hooks into the functions of the process, where the malware modifies

system call sequences by adding, deleting, or modifying system calls. The detection

algorithms need to identify this anomaly in system call sequences.

18

2.4 Feature Extraction Technique for System Call Sequence

System call sequences of processes under examination are collected from a hypervisor. We

consider a sequence as a document, and each system call as a word.

Windows operating system has a total of 450 unique standard system calls. Each system

call in the sequence is mapped to the corresponding standard system call index that ranges

from 0 to 449. A sample mapping is shown below.

SystemCallSequence= [NtQueryVolumeInformationFile,

NtQueryVolumeInformationFile, NtQueryInformationFile, NtSetInformationFile,

NtDelayExecution, NtDelayExecution, NtWriteFile, NtClose, NtCreateFile, …]

The corresponding mapping is as below:

[73, 73, 17, 39, 52, 52, 8, 15, 85…]

Next, we create a bag of system calls as a vector of 450 dimensions. The value of the ith

cell in the vector implies the frequency of the ith standard system call in the entire system

call sequence.

2.5 Detection Algorithms Based on Behavioral Aspects

In this section, we discuss an overview of anomaly detection algorithms, namely LSTM

Seq-Seq, Cosine Similarity, and Jaccard Similarity, as shown in Figure 2.1. These

algorithms work well even for high-dimensional data and large training examples. They

have low runtime computational complexity, crucial for anomaly detection systems. These

algorithms work in an unsupervised learning mode without any explicit training labels

during the training phase.

19

Figure 2.1: Behavior Detection Algorithm

2.5.1 Temporal aspects: Long Short Term Memory (LSTM) Seq-Seq

We train the LSTM Seq-Seq model on system calls by considering the system call

sequences. Figure 2.2 depicts a high-level view of our LSTM training method. First, we

preprocess the raw system call sequence and then train the LSTM model by optimizing its

hyperparameters (Number of epochs, Batch size, and Sequence length) for higher accuracy

and reduced runtime computational complexity. For the training of the LSTM model, we

consider system call sequences as sentences where each system call in a sequence

corresponds to a word in the sentence. We implemented sequence to sequence architecture

with this approach, where we feed the first few system call sequences as input, and the

trained LSTM model predicts the following system call sequence.

20

Figure 2.2: Overview of LSTM Model Building

In NLP, we require a vocabulary to convert a sentence into its numerical vector. Similarly,

we have the vocabulary for the Windows system calls. Let us define S as the system call

sequence generated by the hypervisor during program execution. We convert this sequence

into a sequence of numerical values in the range 0 to n-1, where n is the total number of

unique system calls of the OS environment. The training set consists of m benign system

call sequences represented as m training vectors. Since all system call sequences have the

same number of system calls, all training vectors have a fixed number of numeric values

(say k values). These numeric values correspond to the OS system call indices. For the

training set of m system call sequences, we represent it as a set of m training vectors:

𝑇𝑟 = 𝑇𝑟1, 𝑇𝑟2, 𝑇𝑟3, … , 𝑇𝑟𝑚 (2.1)

and represent the test system call sequence as 𝑇𝑒 where 𝑇𝑒 and each 𝑇𝑟𝑖 have k numeric

values. The neural network of the LSTM encoder generates the hidden state and the output

with the forward propagation operation as below:

ℎ𝑡 = (𝑆𝐻𝑋𝑥𝑡 + 𝑆𝐻𝐻ℎ𝑡−1) (2.2)

21

𝑦𝑡 = (𝑆𝑌𝐻ℎ𝑡) (2.3)

The hidden state ℎ𝑡 is the encoded information, and vector c is known as the context vector,

which is used in the decoder part. The equations for the weight update of an LSTM cell are

as follows:

(𝑔𝑡 , 𝑏𝑡−1, 𝑠𝑗−1) → (𝑏𝑡 , 𝑠𝑡) (2.4)

𝑦𝑡 = σ (𝑇𝑥𝑖𝑥𝑡 + 𝑇ℎ𝑖𝑝𝑡−1 + 𝑑𝑖) (2.5)
𝑓𝑡 = σ (𝑇𝑥𝑓𝑥𝑡 + 𝑇ℎ𝑓𝑝𝑡−1 + 𝑑𝑓) (2.6)

𝑜𝑡 = σ (𝑇𝑥𝑜𝑥𝑡 + 𝑇ℎ𝑜𝑝𝑡−1 + 𝑑𝑜) (2.7)
𝑔𝑡 = 𝑡𝑎𝑛ℎ(𝑇𝑥𝑐𝑥𝑡 + 𝑇ℎ𝑐𝑝𝑡−1 + 𝑑𝑐) (2.8)

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 + 𝑖𝑡𝑔𝑡) (2.9)
𝑘𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡) (2.10)

In the above equations, 𝑦𝑡, 𝑓𝑡, 𝑜𝑡, and 𝑐𝑡 are the input, forget, output gates, and memory

cell activation vectors, respectively, σ is a sigmoidal function, and tanh is the hyperbolic

tangent function. The target sequence is generated by the decoder part of the architecture

that uses the following conditional probability equation.

𝑝(𝑦1, 𝑦2, . . . , 𝑦𝑇 | 𝑥1, 𝑥2, . . . , 𝑥𝑖−1) = ∏ 𝑇′

𝑡=1 𝑝(𝑦𝑇 | 𝑦1, 𝑦2, . . . , 𝑦𝑡−1)

(2.11)

The above conditional probability needs to be modified as below to include the attention

mechanism.

𝑝(𝑦𝑖 | 𝑦1, 𝑦2, . . . , 𝑦𝑖−1, 𝑋) = 𝑔(𝑦𝑖−1, 𝑠𝑖, 𝑐𝑖) (2.12)

Where 𝑐𝑖 is the context vector used by the attention mechanism during the training period.

22

𝑐𝑖 = ∑ 𝑎𝑖𝑗 . ℎ𝑗
𝑇𝑥

𝑗=1

(2.13)

Where 𝑎𝑖𝑗 is the coefficient of the 𝑖𝑡ℎ hidden state at time step j.

2.5.2 Frequency aspects: Cosine Similarity

Cosine similarity measures the cosine angle between two numerical vectors. The following

Euclidean distance method is used:

𝐴. 𝐵 = ‖A‖ ‖B‖ 𝑐𝑜𝑠𝜃 (2.14)

Cosine similarity between two n-dimensional vectors A and B is calculated as cos(θ):

Similarity = cos(θ) =
A.B

‖A‖ ‖B‖
 =

∑ AiBi
n
i=1

√∑ Ai
2n

i=1 √∑ Bi
2n

i=1

(2.15)

where Ai and Bi are the features of the vectors.

We developed the following anomaly detection algorithm that uses the cosine similarity to

detect anomalies at a particular time window in the process under examination.

Algorithm 1 Anomaly Detection Algorithm using Cosine Similarity
Input: Normal and Test System Call Sequence
Output: TestSeq, Similarity_Value
 1: for system call sequence of normal and malicious process do
 2: Convert System Call Name to System Call Number using Mapping Table
 2: 𝐵𝑂𝑊𝐵𝑎𝑠𝑒𝑃𝑟 = Bag-of-words for normal process
 3: 𝐵𝑂𝑊𝑇𝑒𝑠𝑡𝑃𝑟= Bag-of-words for malicious process
 4: 𝐵𝑎𝑠𝑒𝑙𝑒𝑛𝑔𝑡ℎ = length(Sequence list of Normal Process)

 5: 𝑇𝑒𝑠𝑡𝑙𝑒𝑛𝑔𝑡ℎ = length(Sequence list of Test Process)

 6: 𝑀𝑖𝑛𝑙𝑒𝑛𝑔𝑡ℎ = minimum (𝐵𝑎𝑠𝑒𝑙𝑒𝑛𝑔𝑡ℎ , 𝑇𝑒𝑠𝑡𝑙𝑒𝑛𝑔𝑡ℎ)

 7: for 𝑖 = 0 to 𝑤𝑖𝑛𝑑𝑜𝑤𝑙𝑒𝑛𝑔𝑡ℎ do

 8: 𝐵𝑎𝑠𝑒𝑆𝑒𝑞 = 𝐵𝑂𝑊𝐵𝑎𝑠𝑒𝑃𝑟 [𝑖 ∶ 𝑖 + 𝑤𝑖𝑛𝑑𝑜𝑤𝑙𝑒𝑛𝑔𝑡ℎ]
 9: 𝑇𝑒𝑠𝑡𝑆𝑒𝑞 = 𝐵𝑂𝑊𝑇𝑒𝑠𝑡𝑃𝑟 [𝑖 ∶ 𝑖 + 𝑤𝑖𝑛𝑑𝑜𝑤𝑙𝑒𝑛𝑔𝑡ℎ]
10: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒 = (𝐶𝑜𝑠𝑖𝑛𝑒_𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐵𝑎𝑠𝑒𝑆𝑒𝑞 , 𝑇𝑒𝑠𝑡𝑆𝑒𝑞))

23

11: if 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒 < 0.99 then
12: Test Sequence is Anomalous
13: end if
14: end for
15: end for

We used different fixed window lengths and compute the cosine similarity for each window

length. The test process is considered anomalous if a particular window has a similarity

value of less than 0.99. From an example of the above algorithm shown in Figure 2.3, we

observe that among the cosine similarities between normal and malicious sequences of three

windows, the second window has a low similarity value since malicious test vectors have

infected it.

Figure 2.3: Anomalous window detection

2.5.3 Commonality aspects: Jaccard Similarity

Jaccard similarity is the ratio of the length of the intersection of two sets to the length of the

union of the same two sets. Given two sets, X and Y, its Jaccard similarity is calculated as:

𝐽(𝑋, 𝑌) =
| 𝑋 ∩ Y |

| 𝑋 ∪ Y |

(2.16)

We developed the following anomaly detection algorithm that uses the Jaccard similarity to

detect anomalies in the process under examination on Windows VM.

24

Algorithm 2 Anomaly Detection Algorithm using Jaccard Similarity

Input: Normal and Test System Call Sequence
Output: Similarity_Value
 1: Convert System Call Name to System Call Number using Mapping Table
 2: 𝐵𝑎𝑠𝑒𝑈𝑛𝑖𝑞𝑢𝑒𝑆𝐶 = {Unique System Call of Normal Process}

 3: 𝑇𝑒𝑠𝑡𝑈𝑛𝑖𝑞𝑢𝑒𝑆𝐶 = {Unique System Call of Test Process}

 4: 𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑙𝑖𝑠𝑡 = 𝐵𝑎𝑠𝑒𝑈𝑛𝑖𝑞𝑢𝑒𝑆𝐶 ∩ 𝑇𝑒𝑠𝑡𝑈𝑛𝑖𝑞𝑢𝑒𝑆𝐶

 5: 𝑈𝑛𝑖𝑜𝑛𝑙𝑖𝑠𝑡 = 𝐵𝑎𝑠𝑒𝑈𝑛𝑖𝑞𝑢𝑒𝑆𝐶 ∪ 𝑇𝑒𝑠𝑡𝑈𝑛𝑖𝑞𝑢𝑒𝑆𝐶

 6: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒 = length (
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑙𝑖𝑠𝑡

𝑈𝑛𝑖𝑜𝑛𝑙𝑖𝑠𝑡
)

 7: if 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒 < 0.99 then
 8: Anomalous
 9: end if

Jaccard Anomaly Detection algorithm works well irrespective of the size of the system call

sequence. Since its result depends only on the unique system calls of normal and test data,

the ratio of the intersection of unique system calls to the union of unique system calls of

these two datasets is not affected by the variability of the length of system call sequences.

2.6 Experimental Setup

The proposed framework runs on Xen 4.12 hypervisor with libvert 5.4.0 library to manage

virtual machines. In the current implementation of this framework, the modules

Introspector and Security Agent extract and process the system call information. System

call traces were collected from inspecting the VM process under examination. System call

features are extracted with LibVMI library in combination with rekall profiles of Google.

This rekall profile is a file in JSON that comprises memory mappings and offsets of

Windows data structures and other resources. The above-specified modules, i.e.,

Introspector and Security agent, are written in Go Language to process the request and

extract the system call traces from VM with LibVMI functions. The LibVMI library

25

handles introspection requests. The Libvirt library allows to create, start, and stop of virtual

machines of Windows.

2.7 Results

The following subsections discuss the results of the LSTM Seq-Seq, Cosine Similarity, and

Jaccard similarity algorithm.

2.7.1 Result analysis of LSTM Seq-Seq Model

We obtained system call sequences through the hypervisor and implemented LSTM Seq-

Seq architecture to detect anomalies by considering the temporal ordering of system calls.

We tune up the following hyper-parameters for the LSTM model:

 Sequence length: It is the length of the last processed system call sequence, used

as input to predict the adjacent next set of system call sequences.

 Epochs: Number of iterations, a model passes through the entire data for training.

 Batch-size: Number of system call sequences passed to the LSTM network in a

single iteration.

To evaluate the model, we define accuracy as:

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑎𝑙𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑎𝑙𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑

(2.17)

We trained the LSTM model with an Adam optimizer and categorical cross-entropy as a

loss metric. We found that a batch size of 256 gives higher accuracy.

26

Figure 2.4 and Figure 2.5 show the accuracy and loss for different sequence lengths with

batch sizes of 256 and epochs of 100. We found that the model trained with a sequence

length of ten has the lowest loss and highest accuracy as listed in Table 2.1 and 2.2 . Our

trained model gives 97% accuracy with a loss of 0.08.

Table 2.1: Accuracy with Windows Size

Window Size Accuracy

 3 0.94

10 0.97

15 0.96

Table 2.2: Loss with Windows Size

Window Size Loss

3 0.20
10 0.08
15 0.10

Figure 2. 4: Accuracy with Epoch for Individual Sequence Length

Figure 2. 5 : Loss with Epoch for Individual Sequence Length

27

From Figure 2.6, we observe that the time required for a neural network to train for one

epoch increases with increasing sequence length.

Figure 2.6: Time per Epoch for Individual Sequence Length

Our optimized LSTM model is trained with the benign data of a PUE. We find that the

model gives 93% accuracy for benign test data and 0.02% for malicious test data during the

testing phase.

2.7.2 Result analysis of Cosine Similarity anomaly detection algorithm

We trained a Cosine Similarity algorithm with the sequence size of 300K (maximum

sequence length of an application) system calls. Figure 2.7 depicts the seven most frequently

occurring system calls (NtDelayExecution, NtQueryVolumeInformationFile, NtClose,

NtCreateFile, NtQueryInformationFile, NtWriteFile, NtSetInformationFile) of benign PUE

(benign data) and corresponding system call frequency of the malicious PUE(malicious

data).

28

Figure 2.7: Top Seven SystemCalls in Benign and Malicious Data

We tested this algorithm in the following two scenarios. Since this algorithm is based on the

frequency of the system call, it requires both benign and malicious data to be of the same

length. We divided the sequence into windows of system calls, each with a length of 1000

system calls. This feature allows detecting anomalies at any particular time frame.

First Case: We compared two different benign system call sequences, each of size 300k

system calls.

Figure 2.8: Cosine Similarity for Benign Data

From Figure 2.8, we observe that the cosine similarity between two different benign

sequences ranges from 0.84 to 1.00. It means the two sequences are 84% to 100% similar.

Second Case: We compared a benign system call sequence with a malicious system call

sequence generated through malicious test vectors.

29

Figure 2.9: Cosine Similarity for Malicious Data

Malicious test vectors were injected for a short duration only at the beginning of the data

collection. From Figure 2.9, we notice that the Cosine Similarity algorithm can easily

capture the malicious activities by giving low similarity for that earlier time frame that was

influenced by the malicious test vectors.

2.7.3 Result Analysis of Jaccard Similarity anomaly detection algorithm

The Jaccard Similarity anomaly detection algorithm considers the uniqueness of system

call sequences rather than the frequency count of the system calls.

From Figure 2.10, we confirm that Jaccard similarity works well irrelevant of the size of

both benign and malicious sequences. Additionally, it gives low similarity for malicious

sequences and high value for benign sequences.

Figure 2.10: Jaccard Similarity

30

2.8 Conclusion

In this chapter, we presented the implementation of anomaly detection techniques by

considering temporal, frequency, and commonality behaviors of system-call sequences.

We applied LSTM sequence-to-sequence for temporal behavior, Cosine Similarity for

frequency behavior, and Jaccard Similarity for commonality behavior to detect anomalies

in a process under examination using system-call sequences of the process. These detection

algorithms perform well in detecting anomalies from previously unseen data and across

multiple machine configurations.

Among these three anomaly detection algorithms, Jaccard Similarity captures the least

number of characteristics of the system call sequence while the algorithm's complexity is

straightforward. Hence, its similarity result is very primitive in detecting anomalies. This

algorithm is suitable only for coarse-level analysis.

LSTM seq-to-seq trains with several overlapped subsequences of the input system call

sequence from the other two anomaly detection algorithms. Therefore, it provides a fine-

grained detection of anomalies. On the other hand, it requires a long training period to learn

the temporal behavior of the system call sequence. The Cosine Similarity algorithm detects

anomalies reasonably well with improved accuracy than the Jaccard Similarity algorithm

but is less fine-grained than the LSTM seq-to-seq algorithm.

From our experiments, we recommend using Cosine Similarity in the first phase of

anomaly detection to find out the susceptible anomaly window time frames. For further

fine-grained insights into these susceptible anomaly windows, apply LSTM seq-to-seq

31

algorithm. This approach will reduce the overall analysis time and improve anomaly

detection accuracy.

32

CHAPTER 3

P-BOSC: AN EXTENSION OF BAG OF SYSTEM CALL TECHNIQUE FOR

DETECTION OF ANOMALOUS POINTS

With the rapid growth in technology, the impact of malware on the crucial system of

computers has increased at an alarming rate. In this chapter, we utilized the Natural

Language Processing technique, namely Bag of Words, and proposed an anomaly detection

method. Each system call is considered as a single word. The proposed approach trains the

model to learn the normal behavior of the processes running on virtual machines. We utilize

virtual memory introspection to extract the sequence of system calls for the normal

processes and malware-infected processes. Through data processing techniques such as

filtering and redundancy removal, the extracted sequences are processed. The proposed

algorithm employs cosine similarity for anomaly detection purposes. As an extension to

this, we also proposed a novel window detection algorithm to detect the anomalous

sequence window. Through experimental results, we achieved an anomaly detection rate

of 99%.

3.1 Introduction

In today's world, there is an ever-growing usage of the distributed systems. Virtualization

is one of the major components of such a system. Applicability is one of its popular reason.

Virtualization protects the resources of the running systems, performs load balancing

operations, and manages the sharing of the resources. Due to these reasons, numerous

hypervisor-based approaches have been developed to scan virtual machines for threat

detection. Currently, malware has become very sophisticated such that the current detection

33

methods fail to detect it, and ultimately the virtual machines are compromised. Thus,

several cyber threats need to be mitigated to protect expensive resources and sensitive data

by numerous industries and organizations. The virtual memory introspection technique is

most widely used at the hypervisor level to capture the running states of virtual machines,

which is also used for memory forensic analysis [34, 35, 36].

The frequency-based approach is used by Kang et al. [58]. The sequence of system calls S

is represented as a list { M1, M2. . . Mn } in this approach, where the count of distinct system

calls are represented by n and Mi represents the total count of an ith system call in a single

sequence.

Natural Language Processing based Bag-Of-Words (BoW) is very popular for text analysis

purposes. In our context, we examine the richness of BoW by considering every system

call as a single word for sequence analysis purposes. Based on this, we proposed an

anomaly detection algorithm that can detect a window of the sequence which is malicious.

The experimental results depict that analysis of system call sequences for detecting

anomalies in the processes running on the hypervisor provides accurate detection.

The rest of the chapter is organized in the following way. Related work to the area of

anomaly detection using system calls is discussed in section 3.2. The system overview is

explained in section 3.3. Extraction of the features and pre-processing techniques are

discussed in section 3.4. In section 3.5, the proposed window anomaly detection algorithm

is described in detail. Section 3.6 gives an overview of the environmental setup.

Experimental results with in-depth discussion are performed in section 3.7, with the

conclusion in section 3.8.

34

3.2 Related Work

In a production-based system, to secure the software and its different components, it is

imperative to classify and detect the malware. Two different types of analysis are widely

researched in this area. They are static analysis and dynamic analysis. With the increase in

threat through robust malware, there is a considerable growth of research in the area of

anomaly detection.

The source files are analyzed directly without any execution in the static method of analysis

[40]. Ye et al. [41] generate different association-based rules by employing an association

mining algorithm. This leads to the development of Intelligent Malicious code Detection

System (IMDS), which generates the information pertaining to the import function. Finally,

a rule-based classification algorithm was used for malware detection. Assembly-based

instructions were used by Masud et al. [42], which were then transformed to bytecodes of

4-gram. Furthermore, five unique static features were generated using feature engineering

techniques. Finally, two machine learning-based classification algorithms, namely decision

trees and support vector machines, were trained to classify malware. Nonetheless, there

are some limitations to the static analysis approach. They are polymorphism, encryption,

and many others. The analysis of the behavior of the application is termed dynamic

analysis. Its overall idea is to examine the process during its execution [38]. This

overcomes the limitations of static approaches.

Hidden Markov Models (HMMs) based classifiers are being utilized by many researchers

currently for anomaly detection using system call sequences [12, 46]. To improve the

precision rate and achieve a high detection rate, each author proposes a distinct variety of

35

methods and techniques. HMMs trained by Alarifi and Wolthusen [43] utilize the

sequences of system calls generated from VMs. Since their approach requires only a few

examples to train HMM model, the detection rate was very low. Threshold Value followed

by the probabilistic scoring of the sequence is analyzed by Yeung et al. [59]. Multi-layer

anomaly detection model based on the sliding window technique is proposed by Hoang et

al. [60]. Detection of an anomaly in the operations performed at user-level privileges is

experimented with through HMMs by Cho et al. [14]. An extensive comparative analysis

of HMMs, RIPPER [43], and STIDE [8] is performed by Warrender et al. [9]. Every method

has its unique characteristics in terms of performance measurements. The storage

requirement is very high for considerable sequence length during the training of HMMs.

Furthermore, the need for heavy computational power increases with an increase in the

multiple passes of the data. Modeling based on time series has been performed [56,71]. In

another line of work, the distinct process of the kernel modules is being analyzed with the

extraction of a sequence of system calls called kernel state modeling (KSM). First, it

calculates the total count of states in the malicious sequences, followed by probability

computation. Next, the comparative analysis is performed with the normal traces to analyze

the deviation. For the UNM dataset, the detection rate of KSM is higher than HMMs.

Various embedding based on the neural network is being utilized for the data with one

dimension to extract multiple features [57, 61, 51, 48]. For multi-dimensional datasets,

authors in [63, 64, 65, 66] developed learning-based approaches for the extraction of the

features.

36

3.3 System Overview

In this section, we discussed the implementation of the proposed framework. This includes

the approach of extraction of system call sequences using a technique based on VMI with

its analysis. Various traces of system calls during a process execution are collected, and

the anomalous behavior of such a process on a VM is analyzed. The proposed framework

consists of Architecture, Operational Methodology, and the development of custom

malware.

3.3.1 Architecture

The architecture of the proposed anomaly detection framework comprises four unique

components: Virtualization, Data Analysis, Malware Log, and Control Center. At a high

level, it performs the introspection of memory to extract the features, perform advanced

analysis and finally visualize the results.

Individual modules with their sub-components are explained in the following sub-sections.

Virtualization: In this module, VMI API is employed on VMs for memory forensics and

smart memory introspection. Introspect and CyberAgent are two sub-components of this

module.

Introspect: It scans the VM's (operating on a hypervisor) memory to extract the essential

data from low-level. This data is exported to the listener for analysis purposes. There is an

interface between hypervisor and introspect. This allows complete control of the various

states of the VMs. Some of the states are Run, Stop, and Shut-Down.

37

CyberAgent: It utilizes the LibVMI library to initiate the introspection of the memory. The

primary objective is to mine the different data structure of memory from the virtual

machines and transfer it to the analytics for analysis. This agent has a wide variety of

capabilities. Such as initiation of the scans on the processes, extraction of invariant

structures, and monitoring changes in the file.

Data Analysis: In this module, we have several learning-based algorithms utilized to train

the model. Next, the prediction is performed on the test dataset using the trained model.

Here, the data extracted during the normal behavior of the process is viewed as baseline

data, and malware-infected process data is considered malicious or test vector data.

Introspect module is used to extract these datasets and store them in the database for

analysis purposes.

Malware Log: It comprises a numerous variety of malicious vectors which are used to

manipulate the data structures at the kernel level. It contains malware for both Windows

and Linux.

Control Center: This module provides an extensive user interface for a user to control and

manage the whole framework architecture. Several VMs operations such as create, delete,

and so on can be handled from this module. Furthermore, it can be used to execute the

benign and malicious test vectors on the running VMs. The visualization of the results

obtained through the data analysis module can be easily monitored by the user.

38

3.3.2 Proposed Methodology

The traces of the system calls are collected using the introspect and cyber agent module,

which scans the memory of the running VMs. The listener collects the recorded

information and stores it in the database. Furthermore, various one-class-based anomaly

detection algorithms are trained using the collected data. The user can send a request to the

introspect to control the VMs during the extraction of the system call traces.

To manipulate the sequences of the system calls, custom test vectors are developed by

employing the method of DLL injection. Numerous distinct system calls with a particular

frequency range are injected into the processes by creating a file hidden on the disk.

3.4 Feature Engineering

A method based on angle similarity is employed to analyze the behavior of the process.

We utilize the total frequency of each system call in the sequences of a particular rather

than considering the temporal nature of the sequences. In this work, we developed a

technique based on the angle similarity, which is heavily used in NLP text classification.

Here, each system calls sequence is emphasized as a single document, and its unique

system call is considered a single word. The benign sequence of system calls is extracted

during the normal behavior of the process running on a Xen Hypervisor. Table 3.1 depicts

the short sample sequence of extracted system calls.

Table 3.1: Sample Sequence

System Call Data

NtOpenKey

NtQueryKey

NtSetInformationFile

39

NtQueryValueKey

NtQueryKey

NtQueryKey

NtClose

:

:

For analysis using the proposed algorithm, every individual system call needs to be

converted into its corresponding numeric mapping number. In windows, the total amount

of system calls that are unique is 450. Thus, each system call name will be converted into

an integer number between 0 to 449. A sample conversion is described in Table 3.2.

Table 3.2: Numeric Mapping of System Calls

NtOpenKey NtQuery

Key

NtSetInfor

mationFile

NtQuery

ValueKey

NtQuery

Key

NtQuery

Key

NtClose

18 22 39 23 22 22 15

Next, each sequence is converted to 450-dimensional vector data. This approach is called

Bag of System Calls, where the value in each cell represents the total number of system

calls of the ith column. Table 3.3 shows the transformed version of the extracted sequence

of system calls.

Table 3.3: Vector of Frequencies

0 1 2 3 4 5 6 7 … 448 449

1 0 0 0 6 10 17 0 … 0 0

40

3.5 Proposed Algorithm

The proposed anomaly detection algorithm uses the transformed format of the benign and

test vector processes and calculates the cosine similarity between them. This similarity

computes the cosine angle.

As shown in equation 3.1, the Euclidean dot product is utilized to calculate the cosine angle

between two vectors.

𝐴. 𝐵 = |𝐴||𝐵| cos 𝜃 (3.1)

The cosine similarity value for two m dimensional vectors X and Y is computed using cos(θ)

function as shown below:

 𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝜃) =
𝑋. 𝑌

‖𝑋‖‖𝑌‖
=

∑ 𝑋𝑖𝑌𝑖
𝑚
𝑖=1

√∑ 𝑋𝑖
2𝑚

𝑖=1 √∑ 𝑌𝑖
2𝑚

𝑖=1

(3.2)

3.5.1 Anomaly Detection Algorithm

This section explains the proposed algorithm that analyzes the process running on VM on

a particular hypervisor to detect the anomalies.

 Algorithm 1 takes as an input the sequence of system calls of the normal and the test vector

processes and the system call mapping table. It gives processes that are anomalous as an

output.

Algorithm 1 Anomaly Detection Algorithm
Input: System Call Sequence of Baseline and Test Processes, Mapping Table (M)
Output: Anomalous Process
 1: for sequences of baseline process 𝐵(𝑃𝑖) = (𝑃1, 𝑃2, … 𝑃𝑛), do

41

 2: Transform System Call Name to Unique Number
 3: 𝐵𝑂𝑆𝑐𝐵𝑎𝑠𝑒𝑃𝑟 = Bag-of-SystemCalls for normal process
 4: end for
 5: for test processes 𝑇(𝑃𝑖) = (𝑃1, 𝑃2, … 𝑃𝑛) do
 6: 𝐶𝑃𝑟 = 𝐵(𝑃𝑖) ∩ 𝑇(𝑃𝑖)
 7: Transform System Call Name to Unique Number for test process in 𝐶𝑃𝑟

 8: 𝐵𝑂𝑆𝑐𝐶𝑃𝑟
 = Bag-of-words for test process

 9: end for
10: for combined test processes 𝐶𝑃𝑟(𝑃𝑖) = (𝑃1, 𝑃2, … 𝑃𝑛) do

11: if 𝐵𝑂𝑆𝑐𝐶𝑃𝑟
 ≠ M (t) then

12: 𝐶𝑃𝑟(𝑃𝑖) is anomalous
13: else

14: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒 = (𝐶𝑜𝑠𝑖𝑛𝑒_𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐵𝑂𝑆𝑐𝐵𝑎𝑠𝑒𝑃𝑟 ,𝐵𝑂𝑆𝑐𝐶𝑃𝑟
))

15: if 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒 < 0.99 then
16: 𝐶𝑃𝑟(𝑃𝑖) is Anomalous
17: end if
18: end if
18: end for

The algorithm converts the sequence of all normal processes into the Bag of system calls.

The same transformation is applied to all the test processes. Next, the cosine similarity is

checked between each normal and test process. If the cosine similarity value is less than

0.99, it is considered anomalous and returns as an output.

3.5.2 Anomalous Window Detection Algorithm

This section discusses the proposed algorithm that can detect the anomalous window in a

sequence. This allows us to check what part of the sequence the attack occurs.

Algorithm 2 Anomalous Window Detection Algorithm
Input: Anomalous Process, sequence length
Output: Anomalous Window
 1: for Anomalous Processes 𝐴(𝑃𝑘) and Base Process 𝐵(𝑃𝑘) do
 2: for k in range (len (BoSC[𝐴(𝑃𝑘)] - 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑙𝑒𝑛𝑔𝑡ℎ] do

 3: Sequence(𝐵(𝑃𝑘)) = BoSC[𝐵(𝑃𝑖)] [𝑘 ∶ 𝑘 + 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑙𝑒𝑛𝑔𝑡ℎ]
 4: Sequence(𝐴(𝑃𝑘)) = BoSC[𝐵(𝑃𝑖)] [𝑘 ∶ 𝑘 + 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑙𝑒𝑛𝑔𝑡ℎ]
 5: 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒 = 𝐶𝑜𝑠𝑖𝑛𝑒_𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(Seq(𝐵(𝑃𝑘)) ,Seq(𝐴(𝑃𝑘)))
 6: if 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒 < 0.99 then
 7: Sequence(𝐴(𝑃𝑘)) is Anomalous
 8: end if

42

 9: end for
10: end for

Algorithm2 takes the anomalous process detected by Algorithm1 and the sequence length.

Next, it divides the sequences of anomalous and base processes into a batch of sequences

followed by their transformation into a Bag of System Calls. Finally, the cosine similarity

value is computed between the individual batches of the base and anomalous process

sequences. If the cosine similarity value is < 0.99, then that batch of the sequence is

considered anomalous. Figure 3.1 shows the sample example.

Figure 3. 1: Cosine Similarity Between Batches

3.6 Environmental Setup

Xen hypervisor is used in the development of the proposed framework. Libvirt library is

used for controlling virtual machines. Next, the DRAKVUF library is used to get the virtual

addresses of the memory during the execution of the processes. We have CyberAgent and

Introspect modules in the current operation of the proposed framework. They use Google's

recall profile with the DRAKVUF and employ the LibVMI library for extracting the traces

43

of the system calls. Furthermore, it is used to control and manage the VMs running on

Windows. The recall profile contains several kernel features of the data structures

pertaining to the windows and is in the JSON format. GO language is used to develop those

two modules. Microsoft VS.Net is used to develop the main application, containing user-

specific API calls for initiating the communication. Next, the extracted data is stored in the

database server using the agent. Lastly, the data is studied using advanced learning-based

algorithms. Figure 3.2 depicts the overall framework.

Figure 3.2: Environmental Framework

3.7 Results Analysis

The experimental results from the anomaly detection algorithm are conversed in this

section.

3.7.1 Anomalous Process Detection Algorithm

The proposed algorithm is evaluated with the sequence of 1.5M system calls. We have 450

unique system calls in the operating systems running under windows. The top 5 unique

system calls with their counts for the benign and anomalous processes are depicted in

Figure 3.3 and 3.4, respectively. We notice the difference between the frequencies of the

44

system calls of the normal process and the malicious process. Table 3.4 depicts the cosine

similarity value of individual processes. From the experimental results, we deduct that the

similarity value is lower for the malicious process than the normal processes.

Table 3.4: CS Evaluated Results

Application Type Normal Malicious

Cosine Score 0.99 0.20

Figure 3.3: Top System Calls with highest frequency in Baseline Data

Figure 3.4: Top System Calls with highest frequency in Test Data

45

Furthermore, the proposed anomaly detection algorithm is not impacted by the arbitrary

length of the sequence. This representation is depicted in figure 3.5. We perceive the

similar cosine similarity value regardless of the sequence length.

3.7.2 Anomalous Window Detection Algorithm

We discuss the experimental results of the anomalous window detection algorithm in this

section. Sequence length is one of the input parameters of this algorithm. Thus, we perform

the experiments with varying sequence lengths. Based on Figure 3.6, we find that the

sequence length with five system calls provides the optimal detection rate.

Figure 3.5: Cosine Similarity between Normal and Malicious Process

Figure 3.6: Cosine Similarity with Sequence Length

We also evaluate the proposed algorithm by running the processes with different scan

times. Based on the experimental results showed in Figure 3.7, we observed that the cosine

46

similarity value is regularly consistent for the sequence length of 5, even when the scan

times are different.

Figure 3.7: Cosine Similarity with varying scan duration

3.8 Conclusion

Various intrusion detection-based algorithms are developed with the hypothesis that the

normal system routines differ vastly from the malicious or abnormal routines. The normal

behavior of the program is learned by the anomaly detection algorithms. One behavior is

the count of the occurrence of the system call executed by the process during its execution.

Such sequences change with the interference of the malware, and thus it is one of the vital

data structures for anomaly detection. In this chapter, we propose two algorithms for

anomaly detection. These algorithms use natural language processing-based analysis to

detect an anomaly in the process. Based on the frequency behavior of the sequence, the

cosine similarity value is calculated by transforming the sequence of system calls to Bag

of System calls. The first algorithm detects whether the process is anomalous or not, and

the second algorithm identifies the specific window in the anomalous process. Based on

the experimental results, we achieved an anomaly detection rate of 99%.

47

CHAPTER 4

DYNA-B: AN ENHANCED AND DYNAMIC BATCH SIZE TUNING FOR LSTM

NEURAL NETWORK

In a wide variety of domains, it has been experimented that deep neural networks can be

trained with increasingly large batch sizes without the loss of efficiency. However, such

massive data parallelism differs from domain to domain. It is challenging computationally

to train large deep neural networks on big datasets. To tackle these issues, there has been a

surge in interest in utilizing large batch size values during the optimization part. A large

batch size allows the training of deep neural networks faster. This enables developers and

researchers to perform distributed processing. On the other hand, such utilization of large

batch size during training possesses a very well-known problem called 'generalization gap'

inducing the degradation in the performance across multiple datasets. There is minimal

understanding of finding the optimal batch size value.

To address this problem, we present an adaptive tuning algorithm that can change the batch

size adaptively. The proposed algorithm consists of four stages: Gradient Warmup, Loss

derivation, calculating the weighted loss with the historical batch size, and finally updating

the batch size. We showcase its superior performance compared to the traditional constant

batch size approach. We make the comparison with multiple system call datasets with

varying sizes.

48

4.1 Introduction

For large-scale empirical risk minimization, mini-batch stochastic gradient descent with its

variants is the standard for the training of deep neural networks. These approaches are

utilized with constant batch size values to evaluate empirical value. The determination of

the variance in the estimates of the gradients is performed by the stochastic gradient

descent (SGD) optimization algorithm. The behavior of this algorithm is impacted heavily

by the batch size value. Also, during the process of optimization, the variance changes with

constant batch size. This results in instability and non-convergence of the model to an

optimal rate.

SGD and its variants are heavily used for the training purpose of the deep learning models.

Such models need a large amount of data for training, and also such networks are oversized

by design. Thus, the training dataset is divided into a series of fixed-size batches as an

implementation. During the training, every batch is processed in sequence in every epoch.

The individual samples of a single batch can be processed and trained parallelly [66, 67].

Currently, during the training of the neural network, the user typically chooses a static

batch size b, which remains constant throughout the process. However, there are two

crucial conflicts with this approach. Firstly, a small batch size value is essential because it

allows the model to converge to the global optimal value. Secondly, a large batch size value

improves the utilization of computational resources efficiency. Therefore, it is vital to have

a trade-off between the values of batch size as being small or large during the training of

the model.

49

4.1.1 Summary of contribution

We developed an automated batch size learning algorithm that dynamically changes the

value of the batch size during training the model. We also developed a brute force method

to compare the efficacy of the developed algorithm. Three different datasets are being used

to evaluate the proposed algorithm. Each dataset selected for the evaluation is of varying

sizes.

4.1.2 Organization of the chapter

In section 4.2, we discuss the related work in the area of batch size. Next, in section 4.3,

we define and explain the problem formulation. Next, Gradient Descent and its variants are

defined in section 4.4. The datasets used for the experiment purpose are described in

section 4.5. In section 4.6, we discuss the metrics used to evaluate the model. The brute

force algorithm implementation is described in section 4.7. The proposed dynamic batch

size algorithm is explained in depth in section 4.8. The experimental results are discussed

in section 4.9 with the conclusion in section 4.10.

4.2 Related Work

Dynamic updating of batch size has attracted significant attention recently. The variance

of the gradient is utilized by Friedlander et al. [68] to derive a series of decreasing bounds.

Their proposed approach converges faster and proves that an increase in batch size can

replace the variability in the learning rate parameter. To prove it experimentally, they

increase the batch size value to a constant factor (pre-specified) in each iteration without

using a gradient estimate.

50

The closest to our work is performed by De et al. [69]. They use the estimate of the variance

in the gradient. Defazio et al. [70] proposed SAGA, which aims to utilize the information

of the gradient from the previous iteration to reduce the stochastic gradient's variance.

Furthermore, their work examines the convergence behavior in terms of theoretical and

empirical aspects of the convex optimization problems. Daneshmand et al. [71] combine

various variance reduction methods with varying the sample size of the batch value. The

limitation is that the sample size must be predefined before the training of the neural

network model and is not dynamic at runtime.

However, for a particular dataset and a model, there is very little information as to how to

set the batch size value. Also, how the value differs with different datasets and models.

Researchers and developers simply experiment with varying batch sizes and see which

value works the best. The downside of this approach is that it requires lots of experiments

that need computational power and require careful tuning of the algorithm.

Our work performs the dynamic tuning of the batch size value in a two-step process: First,

based on the loss generated after every batch of the input data passed, and secondly,

perform the exponentially weighted sum of the historical loss to calculate the value for the

subsequent batch size.

4.3 Problem Formulation

User processes interact with the operating system in the kernel mode. During the execution

of the program, a piece of code is compiled. To execute the code, system calls are made.

In this scenario, a sequence of system calls is a behavior of process interaction. If an

intruder wants to manipulate the program, the sequence of the system calls will change.

51

Thus, to capture an anomaly in the process, it is essential to learn its sequence of system

calls during the normal behavior. Various learning-based algorithms can learn the

sequential data. We employed a deep learning-based Long Short Term Memory algorithm

since it learns and captures long-term dependencies. Many hyperparameters need to be

tuned. Below are a few of those hyper-parameters.

1) Number of layers: Total number of hidden layers.

2) Number of nodes: Total number of LSTM nodes in each layer.

3) Epoch: Total number of times, a dataset is passed to the model.

4) Batch size: Total number of data points, the model uses as a group to compute the

loss and then update the weights.

Figure 4.1 shows the problem outline. The sequence of system calls is converted to a

numeric format. LSTM model learns the function F of the mapping input sequence to the

output sequence.

Let us say hypothetically that we have a sequence of 90 system calls. Then, we first convert

it into input and output sequences. Each input and output have a length of 10 (called

window size). Window size is the number of data points that are processed together at any

instant. Window size cannot exceed the batch size. So, the total number of input-output

sequences will be

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑎𝑙𝑙𝑠

𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒
− 1

(4.1)

52

Figure 4.1: BatchSize Training Problem

Now, if the batch size is set to 2, then in each batch, we will have four input-output

sequences. A batch of data will be given to the LSTM model, which learns the mapping

function. Based on generated loss, it will update the weights using a gradient descent

algorithm. The LSTM model uses these updated weights for processing the next batch of

data, and the process continues until we reach the last batch. Currently, the main bottleneck

is that the batch size value has to be set before the training of the model. Once we set the

batch size value, it is impossible to change during the training process.

Henceforth, to solve the problem mentioned above, we propose an iterative algorithm that

can dynamically update the batch size value. This reduces the training time plus

convergence to the global optima at a faster rate.

4.4 Gradient Descent and its variants

Gradient Descent plays a vital role in updating the weights of the neural network

parameters. It is a way to minimize the objective function 𝐽(𝜃) by updating the model’s

53

parameters in the direction opposite to the gradient calculation ∇𝜃 𝐽(𝜃). There are three

different types of gradient descent. They are as follows:

Batch Gradient Descent (BGD): It uses the entire dataset to compute the gradient of the

cost function. Therefore, the weights of the model parameters (𝜃) are updated only one

time. It is not feasible for the big dataset.

𝜃 = 𝜃 − 𝜂. ∇𝜃 𝐽(𝜃) (4.2)

where 𝜂 is the learning rate.

Stochastic Gradient Descent (SGD): It updates the weights of the model parameters after

every individual data point. With such frequent updates, the model tends to overfit the

training data.

𝜃 = 𝜃 − 𝜂. ∇𝜃 𝐽(𝜃; 𝑥𝑖; 𝑦𝑖) (4.3)

where 𝑥𝑖 is the single input sequence, and 𝑦𝑖 is the single output sequence.

Mini-Batch Gradient Descent (MBGD): It is an intermediate of BGD and MBGD where

the weights of the model parameters are updated after every n input-output sequence. This

way, the model can converge to optimal minima.

𝜃 = 𝜃 − 𝜂. ∇𝜃 𝐽(𝜃; 𝑥(𝑖:𝑖+𝑛); 𝑦(𝑖:𝑖+𝑛)) (4.4)

where n is the size of the mini-batch.

54

4.4.1 Optimizers

Nesterov Accelerated Gradient: It provides momentum to move the parameters θ in the

right direction. The gradient is calculated by approximating the future position of the

parameters.

𝑣𝑡 = 𝛾𝑣𝑡−1 + 𝜂. ∇𝜃 𝐽(𝜃 − 𝛾𝑣𝑡−1) (4.5)

𝜃 = 𝜃 − 𝑣𝑡 (4.6)

where 𝛾 is the momentum term with the default value of 0.9.

Adagrad: It is well suited for sparse data due to following reasons. First, for the parameters

with infrequent features, it performs larger updates, whereas, for the parameters linked with

the features occurring frequently, it performs smaller updates. The following equation

updates the weights:

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝐺𝑡 + 𝜀
 ⊙ 𝑔𝑡 (4.7)

where the sum of the squares of the previous gradients is 𝐺𝑡, 𝜀 is the smoothing factor, and

𝑔𝑡 is the gradient at time step t.

Adadelta: It reduces the impact of decreasing the learning rate monotonically. It uses the

fixed-size window to accumulate past gradients instead of considering all the gradients. It

updates the weights based on the following update rule.

∆𝜃𝑡 −
𝑅𝑀𝑆[∆𝜃]𝑡−1

𝑅𝑀𝑆[𝑔]𝑡
𝑔𝑡

(4.8)

55

𝜃𝑡+1 = 𝜃𝑡 + ∆𝜃𝑡 (4.9)

where 𝑅𝑀𝑆[∆𝜃]𝑡−1 is the root mean square error of the updates of the parameters.

 RMSprop: It computes the exponentially decaying average of the gradients and divides the

learning rate with that value. The update rule is:

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝐸[𝑔2]𝑡 + 𝜀
 ⊙ 𝑔𝑡 (4.10)

where 𝐸[𝑔2]𝑡 = 0.9𝐸[𝑔2]𝑡−1 + 0.1𝑔2
𝑡

Adam: It updates the weights by calculating the mean and uncentered variance of the

gradients. The weight update rule is:

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 𝜀
 𝑚𝑡 (4.11)

where 𝑚𝑡 =
𝑚𝑡−1

1 − 𝛽1
𝑡 and 𝛽1 and 𝛽2 are the decay rates.

𝑣𝑡 =
𝑣𝑡−1

1 − 𝛽2
𝑡 (4.12)

Adamax: The adam optimizer uses the 𝑙2 norm to calculate the 𝑣𝑡 parameter. Furthermore,

these two values are inversely proportional to each other. Adamax improves Adam by

using 𝑡ℎ𝑒 𝑙𝑝 norm. The update rule is:

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

𝑢𝑡
 𝑚𝑡 (4.13)

Where 𝑢𝑡 is the revised version of 𝑣𝑡.

56

Nadam: It is the combination of Adam and NAG. It performs accurate steps towards the

optimal direction by performing parameter updates before gradient calculation. The weight

update rule is:

𝜃𝑡+1 = 𝜃𝑡 −
𝜂

√𝑣𝑡 + 𝜀
 (𝛽1𝑚𝑡 +

(1 − 𝛽1)𝑔𝑡

1 − 𝛽1
𝑡

(4.14)

4.5 Dataset Description

The following system call sequence datasets are used for experiment purposes. Each

dataset is unique and has a varying size of sequences.

Joint Mission Planning System (JMPS) Dataset: The Joint Mission Planning System,

otherwise known as JMPS, is an application that aggregates different target data, platform

data, and land elevation data for the user to use in mapping route plans for missions. It

offers route planning capabilities for aerial, land, and sea missions to choose respective

platforms/vehicles and entities and their characteristics concerning their route, other

entities, and themselves. A typical mission plan on JMPS might involve multiple user-

made or imported aircraft routes belonging to ally, enemy, or other parties for a multitude

of platforms, each with their radar and effective weapon ranges flying at different altitudes

and speeds as to avoid detection or collision from some adversary or other entity (ground

radars, mobile Surface-to-Air Missiles, jammers, etc.). This flexible layout of entities is

displayed to the user as an order of battle in which the user plans around accordingly to

fulfill some target or objective.

57

Test vectors injected into JMPS will thus slow down the application, achieve unauthorized

access to data, and modify plan contents to the favor of some other actor as the plan report

is being generated and sent. A test vector could inject many system threads to slow down

the application, effectively behaving as a form of denial-of-service attack. Another test

vector could attach itself to the process in kernel space and relay reads of process files to a

desired outlet, compromising confidentiality. In the same way, a similar yet less general

test vector can write specific JMPS data to process files that aid in altering a route so that

an aircraft misses its target by however many units desired.

Table 4.1 shows the total number of system calls in this dataset.

Table 4.1: JMPS Dataset Information

Data Type Length Category

Training 1.6 Million Normal

Testing 2 Million Malware Infected

Australian Defense Force Academy Linux (ADFA-LD) Dataset: The host used to generate

the sequence of system call data is configured with a Linux server. It captures the sequence

of system calls during the normal operations of the process. Furthermore, several malware

such as Hydra-SSH, Hydra-FTP, Webshell, Add user, Java-Meterpreter and Meter-preter

are injected during the ongoing operation of a legitimate process. Table 4.2 and 4.3 shows

the data distribution for normal and malware-injected traces respectively.

Table 4.2: ADFA-LD Dataset Distribution for Normal Category

Types of Trace Number of Traces Category

Training 833 Normal

Validation 4373 Normal

58

Table 4.3: ADFA-LD Dataset Distribution for Attack Category

Types of Trace Number of Traces Category

Hydra-SSH 148 Attack

Hydra-FTP 162 Attack

Webshell 118 Attack

Adduser 91 Attack

Java-Meterpreter 125 Attack

Meterpreter 75 Attack

University of New Mexico (UNM) Dataset: Each trace is generated by running one

program. It has three types of files. The Sun file types contain information on “synthetic

sendmail CERT”, “synthetic sendmail”, "live lpr MIT" and "live lpr UNM". The second

type is Linux, and it contains information about DoS, inet, ps, login, and live named. Lastly,

the third one is from the new Linux, which has information about xlock and synthetic ftp.

The experiments are performed on sun file types. Table 4.4 shows the data distribution.

Table 4.4: UNM Dataset Distribution

Program Name Normal Traces Malicious Traces

UNM Live lpr 1232 1001

Live lpr MIT 2704 1001

Synthetic sendmail 7 10

Synthetic sendmail CERT 2 6

4.6 Evaluation Metrics

The following metrics evaluate the proposed algorithm experiments on the datasets

discussed in section 4.5.

Mean Absolute Error (MAE): These metric estimates mean of the absolute difference

between actual input sequences of system calls to the predicted sequences of system calls.

59

𝑀𝐴𝐸 =
1

𝑁
∑ | 𝑌 − 𝑌 |

(4.15)

Where N is the total number of sequences, Y is the actual input sequence, and �̅� is the input

sequence predicted by the trained model.

Mean Squared Error (MSE): It acts the same as MAE. The only difference is that it

computes the squared deviations between the actual and the predicted sequences instead of

taking the absolute value.

𝑀𝑆𝐸 =
1

𝑁
∑(𝑌 − 𝑌)

2

(4.16)

Root Mean Squared Error (RMSE): It applies the square root function to MSE.

√
1

𝑁
∑(𝑌 − 𝑌)

2

(4.17)

Mean Absolute Percentage Error (MAPE): It measures the accuracy of the prediction

value.

𝑀𝐴𝑃𝐸 =
100%

𝑛
∑

𝑌𝑡 − 𝑌�̅�

|𝑌𝑡|

𝑛

𝑡=1

(4.18)

4.7 Algorithm Analysis

This section discusses the brute force approach to finding the optimal batch size value. This

approach is naïve and needs lots of computational time.

60

Brute force approach

The brute force approach is described in Algorithm 1. It inputs the sequences of system

calls and outputs the optimal batch size value. It starts by finding the initial interval range

of batch size value. Next, for each batch size value in that interval range, we train the LSTM

model and select the batch size with minimum loss as the local optimal batch size. Using

this local optimal batch size, we narrow the initial interval range of the batch size to less

range of values.

Algorithm 1 Brute Force Algorithm for finding Optimal Batch Size Value
Input: Normal System Call Sequences
Output: Optimal Batch Size Value
 1: N = Total length of Sequence

 2: X = √𝑁
 3: OptimalBatchSize = NULL
 4: GlobalMinLoss = NULL
 5: IntervalList = [1… X... 2X]

 6: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑆𝑡𝑒𝑝 = 𝑓𝑙𝑜𝑜𝑟(√2𝑋)

 7: BatchList = []
 8: for i in range (1, 2X, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑆𝑡𝑒𝑝 + 1) do

 9: Batchlist.append(i)
10: end for
10: LossList = []
11: for j in range (Batchlistlength) do
12: Loss = Train LSTM algorithm with Batchlist[j] and output the final loss
13: LossList.append(Loss)
14: end for
15: MinLoss = Min(LossList)
16: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = BatchSize with MinLoss
17: if (MinLoss < GlobalMinLoss) then
18: OptimalBatchSize = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒
19: end if
20: start = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 - 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑆𝑡𝑒𝑝 + 1

21: end = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 + 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑆𝑡𝑒𝑝 – 1

22: NextIntervalStep = 𝑓𝑙𝑜𝑜𝑟(√2 ∗ (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑆𝑡𝑒𝑝 − 1))

23: BatchList = []
24: for k in range (start, end, NextIntervalStep + 1) do
25: BatchList.append(k)
26: end for

61

27: Repeat step 11 to 26 until BatchList=NULL

Table 4.5 depicts the different number of the batch size that has been searched by Algorithm

1 to find the optimal batch size value for all the three datasets. The LSTM model is trained

with a default learning rate (i.e., 0.001).

Table 4.5: Static BatchSize Algorithm Results

Dataset Size in Length Number of BatchSize

Searched

JMPS 1.5 Million 76

ADFA-LD 300,000 54

UNM 500,000 66

The model is trained with various optimizers listed in the section 4.4. We found out that

Adam, Nadam, and Adamax give the optimal loss value based on the experimental result.

Table 4.6 shows the optimal batch size value found using the brute force algorithm with a

default learning rate of 0.001 for each dataset with the respective metrics and total training

time in terms of Epoch.

Table 4.6: Static BatchSize Algorithm Results Analysis

Dataset Optimal BatchSize Minimum Loss Total #Epoch

JMPS 596 0.193 92

ADFA-LD 312 0.125 65

UNM 402 0.263 72

We further applied the brute force algorithm by trying different learning rate values. The

learning rate value experimented are: {1, 0.1, 0.01, 0.0001, 0.00001, 0.000001}. We pick

one learning rate value from the list and run the brute force algorithm each time. Table 4.7

shows the experimental results. For two of the datasets, the result improved compared to

the default learning rate.

62

Table 4.7: Static BatchSize Algorithm Results Analysis with Multiple LR

Dataset Optimal

BatchSize

Best

Learning

Rate

Minimum Loss Total #Epoch

JMPS 501 0.00001 0.0732 88

ADFA-LD 312 0.001 0.125 65

UNM 437 0.00001 0.171 74

We found out that the learning rate of 0.00001 was optimal for JMPS and UNM datasets.

Figure 4.2, 4.3 and 4.4 shows the decreasing loss value for JMPS, ADFA-LD, and UNM

datasets respectively.

Figure 4.2: Brute Force BS for JMPS

For the JMPS dataset, the lowest loss achieved was 0.0732 at epoch 88 with an optimal

batch size value of 501 and a learning rate of 0.00001.

For the ADFA-LD dataset, the lowest loss achieved was 0.125 at epoch 65 with an optimal

batch size value of 312 and a learning rate of 0.001.

For the UNM dataset, the lowest loss achieved was 0.171 at epoch 74 with an optimal batch

size value of 437 and a learning rate of 0.00001.

63

To improve the training time in terms of the total number of epochs, we propose dynamic

batch size value selection, which is discussed in the next section.

Figure 4.3: Brute Force BS for ADFA-LD

Figure 4.4: Brute Force BS for UNM

4.8 Proposed Dynamic BatchSize Algorithm

Algorithm 2 Dynamic BatchSize Algorithm
Input: Normal System Call Sequences
Output: Optimized Model
 1: S= Normal System Call Sequences
 2: N = Total length of Sequence
 3: 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐵𝑆 = []
 4: 𝐿𝑜𝑐𝑎𝑙𝐿𝐿 = []
 5: 𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝐿 = []
 6: J = 0
 7: 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 = N

64

 8: for i = 1 to 2 do

 9: BS=𝑓𝑙𝑜𝑜𝑟(√𝑁)
10: 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐵𝑆.append(BS)
11: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑒𝑡 = S [j : j + BS + 1]
12: 𝐿𝑜𝑠𝑠𝑉𝑎𝑙𝑢𝑒 = TrainOnBatch(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑒𝑡)
13: 𝐿𝑜𝑐𝑎𝑙𝐿𝐿.append(LossValue)
14: 𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝐿.append(𝐿𝑜𝑠𝑠𝑉𝑎𝑙𝑢𝑒)
15: J = BS
16: 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 - J
17: 𝑁𝑒𝑤𝐵𝑆 = J
18: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 = 2 * J + 1
19: end for
20: 𝐷𝑒𝑙𝑡𝑎𝐵𝑆 = []
21: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑒𝑙𝑡𝑎𝐵𝑆 = 0
22: while (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 < N) do
23: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = 𝑁𝑒𝑤𝐵𝑆
24: i = len(𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝐿) - 1

25: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑙𝑡𝑎𝐵𝑆 =
(𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝐿 [𝑖−1]− 𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝐿 [𝑖])

max (|𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝐿 [𝑖−1]|, |𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝐿 [𝑖]|)

26: 𝐷𝑒𝑙𝑡𝑎𝐵𝑆.append(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑙𝑡𝑎𝐵𝑆)
27: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 = 0.50

28: 𝐷𝑒𝑙𝑡𝑎𝐵𝑆𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑊𝑒𝑖𝑔ℎ𝑡𝐿𝑖𝑠𝑡= []

29: for k in range (len(𝐷𝑒𝑙𝑡𝑎𝐵𝑆), 0, -1) do
30: 𝐷𝑒𝑙𝑡𝑎𝐵𝑆𝑊𝑒𝑖𝑔ℎ𝑡 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 * 𝐷𝑒𝑙𝑡𝑎𝐵𝑆 [k - 1]

31: 𝐷𝑒𝑙𝑡𝑎𝐵𝑆WeightList.append(𝐷𝑒𝑙𝑡𝑎𝐵𝑆𝑊𝑒𝑖𝑔ℎ𝑡)

32: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡

2

33: end for
34: 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑙𝑡𝑎𝐵𝑆𝑊𝑒𝑖𝑔ℎ𝑡 = ∑ 𝐷𝑒𝑙𝑡𝑎𝐵𝑆WeightList

35: 𝑁𝑒𝑤𝐵𝑆 = ceil(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑆 * (1 + 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑙𝑡𝑎𝐵𝑆𝑊𝑒𝑖𝑔ℎ𝑡))

36: 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐵𝑆.append(𝑁𝑒𝑤𝐵𝑆)
37: 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 - 𝑁𝑒𝑤𝐵𝑆
38: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑒𝑡 = S[𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 : 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 + 𝑁𝑒𝑤𝐵𝑆 + 1]
39: Values= TrainOnBatch(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑒𝑡)
40: 𝐿𝑜𝑐𝑎𝑙𝐿𝐿.append(Values[0])
41: 𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝐿.append(Values[0])
42: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 + 𝑁𝑒𝑤𝐵𝑆
43: end while
Repeat step 21 to 40 for multiple epoch until the model converges

The proposed adaptive algorithm works in the following way. Initially, for the first epoch,

the value for two batch sizes is selected as √𝑁. This is called the warm-up phase, where

the batch size is selectively constant. Now, the batch size value is calculated adaptively

65

starting from the third batch. It is computed as follows. We compute the difference between

the loss generated from the previous batch to the current batch. To normalize this loss

difference, we divide it by the loss value, which is the maximum. Next, we apply the weight

to each of the previous losses generated with the previous selection of the batch size. As

we go higher up to the previous losses, the weight is reduced to half. This is important

because, with this approach, we enforce giving higher weightage to the current batch size

than that of the previous batch size selection. This weight value is multiplied by their

corresponding loss value, and finally, they all are added to produce a single value. Now, to

check whether to increase or decrease the batch size value, we add the resultant sum value

to 1. Furthermore, we multiply this additive term by the current batch size value to get the

final batch size for the next iteration. This new batch size is used to select the chunk of the

data for training the model—this way, and the batch size is selected adaptively. The above

steps are repeated every time to calculate the batch size value. Once we reach the end of

the dataset, it is called one epoch. We repeat the process for further epochs until the model

converges.

4.9 Experimental Results

The following are the results from training the LSTM model using the proposed adaptive

batch size selection algorithm.

Table 4.8 shows the minimum loss achieved with all the datasets and the number of epochs

needed to achieve minimum loss. This dataset shows the experimental results performed

by keeping the default learning rate of 0.001.

66

Table 4.8: Dynamic BS with Default LR

Dataset Minimum Loss Total #Epoch

JMPS 0.0765 79

ADFA-LD 0.142 56

UNM 0.186 65

Furthermore, we experimented with the proposed algorithm by changing the default

learning rate value. Different learning rate experimented are {1, 0.1, 0.01, 0.0001, 0.00001,

0.000001}. We pick one learning rate value from the list and run the proposed algorithm

each time. Table 4.9 shows the experimental results. For two of the datasets, the result

improved compared to the default learning rate of 0.001.

Table 4.9: Dynamic BS with Multiple LR

Dataset Best Learning Rate Minimum Loss Total #Epoch

JMPS 0.00001 0.0766 74

ADFA-LD 0.001 0.142 56

UNM 0.00001 0.181 62

In the proposed algorithm's case, we also found out that the learning rate of 0.00001 was

optimal for JMPS and UNM datasets. Figure 4.5, 4.6 and 4.7 shows the decreasing loss

value for JMPS, ADFA-LD, and UNM datasets.

For the JMPS dataset, the lowest loss achieved was 0.0766 at epoch 74 with a learning rate

of 0.00001.

For the ADFA-LD dataset, the lowest loss achieved was 0.142 at epoch 56 with a learning

rate of 0.001.

For the UNM dataset, the lowest loss achieved was 0.181 at epoch 62 with a learning rate

of 0.00001.

67

Figure 4.5: Dynamic BS for JMPS

Figure 4. 6: Dynamic BS for ADFA-LD

Figure 4.7: Dynamic BS for UNM

For the JMPS dataset, compared to static batch size selection, the number of training

epochs reduced to 74, which is 14 epochs less, with the loss reaching 0.0766, which is

0.0034 higher.

68

For the ADFA-LD dataset, compared to static batch size selection, the number of training

epochs was reduced to 56, which is 11 epochs less, with the loss reaching 0.142, which is

0.017 higher.

For the UNM dataset, compared to static batch size selection, the number of training epochs

was reduced to 62, which is 12 epochs less, with the loss reaching 0.181, which is 0.010

higher.

4.10 Conclusion

Deep Neural Networks have demonstrated state-of-the-art results in numerous wide-range

of application domains. Such neural networks require lots of hyper-parameter tuning to

generalize well. Tuning takes a vast amount of computational training time. The training

time and generalizability depend on how often the model's weights are adjusted and the

total rows of the dataset (called batch size) used to update those weights. Currently, the

batch size has to be set before training the model. This limits the model's capability to reach

optimal minimum loss at a reduced epoch. Thus, we proposed a dynamic batch size

selection algorithm that dynamically updates the batch size value. The update mechanism

is based on the historical loss achieved by historical batch size values. We experimented

our proposed approach with three different datasets. ADFA-LD and UNM are open sources

of benchmark datasets. We found that dynamically updating the batch size value trains the

model at a faster epoch rate compared to the static batch size value with experimental

results. Furthermore, we notice that changing a default constant learning rate impacts the

training time of the model.

69

CHAPTER 5

DYNAB-LR: A HYBRID ALGORITHM FOR DYNAMIC BATCH SIZE AND

LEARNING RATE TUNING FOR AN OPTIMIZED TRAINING OF NEURAL

NETWORK

Learning-based algorithms are adopted widely to solve complex problems in the current

world. Such a model requires tuning of the hyperparameters to achieve the optimal loss.

Learning rate impacts the rate at which the model updates the weights. It is a crucial

problem to adjust the learning rate schedule in stochastic gradient methods. If the

parameters such as convexity constants are known prior, theoretical schedules can be

computed. Nonetheless, these parameters are not known, and most of the current loss

function is concave in nature. Thus, we propose a dynamic learning rate schedule that can

dynamically update the value of the learning rate. This is an added extension on top of the

dynamic update of the batch size. Therefore, we update both the batch size and learning

rate dynamically in a consecutive manner. Multiple experiments have been conducted

using various optimizers to assess our proposed approach. Using the proposed approach,

we train a deep learning-based LSTM algorithm widely adopted for sequential data.

Furthermore, we validate it with three different datasets of various sizes and distinct in

nature. From the experimental results, we infer that the proposed approach allows the

model to train faster and reach the minimum loss at a faster rate.

5.1 Introduction

Deep Neural Networks (DNNs) are powerful and widely used learning-based networks

competent enough in computing and learning techniques. In DNNs, the information flows

70

from the input to the hidden layer and finally reaches the output layer. Each neuron in a

particular layer computes the weighted sum from the previous layer's output and generates

the output, fed as input to the next layer. Training is performed through a backpropagation

algorithm. This algorithm uses the stochastic gradient descent method to update the

weights. The main power of DNNs comes from the backpropagation algorithm. It computes

the gradients to update the weights using the chain rule.

A constant learning rate is used in broad research areas that use backpropagation to train

the model [72]. However, for the optimal performance of the training, the tuning and design

of the learning rate hyper-parameter are essential. The conventional way is to compute the

statistical characteristics. Momentum usage [73] and simulated annealing [74] are some of

the optimization methods in this research area. Hayjin, in his research, proposed that if the

learning rate < (
2

𝜆𝑚𝑎𝑥
), then variance estimation can be used by gradient descent

algorithm to converge, where 𝜆𝑚𝑎𝑥 is the maximum value of the eigenvector for a

particular input feature vector. The limitation of the above rule is that it fails with the

increasing length of the input feature vector. An optimized scheme of the first search and

converge was proposed by Darken [75]. In his approach, he reduced the learning rate

parameter by increasing the number of iterations. However, this approach requires high

computational time and is often not considered a neural learning process. Instead of

adjusting the weight parameters, Duchi et al. [76] and Zeiler et al. [77] propose Adagrad

and Adadelta, respectively, to adjust the gradient's direction. Using the first order

Newtonian method, they adjust the approximate value of its second order. Their approach

71

works well in the early training stages. However, towards the end of the training, it

deteriorates, and learning slows down, failing to reach the optimal loss value.

5.1.1 Summary of contribution

We developed an automated learning rate tuning algorithm that dynamically changes the

value of the learning rate during the training of the model. The proposed tuning algorithm

is an extension of the batch size tuning algorithm. Here, both hyper-parameters, the batch

size, and the learning rate are tuned dynamically and consecutively. We also developed a

brute force method to compare the efficacy of the developed algorithm. Three different

datasets that are sequential in nature are being used to evaluate the proposed algorithm.

Each dataset selected for the evaluation is of varying sizes and belongs to different

domains.

5.1.2 Organization of the chapter

In section 5.2, we discuss the related work in the area of learning rate updates. Next, in

section 5.3, we define and explain the problem formulation. Next, learning rate

preliminaries and their variants are defined in section 5.4. Brute force algorithm

implementation is described in section 5.5. In section 5.6, we discuss the impact of the

window size on the training of the network. The proposed dynamic learning rate tuning

algorithm is explained in depth in section 5.7, with the discussion of the experimental

results in section 5.8. Finally, we conclude in section 5.9.

72

5.2 Related Work

Researchers have been actively focusing on stable and fast optimization algorithms.

Despite the simplistic nature of the stochastic gradient descent algorithm, it is heavily used

in various science and engineering domains. There are numerous rules for setting the value

of the learning rate parameter. Given a list of prior statistical assumptions based on a

particular loss function f, each rule has its way of justifying the convergence of the model.

In the stochastic gradient rule, setting the learning rate value differently for different

components is advantageous. The learning rate is set to a smaller value for the components

with higher gradients and vice-versa. In some cases, such a heuristical approach is justified

theoretically. Adaptive gradient methods use the root mean square's reciprocal value to

update the learning rate of each parameter. The adaptive gradient's limitation is that it needs

data to be sparse since sparse parameters are very informative. To overcome this issue,

different modifications of the adaptive gradient have been proposed recently. RMSprop

[78], Adam [79], Adadelta [80] and Nadam [81]. However, these approaches have no

guaranteed results of convergence. Since the underlying problem of optimization changes

due to the biased updates of the gradient, such an adaptive learning method becomes

infeasible for the learning rate tuning problem. To mitigate this problem, Vasvani et al.

[82] use the low value of learning rate for initial epochs.

Another approach toward the learning rate tuning has been proposed by Needell et al. [83]

in another line of work. The authors use Lipschitz constants for setting distinct and constant

but different learning rates for various component variables. They compute the loss

73

function as a summation of its component variables by performing sampling during the

gradient descent method.

Due to the lack of experimental results, specifically in sequential learning with the deep

neural network such as LSTM, there is no guarantee that the model will consistently reduce

loss value with the warmup approach. Also, there is no such rule of thumb for conducting

data-specific warmup experiments. Thus, researchers and domain experts apply the trial

and error approach technique by applying different settings in different applications. This

is computationally inefficient and requires a lot of training time.

In this chapter, we propose an algorithm that can adaptively tune the learning rate

parameter along with the tuning of the batch size parameter. The proposed approach does

not require any manual tuning.

5.3 Problem Formulation

 For a user process to interact with the operating system, it has to operate in the kernel

mode. A batch of code is compiled during the process runtime. System calls are made to

execute a particular line of code. If we arrange all the system calls made by a process during

its execution, we can define the normal behavior. This sequence of system calls is temporal

and thus can be used to train the learning-based models. We employed a deep learning-

based Long Short Term Memory algorithm since it learns and captures long-term

dependencies. Many hyperparameters need to be tuned. Below are a few of those hyper-

parameters that affect the training time.

1) Epoch: Total amount of time a dataset is passed to the model.

74

2) Batch size: The total number of examples the model uses to generate the loss and

update the weights further.

3) Learning Rate: A constant factor that controls the amount of gradient loss that needs

to be applied to the current weight.

Figure 5.1 shows the problem outline. The sequence of system calls is converted to a

numeric format. LSTM model learns the function F of the mapping input sequence to the

output sequence.

Figure 5.1: Learning Rate Problem Outline

The LSTM model will take an input/output sequence of system calls. Each input and output

is of identical length. With this, the model learns the normal sequential behavior of the

process. Thus, anything that deviates from the normal sequence of system calls is

considered an anomaly during testing. First, the model takes the ground-truth input/output

sequence and predicts the output sequence. The predicted output sequence is compared

with the actual output sequence, and loss is computed. This step is repeated for all the

75

input/output sequences of a particular batch, and the cumulative loss is generated at the end

of the batch. Next, the gradient of the cost function is computed based on the generated

loss. Then the constant learning rate parameter is then applied to the gradient value to

update the weight value for every parameter. This whole process is continued for all the

batches. Once all the batch of data is passed to the model, it is called an epoch. The model

is trained with multiple epochs to learn and reach the optimal loss value.

Currently, the learning rate parameter has to be defined prior to the training of the model,

and it remains constant throughout the training period. This bottleneck limits the model

from reaching the optimal loss value at an earlier epoch time.

Henceforth, to solve the problem mentioned above, we propose an iterative algorithm that

can dynamically update the learning rate value. This results in reducing the training time

plus convergence to the global optima at a faster rate.

5.4 Preliminaries

Learning rate: It is a hyper-parameter that regulates the weight adjustment concerning the

gradient computed based on loss. If the value is set to low, the model will take a long time

to reach the optimal loss value. This low value may seem legitimate since we do not want

to miss the local minimum, but on the other hand, it will take a considerable amount of

time to converge if it gets stuck in the plateau region.

76

The equation for calculating the new weight based on learning rate is as follows:

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑤𝑒𝑖𝑔ℎ𝑡 = 𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑤𝑒𝑖𝑔ℎ𝑡 − 𝜂 ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 (5.1)

where 𝜂 is the learning rate.

Figure 5. 2: Gradient Descent with small learning rate

Figure 5.3 : Gradient Descent with large learning rate

If the learning rate parameter is a very small number, the gradient descent will be slow, as

pictured in Figure 5.2. If the learning rate parameter is a very large number, the gradient

descent can fail to converge as shown in Figure 5.3 and miss the optimal minimum loss

value.

77

The value for the learning rate is set randomly by the user based on their past experiences.

It is not easy to get the right value. This parameter affects the convergence slope of the

model. Therefore, it is necessary to find the optimal value for it from starting to reach an

optimal value with fewer epochs. This, in turn, reduces the training time of the model.

Even though finding the optimal value of the learning rate is a challenging problem, some

well-researched approaches are available. Some of the popular techniques are explained in

the section below.

5.4.1 Learning Rate Techniques

Decaying Learning Rate: With the increase in the number of epochs, the learning rate

value decreases in this approach. The decrease rule is:

𝛼 =
𝛼0

1 + (𝛽 ∗ 𝐸)
 (5.2)

Where 𝛼0 is the initial learning rate, 𝛽 is the decay rate, and 𝐸 is the epoch number.

Variants of Decaying Learning Rate:

Exponential Decay: The learning rate decays exponentially throughout epoch time.

𝛼 = 𝛼0 ∗ 𝛽𝐸 (5.3)

Discrete Staircase: In this approach, the learning rate is decreased in specific discrete steps

throughout epoch intervals.

Epoch Number consideration: In this approach, we apply a constant factor and divide it by

the square root of the epoch.

78

𝛼 = 𝐻 ∗
𝛼0

√𝐸
 (5.4)

where 𝐻 is the constant factor.

Mini-batch approach: It is similar to the above equation, except the mini-batch number is

used instead of the epoch number.

𝛼 = 𝐻 ∗
𝛼0

√𝑀
 (5.5)

where 𝑀 is the mini-batch number. This approach can be used only when a mini-batch

gradient descent approach is employed.

Scheduled Drop Learning Rate: In this method, instead of updating the learning rate value

in a monotonous fashion, it is decreased at a particular frequency or particular discrete

proportional value.

The major limitation of the scheduled drop learning rate and the decaying learning rate is

no evaluation mechanism. The learning rate value is decreased irrespective of the model's

convergence to the optimal loss value for a particular cost function.

Adaptive Learning Rate: In this method, the value of the learning rate is dependent on the

gradient of the loss function. It will either increase or decrease. If the gradient value is

higher, then the value for the learning rate will be smaller. If the gradient value is smaller,

then the value for the learning rate will be higher. Thus, based on the curve of the cost

function, the learning rate will either accelerates in shallow areas or decelerates in the

steeper area.

79

Cyclic Learning Rate: This method allows the training of the neural network with a

learning rate that can be updated in a cyclic way rather than the non-cyclic way, which

either decreases at every epoch or remains constant. The learning rate value oscillates

between the predefined higher and lowers bound.

The following are the steps for cyclic learning rate:

1. Set the value for the lower bound of the learning rate called base_lr.

2. Set the value for the upper bound of the learning rate called max_lr.

3. Make the learning rate value goes back and forth between the lower and upper bound

during training based on the increase and decrease in the gradient value of the cost function.

So, at first, the learning rate value will be very small. Then, over some time, it will grow

until it reaches the maximum upper bound value. At this point, it will start reducing to a

lower value until it hits the minimum base value. This cyclic pattern of increase and

decrease continues throughout the training period.

5.5 Algorithm Analysis

In this section, we discuss the brute force approach of trying various learning rate values.

This approach is naïve and needs lots of computational time.

Brute force approach

The brute force approach is described in Algorithm 1. It inputs the sequences of system

calls, learning rate, and batch size value and outputs the trained model. It starts by dividing

the dataset into batches with the specified batch size value. Next, for each batch size value

80

in that interval range, we train the LSTM model with the input and output sequence of the

corresponding batch. The model predicts the output sequence. Then, the cumulative loss is

calculated for a single batch. The gradient is calculated based on this loss, and the learning

rate is applied to the gradient. This will update the weight of the model parameter that the

next batch of data will use. This whole process continues until the model converges to an

optimal loss value.

Algorithm 1 Brute Force Algorithm
Input: Normal System Call Sequences, Batch Size, Learning Rate
Output: Trained Model
 1: 𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎 = Preprocess the sequence into input and output sequence
 2: for i = 1 to BatchSize do
 3: 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎 [i][0]

 4: 𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎 [i][1]

 5: Model = LSTM model train on 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 and 𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒

 6: 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = Predicted sequence from Model

 7: end for
 8: 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝐿𝑜𝑠𝑠 = | 𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 – 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 |

 9: Δ𝜃 = −𝜂 ∗ (
𝜕𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝐿𝑜𝑠𝑠

𝜕𝜃
)

10: 𝜃𝑖+1 = 𝜃𝑖+1 + Δ𝜃
11: Repeat step 2 to 9 until for multiple epoch and until model converges

The major limitation of this approach is that the value for batch size and learning rate needs

to be specified before the training of the model, and it remains constant through the training

period. This limits the model to train faster at an earlier epoch.

5.6 Impact of Window Size

The preprocessing step of the model training requires data to be in specific input and output

format. This input and output have a specific length which is called window size. For

instance, if the window size is 5, the model will take a sequence of 5 system calls as input

and the following sequence of 5 system calls as output. We experimented with various

81

window sizes, and Table shows the loss results achieved after running the algorithm for

100 epochs. We can depict that the lower the window size, the faster the model reaches the

minimum loss.

Table 5.1: Loss with window size

WindowSize Loss

3 0.29

5 0.24

10 0.45

15 0.67

20 0.94

5.7 Proposed Dynamic BatchSize with Dynamic Learning Rate Algorithm

Algorithm 2 Dynamic BatchSize and Learning Rate Algorithm
Input: Normal System Call Sequences, Initial Learning Rate
Output: Optimized Model
 1: S= Normal System Call Sequences
 2: N = Total length of Sequence
 3: 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐿𝑟 = []
 4: 𝐿𝑜𝑐𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠 = []
 5: 𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠 = []
 6: J = 0
 7: 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 = N
 8: BS= BatchSize obtained after training model for first epoch through Algorithm
 9: for i = 1 to 2 do
10: 𝜂 =Initial Learning Rate
11: 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐿𝑟.append(𝜂)
12: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑒𝑡 = S [j : j + BS + 1]
13: 𝐿𝑜𝑠𝑠𝑉𝑎𝑙𝑢𝑒 = TrainOnBatch(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑒𝑡)
14: 𝐿𝑜𝑐𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠.append(LossValue)
15: 𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠.append(𝐿𝑜𝑠𝑠𝑉𝑎𝑙𝑢𝑒)
16: J = BS
17: 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 - J
18: 𝑁𝑒𝑤𝐿𝑟 = 𝜂
19: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 = 2 * J + 1
20: end for

21: 𝐷𝑒𝑙𝑡𝑎𝐿𝑟 = []
22: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑒𝑙𝑡𝑎𝐿𝑟 = 0
23: while (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 < N) do

82

24: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = BS
25: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑟 = 𝑁𝑒𝑤𝐿𝑟
26: i = len(𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠) - 1

27: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑙𝑡𝑎𝐿𝑟 =
(𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠 [𝑖−1]− 𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠[𝑖])

max (|𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠 [𝑖−1]|, |𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠 [𝑖]|)

28: 𝐷𝑒𝑙𝑡𝑎𝐿𝑟.append(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑙𝑡𝑎𝐵𝑆)
29: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 = 0.50

30: 𝐷𝑒𝑙𝑡𝑎𝐿𝑟𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑊𝑒𝑖𝑔ℎ𝑡𝐿𝑖𝑠𝑡= []

31: for k in range (len(𝐷𝑒𝑙𝑡𝑎𝐿𝑟), 0, -1) do
32: 𝐷𝑒𝑙𝑡𝑎𝐿𝑟𝑊𝑒𝑖𝑔ℎ𝑡 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 * 𝐷𝑒𝑙𝑡𝑎𝐿𝑟 [k - 1]

33: 𝐷𝑒𝑙𝑡𝑎𝐿𝑟WeightList.append(𝐷𝑒𝑙𝑡𝑎𝐿𝑟𝑊𝑒𝑖𝑔ℎ𝑡)

34: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 =
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡

2

35: end for
36: 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑙𝑡𝑎𝐿𝑟𝑊𝑒𝑖𝑔ℎ𝑡 = ∑ 𝐷𝑒𝑙𝑡𝑎𝐿𝑟WeightList

37: 𝑁𝑒𝑤𝐿𝑟 = ceil(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑟 * (1 + 𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑙𝑡𝑎𝐿𝑟𝑊𝑒𝑖𝑔ℎ𝑡))

38: 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐿𝑟.append(𝑁𝑒𝑤𝐿𝑟)
39: 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 - 𝑁𝑒𝑤𝐿𝑟
40: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑒𝑡 = S[𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 : 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 + 𝐵𝑆 + 1]
41: Values= TrainOnBatch(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑒𝑡, 𝑁𝑒𝑤𝐿𝑟)
42: 𝐿𝑜𝑐𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠.append(Values[0])
43: 𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠.append(Values[0])
44: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 + 𝐵𝑆
45: end while
Repeat step 23 to 45 for all even number of epoch until the model converges

The proposed dynamic algorithm works in the following way. It extends the dynamic batch

size algorithm proposed in the previous chapter. Initially, the value for batch size is

obtained from the dynamic batch size algorithm that trains the model using the specified

learning rate for the first epoch. Next, the batch size value remains constant for the second

epoch, and the learning rate is dynamically updated as follows. The learning rate is set

according to the specified learning rate for the first two batches. This phase is called the

warmup phase, where the learning rate is selectively constant. Now, the learning rate value

is calculated dynamically starting from the third batch. It is computed as follows.

We compute the difference between the loss generated from the previous batch to the

current batch. To normalize this loss difference, we divide it by the loss value, which is the

83

maximum. Next, we apply the weight to each of the previous losses generated with the

previous selection of the learning rate. As we go higher up to the previous losses, the weight

is reduced to half. This is important because, with this approach, we enforce higher

weightage to the current learning rate than that of the previous selection of the learning rate

value. This weight value is multiplied by their corresponding loss value, and finally, they

all are added to produce a single value. Now, to check whether to increase or decrease the

learning rate value, we add the resultant sum value to 1. Furthermore, we multiply this

additive term by the current learning rate value to get the final learning rate for the next

iteration. This new learning rate is used to train the model for the next batch of the data—

this way, the learning rate is selected dynamically. The above steps are repeated every time

to calculate the learning rate value. Once we reach the end of the dataset, it is called one

epoch. This process of dynamically updating the batch size and learning rate goes on

alternate epochs consecutively until the model converges. This process reduces the training

time sub-optimally.

5.8 Experimental Results

The following are results from training the LSTM model using the proposed dynamic

learning rate with a dynamic batch size selection algorithm.

Table 5.2 shows the minimum loss achieved with all the datasets with the number of epochs

needed to achieve minimum loss. The model is trained by keeping the default learning rate

of 0.001.

84

Table 5.2: Loss with Default Learning Rate

Dataset Minimum Loss Total #Epoch

JMPS 0.0760 63

ADFA-LD 0.135 47

UNM 0.178 59

Furthermore, we experimented the proposed algorithm by changing the default learning

rate value. Different learning rate experimented are {1, 0.1, 0.01, 0.0001, 0.00001,

0.000001}. We pick one learning rate value from the list and run the proposed algorithm

each time. Table 5.3 shows the experimental results. For two of the dataset, the result

improved compared to the default learning rate of 0.001.

Table 5.3: Loss with Different Learning Rate

Dataset Best Learning Rate Minimum Loss Total #Epoch

JMPS 0.00001 0.0749 52

ADFA-LD 0.001 0.135 47

UNM 0.00001 0.177 53

In the proposed algorithm's case, we also found out that the learning rate of 0.00001 was

optimal for JMPS and UNM datasets. Figure 5.4, 5.5 and 5.6 shows the decreasing loss

value for JMPS, ADFA-LD, and UNM datasets, respectively, with the increasing number

of epochs.

85

Figure 5.4: Dynamic BS_LR for JMPS

Figure 5.5: Dynamic BS_LR for ADFA-LD

Figure 5.6 Dynamic BS_LR for UNM

For the JMPS dataset, the lowest loss achieved was 0.0749 at epoch 52 with a learning rate

of 0.00001.

86

For the ADFA-LD dataset, the lowest loss achieved was 0.135 at epoch 47 with a learning

rate of 0.001.

For the UNM dataset, the lowest loss achieved was 0.177 at epoch 53 with a learning rate

of 0.00001.

For the JMPS dataset, compared to dynamic batch size selection, the number of training

epochs was reduced to 52, which is 22 epoch less, with the loss reaching 0.0749, which is

0.0017 higher.

For the ADFA-LD dataset, compared to dynamic batch size selection, the number of

training epochs was reduced to 47, which is 9 epoch less, with the loss reaching 0.135,

which is 0.007 higher.

For the UNM dataset, compared to dynamic batch size selection, the number of training

epochs was reduced to 53, which is 9 epochs less, with the loss reaching 0.177, which is

0.004 higher.

5.9 Conclusion

Optimization of Deep Neural Networks using first-order algorithms has been researched in

the literature. Stochastic Gradient Descent algorithms are one of the most popular ones.

These algorithms need manual tuning and pre-specified values for most of the hyper-

parameters. Such specification changes with the different datasets of a wide variety of

domains and also with different neural architectures. Despite their wide usage, the

generalization capability is still an open issue since the value of the parameters stays

constant throughout the training period. This limits the model's capability to reach optimal

87

minimum loss at a reduced epoch. In the previous chapter, we proposed a dynamic batch

size selection approach. We extend that approach by incorporating the learning rate

parameter, which is also tuned dynamically. Thus, we proposed a dynamic learning rate

selection algorithm that dynamically updates the value of the learning rate. The update

mechanism is based on the historical loss. The proposed approach updates the batch size

and learning rate dynamically and consecutively. We experimented our proposed approach

with three different datasets. ADFA-LD and UNM are open-source benchmark datasets.

With experimental results, we found out that dynamically updating the batch size with the

learning rate value trains the model at a faster epoch rate than the static approach.

Furthermore, we notice that changing a default constant learning rate impacts the training

time of the model.

88

CHAPTER 6

MACHINE LEARNING-BASED CYBER THREAT ANOMALY DETECTION IN

VIRTUALIZED APPLICATION PROCESSES

Intrusion-based detection systems spot traces of abnormal activities focused on the network

and connected resources. Anomaly-based detection systems analyze events of applications

for abnormal behavior based on the hypothesis that anomalies signify an indication of

malicious events. Host-based systems frequently depend on various attributes of a process

to describe the normal behavior of any process. Multiple malicious vectors can be launched

on a process with different characteristics to infect it. We propose a two-step approach for

host-based anomaly detection. First, we analyze ProcessList data structure and create

Principal Component Analysis (PCA) features known as Eigen traces used for training

multiple one-class anomaly detection models. These multiple models allow different

attributes of process data to be assessed from numerous and diverse standpoints. As the

anomaly scores of these models vary significantly, combining the scores to a single value is

often challenging. Therefore, we apply a majority voting approach for the final anomaly

score as the second step. This final score measures the occurrence of a malicious event. In

this study, we demonstrate the implementation of the proposed two-step approach using

four different one-class classifiers: Mahalanobis Classifier, One-Class Support Vector

Machine (OCSVM), Isolation Forest, and Dendogram based Agglomerative Clustering. We

show that the proposed anomaly system improves the accuracy of anomaly detection.

89

6.1 Introduction

Intrusion-based Recognition Systems are a dynamic exploration arena in arrears to a strict

and crucial requirement for cybersecurity methods in contradiction to continuously

growing global outbreaks on computing organizations. Such attacks are characterized into

two diverse types: 1) Known Attacks: where signatures are available for each attack, and

2) Unknown Attacks: Attacks which are never been identified before. It is more

straightforward to combat known attacks since numerous orientations provide valuable

data about their behavioral patterns. Nevertheless, no such signatures exist for unknown

attacks; the only information we know about them is that they do not belong to a particular

process's regular method of operations.

Recent techniques based on machine learning systems offer a variety of choices to analyze

the incoming data for evaluation and show an efficient intrusion detection rate. We have

two categories for Intrusion based detection systems: 1) Semi-supervised learning:

Training with a labeled dataset for normal class 2) Unsupervised learning: Training with

no labeled dataset. Numerous process characteristics make detecting anomalous attacks

quite challenging [84]. Foremost is defining a meticulous and accurate borderline for the

regular normal class. Most of the time, the usual behavior of a process frequently changes,

and so as the malicious vectors. Today's process behavior often may not be the same as

tomorrow's.

Data needs to be labeled in the Supervised classification type of machine learning system,

whereas it is a crucial compelling problem for anomaly detection-based algorithms. The

adversaries executing abnormal behavior on a particular system or process will try to

90

acclimate themselves to scheme a behavior as if it fits regular action, making the detection

process complicated. Additionally, in nearly a few circumstances, the irregular behavioral

points nearby to the regular borderline will be measured as benign behavior.

The proposed idea is to build normal program behavior models by utilizing process-related

data. The crucial reflection is the detail that a particular malicious vector interacts with the

underlying system through process attributes to initiate damaging the system. An attack is

presumed when the normal behavior of a known process diverges from the expected

behavior.

With the ongoing comprehensive research in this area, developing an anomaly detection

system is required to diminish false and missed alarms and simultaneously maximize the

anomalous detection rate. Therefore, this study presents an unsupervised (one class)

learning approach to the dataset extracted from windows processes. We collected the

dataset during numerous regular operations and malware vector attack operations. We pre-

process the extracted raw data with descriptive statistics and PCA's popular feature

extraction technique. Furthermore, various learning-based algorithms, namely,

Mahalanobis Classifier, OCSVM, Isolation Forest, and Dendogram-based Agglomerative

Clustering, in conjunction with the dynamic thresholding, were used to detect the

anomalous behavior. Using an ensemble of the proposed algorithms, we developed an

anomaly detection system that tracks the particular applications to recognize malicious

behavior.

The rest of the chapter is structured as follows. Section 2 provides the literature review on

this work. Section 3 defines the in-depth overview of the proposed methodology to solve

91

the anomaly detection problem. Section 4 discusses the experimental results, and finally,

we conclude in section 5 with future work discussion in section 6.

6.2 Related Work

There are abundant methods testified in many of the literature works performed for

abnormality detection. Tavallaee et al. [85] accumulated an all-inclusive review of studies

on such systems. Out of 276 articles under consideration, they stated that 160 of them

applied supervised classification-based machine learning algorithms, 62 of them projected

methods developed on statistics, 36 of them utilized clustering-based algorithms, and the

last 46 research papers have shown to use various fusion methods. Furthermore, the dataset

was based on single host and network traffic data.

Deshpande et al. [86] projected an anomaly detection model based on system call traces

for cloud computing settings that signal users of cloud systems in contrast to disturbances

within their scheme. They used a framework based on a Linux OS audit and extracted data

such as system calls and their frequencies with process IDs recorded in a log stored in the

database. For all new trace of system calls, their detection system uses the Euclidean

distance to relate it with the normal vectors. Their study achieved an accuracy rate of 96%

in distinguishing abnormal events on the datasets used in [87] and [91].

Several weaknesses [87] can be exploited in software-defined networking (SDN), which

offers numerous proficiencies in preventing and mitigating such attacks. Mahrach et al.

[89] projected a technique to detect anomalies using the SYN cookie technique at the switch

level. Their research examines a particular application's descriptive mean on the data

92

collected throughout a specific period and prompts an alarm when the accrued capacity of

extents surpasses a threshold.

Aghaei et al. [90] used SMOTE-based technique to overcome the imbalanced data problem

created during the most frequent data patterns extraction. They employed an ensemble

approach and developed two different classification models using different classification

algorithms [48], namely Naive Bayes, Decision Trees, Random Forest, etc. The first

classification model is the binary classification model [57] used to classify the attacks as

normal or malicious. The second one is the multiclass classification model used to classify

all six different types of attacks. Their study reports a 99.9% detection rate for binary

classification. The average accuracy score reported was only 55% for all attack classes for

the multiclass classification. Serpen et al. [91] used a windowed technique to generate

fixed-size feature vectors. Furthermore, they used the features generated from principal

component analysis to reduce the dimensionality. Next, they trained and developed the k-

nearest neighbor algorithm to classify new test data.

6.3 Proposed Methodology

This section provides an in-depth overview of the proposed anomaly detection framework

shown in Figure 6.1 with four stages: Data Extraction, Data Pre-Processing, Detection

Algorithm Training, and Finally, Deployment.

93

Figure 6.1: Proposed Anomaly Detection Framework

6.3.1 Stage-I: Data Extraction

Extraction of process list data is made with the help of the Virtual Machine Introspection

(VMI) mechanism [92]. Here, the Xen hypervisor inspects the running processes in a

virtual machine and extracts different features of a process as described in Table 6.1. The

authors devised an architecture to remove process information, as shown in Figure 6.2.

There are three significant components present in this architecture: User Interface, Virtual

Machine Introspection Layer, and Data Analytics Layer. The user interface can be used to

initiate the data extraction process with the help of user-defined application programming

interfaces (API). The user interface starts and stops the data extraction process with pre-

defined functionality. It can also view and manage virtual machines such as creation,

deletion, and other activities. The virtual Machine Introspection Layer is the significant

component of the architecture where the actual data extraction of the virtual machine

occurs. It has different elements and performs several activities.

94

Figure 6.2: Architectural diagram of the Data extraction mechanism

The hypervisor will receive the command from the user interface. It uses the LibVMI library

to extract memory offsets of the running processes and push the extracted data to the Data

Analytics layer. In the Data Analytics layer, the extracted data is received at the data layer

and stored in the Database server for further processing. The machine learning models

module in the Data Analytics layer will create different models using different machine

learning algorithms. Table 6.2 depicts the benign and malicious dataset samples, and Table

6.3 describes the extracted data set sizes.

Table 6.1: Extracted Features

No. Features Description

1 VMName Name of the Virtual Machine

2 ProcessID Unique Process Identifier Number

3 ProcessName Name of the running process

4 NumberOfPrivatePages Total number of private pages

5 NumberOfLockedPages Total number of locked pages

6 ModifiedPageCount Total number of pages modified

7 WorkingSetPage Set of pages in the virtual address space

8 ActiveThreads Number of Active Threads of a particular Process

9 ReadOperationCount Count of read operations

10 WriteOperationCount Count of write operations

11 OtherOperationCount Count of I/O operations

12 ReadTransferCount Amount of data read

13 WriteTransferCount Amount of data written

14 OtherTransferCount Amount of data transferred that are not read or written operations

95

15 KernelTime Time in kernel mode, in 100 nanosecond units

16 UserTime Time in user mode

17 BasePriority Current base priority of a thread

18 DefaultPagePriority Default Page value set during the process creation

19 DefaultIOPriority Default IO value set during the process creation

20 StackCount Define the size of the process stack space

21 PeakVirtualSize Extreme virtual address space that can be used at any time

22 VirtualSize Comprises the size of all pages that the process has reserved

23 DisableDynamicCode When turned on, the process cannot generate dynamic code

24 DisallowStrippedImages Rejects the reallocation information

25 DisallowWin32kSystemCalls User mode calls that are disallowed to be serviced by win32k.sys

26 ActiveThreadsHighWatermark Unused Stack Space

27 CommitCharge The total amount of virtual memory to be backed by either

physical memory

28 CommitChargePeak The highest amount that the commit charge has reached

29 Cookie Files with small pieces of data

30 CreateInterruptTime The time spent by the processor servicing hardware interrupts

31 CreateUnbiasedInterruptTime The time that the system is in the working state

32 DefaultHardErrorProcessing Default value to process the error

33 DeviceAsid Device ID

34 ExitStatus Status of process Exit

35 Flags An 8-bit field of 1-bit flags relating to structures in effect for the

GPO (Group Policy Object)

36 Flags2 The computer configuration portion of GPO is disabled

37 Flags3 The GPO is disabled

38 ImagePathHash The full path to the executable file corresponding to each process

39 LastAppStateUpdateTime Last update time of the process state

40 LastFreezeInterruptTime Interrupt time during process freeze

41 OwnerProcessID The process ID of the owning thread

42 PriorityClass The priority category for the associated process, from which the

BasePriority of the process is calculated

43 ReadyTime The time thread is waiting to use a processor

44 SectionSignatureLevel The default required signature level for any modules that get

loaded into the process

45 SequenceNumber Track Process Sequence

46 SharedCommitCharge Total of potential storage space required, which could be in either

RAM or the page file

47 SignatureLevel The validated signature level of the image present in the Image

Name field

48 VadCount It contains a detailed count of a process' allocated memory

segments

49 LastThreadExitStatus Exit status after the last thread has been terminated.

96

Table 6.2: Sample PS Dataset

 Sample Benign Rows Sample Malicious Rows

No. FeatureName BR-1 BR-2 BR-3 MR-1 MR-2 MR-3

1 VMName VM VM VM VM VM VM

2 ProcessID 1900 1900 1900 392 392 392

3 ProcessName PNam

e

PName PName PName PName PName

4 NumberOfPrivatePages 5063 4663 6219 11321 11105 8640

5 NumberOfLockedPages 0 0 0 0 0 0

6 ModifiedPageCount 381 377 424 516 495 462

7 WorkingSetPage 92985

2

929852 929852 51090 51090 51090

8 ActiveThreads 20 19 20 625 622 323

9 ReadOperationCount 0 0 0 0 0 0

10 WriteOperationCount 0 0 0 0 0 0

11 OtherOperationCount 0 0 0 17 17 0

12 ReadTransferCount 0 0 0 0 0 0

13 WriteTransferCount 0 0 0 0 0 0

14 OtherTransferCount 0 0 0 0 0 0

15 KernelTime 0 0 0 0 0 0

16 UserTime 0 0 0 1 1 0

17 BasePriority 8 8 8 8 8 8

18 DefaultPagePriority 10 10 10 10 10 10

19 DefaultIOPriority 4 8 4 4 4 4

20 StackCount 160 152 160 4976 4976 2584

21 PeakVirtualSize 79995

2896

7951360

00

7999528

96

3339759

616

3339759

616

2082299

904

22 VirtualSize 79957

6064

7951360

00

7986626

56

3339759

616

3339759

616

2082299

904

23 DisableDynamicCode 0 0 0 0 0 0

24 DisallowStrippedImages 0 0 0 0 0 0

25 DisallowWin32kSystem

Calls

0 0 0 0 0 0

26 ActiveThreadsHighWate

rmark

20 19 20 622 622 323

27 CommitCharge 10735 10509 12107 20016 20016 16063

28 CommitChargePeak 10195 10635 12107 20016 20016 16063

29 Cookie 40067

69173

4006769

173

4006769

173

1182570

43

1182570

43

1182570

43

30 CreateInterruptTime 88846

47474

4

8884647

4744

8884647

4744

1252621

3484

1256213

484

1252621

3484

31 CreateUnbiasedInterrupt

Time

88846

47474

4

8884647

4744

8884647

4744

1252621

3484

1252621

3484

1252621

3484

32 DefaultHardErrorProces

sing

1 1 1 1 1 1

33 DeviceAsid 0 0 0 0 0 0

97

34 ExitStatus 259 259 259 259 259 259

35 Flags 34062

6433

3406264

33

3406264

33

3406264

33

3406264

33

3406264

33

36 Flags2 33607

700

3360770

0

3360770

0

3360770

0

3360770

0

3360770

0

37 Flags3 32 32 32 32 32 32

38 ImagePathHash 15542

79663

1554279

663

1554279

663

1554279

663

1554279

663

1554279

663

39 LastAppStateUpdateTim

e

88846

47474

4

8884647

4744

8884647

4744

1252621

3484

1252621

3484

1252621

3484

40 LastFreezeInterruptTime 0 0 0 0 0 0

41 OwnerProcessID 0 0 0 0 0 0

42 PriorityClass 2 2 2 2 2 2

43 ReadyTime 0 0 0 0 0 0

44 SectionSignatureLevel 0 0 0 0 0 0

45 SequenceNumber 628 628 628 589 589 589

46 SharedCommitCharge 1227 1167 1227 1252 1252 1252

47 SignatureLevel 0 0 0 0 0 0

48 VadCount 192 195 194 1418 1418 809

49 LastThreadExitStatus 0 0 0 0 0 0

Table 6.3: Benign and Malicious Dataset Size

Dataset Projected Use Class Dimensions

Dtrain Train Normal 19500 * 49

Dtest Test Normal/Malicious 20960 * 49

6.3.2 Stage-II: Data Pre-Processing

The pre-processing of attributes of all processes (benign and malicious) is outlined in

Algorithm 1, which comprises the following operations to clean the data:

i) Remove rows with zero variance

ii) Remove redundant rows

iii) Remove highly correlated features

iv) Normalize the dataset

First, the algorithm will create an empty PFD (Processed Feature Dataset). Next, it will

calculate the variance of each column, remove the columns with zero variance, and remove

98

the duplicate rows. Furthermore, it will calculate the Pearson correlation between every

two pairs of columns and remove columns with correlation values greater than or equal to

95%. Finally, it normalizes the remaining columns and adds them to the PFD.

Zero Variance Features: The following attributes are removed due to zero variance.

NumberOfLockedPages, WorkingSetPage, ReadOperationCount, WriteOperationCount,

ReadTransferCount, WriteTransferCount, OtherTransferCount, BasePriority,

DefaultPagePriority, DefaultIOPriority, DisableDynamicCode, DisallowStrippedImages,

DisallowWin32kSystemCalls, CreateInterruptTime, CreateUnbiasedInterruptTime,

DeviceAsid, ExitStatus, Flags3, LastAppStateUpdateTime, LastFreezeInterruptTime,

PriorityClass, ReadyTime, SectionSignatureLevel, SequenceNumber, SignatureLevel,

LastThreadExitStatus

Highly Correlated Features: The following attributes are removed due to high correlation

among themselves.

ModifiiedPageCount, OtherOperationCount, KernelTime, UserTime,Cookie,

DefaultHardErrorProcessing, Flags, Flags2, ImagePathHash, OwnerProcessID.

Algorithm 1 Feature Processing Methodology
Input: Dataset (Δ) with benign process attributes, PFD: Empty Processed Feature Dataset
Output: Cleaned data
 1: for column Ψ ϵ Δ do
 2: if (σ (Ψ) != 0) then
 3: PFD = PFD U Ψ
 4: end
 5: end for
 6: for row ω ϵ Δ do
 7: if (ω already exists) then
 8: PFD = PFD - ω
 9: end
10: end for
11: for column Ψ ϵ Δ in range (i to n-1) do
12: for column Ψ ϵ Δ in range (j to n) do

99

13: if (Pearson_Correlation (Ψi , Ψj) >= 0.95) then
14: PFD = PFD - Ψ
15: end
16: end for
17: end for
18: for column Ψ ϵ Δ do

19: Ψnew =
Ψi−min (Ψ)

𝑚𝑎𝑥(Ψ)−min (Ψ)

20: PFD = PFD U Ψnew - Ψ
21: end for

Algorithm 2 EigenTrace Methodology
Input: PFD from Algorithm1
Output: Reduce Dimensional Data
 1: for column Ψ ϵ PFD do
 2: ζ = average trace vector Ψ
 3: end for
 4: P = PFD – ζ
 5: Q = PPT
 6: values, vectors = Eig(Q) //Compute Eigen Decomposition of the Covariance matrix Q
 7: if (all values are same) then
 8: Data already in compressed form
 9: else
10: Select N(Ψ) or less to compromise the chosen subspace
11: PrincipalComponents = select (values, vectors)
12: P = BT . A //Project Data into the subspace
13: end if

Final used attributes: We generate the principal components from the following attributes

as described in Algorithm 2.

NumberOfPrivatePages, ActiveThreads, StackCount, PeakVirtualSize, VirtualSize,

ActiveThreadsHighWatermark, CommitCharge, CommitChargePeak,

SharedCommitCharge, VadCount.

The principal components generated using Algorithm 2 are used to train One-Class

Classifiers.

100

6.3.3 Stage-III: Detection Algorithm Training

The following one-class classifiers are trained and optimized during this experimental stage

to detect anomalies in our process list data structure.

Isolation Forest

The Isolation Forest algorithm [94] works based on two fundamental dataset principles: A.

Over the total distribution of the dataset, the portion of the anomalous data points is low. B.

The difference between the feature values of the anomalous data point and the normal data

point is high. This algorithm uses iTree, a binary tree where each node has either zero or

two children.

Let us consider M as a node. M can be a node with zero children or a node with two children

nodes (Ml, Mr). To build an isolation tree from a given sample data D = {d1, ..., dn}, we

randomly select a feature f and split value v to divide D recursively until the following

conditions occur: (i) Length of D is one, (ii) A particular height is reached (Defined as a

hyperparameter) or (iii) D contains a constant value. Anomalies are detected according to

their path length. The larger the path length, the higher the chance of an anomalous data

point.

Path Length p(d) of a particular point d is the count of edges d must traverse to reach the

end node from the root node.

An unsuccessful path length of any binary search tree is given as:

𝐶(𝑚) = 2𝐺(𝑚 − 1) −
2(𝑚 − 1)

𝑚

(6.1)

where G(i) is the harmonic quantity.

101

F(m) is the average of g(d) and use to normalize g(d). The anomaly A of an instance d is

defined as:

𝐴(𝑑, 𝑚) = 2
−

Avg(g(d))
F(m)

(6.2)

where Avg(g(d)) is the average of g(d).

A = 0.5 when Avg(g(d)) = F(m);

 A = 1 when Avg (g(d)) = 0;

 A = 0 when Avg (g(d)) = m – 1

A particular data point is considered anomalous based on the following criteria:

(a) if A ≈ 1, then it is an anomaly,

(b) if A << 0.5, then it is considered a normal instance, and

 (c) if A≈ 0.5, there is no distinct anomaly.

One-Class Support Vector Machine (SVM)

OCSVM [95] is a semi-supervised learning-based algorithm that learns a decision boundary

to classify a point similar or dissimilar to the training data. It takes training data of one class

(normal) as input. This algorithm was developed by Schölkopf et al. Given a training dataset

E = {e1,.., em}, ei ∈ Rd. The algorithm tries to find a separating boundary with maximum

distance. Mathematically, it is defined as follows:

Arg-min w, ζ, p
1

2
|| b ||2 +

1

𝑢𝑛
 ∑ 𝜁𝑖 − 𝑜𝑚

𝑖=1

(6.3)

where,

(𝑤, ω(𝑥𝑖)) ≥ o – ζi and ζi ≥ 0

(6.4)

102

Here m is the total training data points, and ω (•) is a non-linear kernel function.

Furthermore, this algorithm uses normal vector b and offset o to learn the decision boundary.

The degree of misclassification is calculated by the slack variable ζi. Finally, u, which lies

between 0 and 1, determines which points are outside the decision boundary and inside the

boundary.

Mahalanobis Classifier

The Mahalanobis classifier [97] is based on a statistical method that measures how far a

particular data point is from a normal data points distribution cluster. Given a dataset with

R datapoints and C features, the Mahalanobis distance 𝑀2 is calculated as a function of �̅�

that comprises the mean of each feature and a covariance matrix E.

𝑀2 (𝑉𝑅) = (𝑉𝑅 − �̅�)𝑇 𝐸−1(𝑉𝑅 − �̅�)

(6.5)

where �̅�, 𝐸−1, 𝑎𝑛𝑑 𝑉𝑅 transform each value of every feature column to a standard normal

distribution by mean centering, scaling, and rotating, respectively, following a chi-squared

distribution.

Dendogram based Agglomerative Clustering

Given N data points to be clustered, the basic process of Agglomerative Clustering [96] is

as follows:

 Each data point is considered a cluster; therefore, there will be n clusters for n data

points.

 Find the two closest clusters and join them into a single cluster.

 Continue clustering the data points until we reach a single cluster.

103

In Step 2, there are different ways to find the two closest clusters. They are:

 Single-linkage: Distance between two nearest data points of two clusters is

calculated.

 Complete-linkage: Distance between two farthest data points of two clusters is

calculated.

 Average-linkage: The two clusters' mean of the data points are computed and used

to calculate the inter-cluster distance.

Custom Malware

We developed a custom malware that adds malicious values to the attributes of the process

using the DLL injection method. It creates additional threads by creating a new file that

hooks into the write system call of the process.

6.4 Experiments and Results

This section discusses the experimental results for all four one-class classifiers. All the

classifiers are trained on the normal class of data, and the normal (benign) and anomalous

scores are evaluated.

6.4.1 Mahalanobis Classifier

Mahalanobis Distance Metric distinguishes the malicious point from the normal point by

calculating the Mahalanobis distance, an extended version of Euclidean distance. From

Figure 6.3, we notice that when the normal data is tested again, the distance range is around

4000, whereas, in the malicious data, the distance range is about 30000.

104

Figure 6.3: Mahalanobis Distance Metric Results

6.4.2 Isolation Forest

Figure 6.4: Isolation Forest Results

Isolation Forest is the version of the Random Forest train with only one class of data. As

shown in Figure 6.4, each test case scores for inliers and outliers. Inliers are considered

normal points, and outliers are considered anomalous points. When tested the normal data

again, 93% to 99% of data were classified as inliers, and 1% to 4% were classified as

outliers. Similarly, when tested against malicious data, 54% to 58% of data were classified

as inliers, and the rest, 42% to 46% of data, were classified as outliers.

6.4.3 Agglomerative Clustering

Agglomerative clustering is a type of hierarchical clustering. We use the Euclidean distance

and ward linkage method to generate the dendogram shown in Figures 6.5 and 6.6.

105

Figure 6.5: Agglomerative Clustering Results (Normal)

Figure 6.6: Agglomerative Clustering Results (Malicious)

The height value in the dendogram represents the distance between two clusters. As shown

in Figure 6.5, when it is tested against the normal data, it shows only one cluster (normal)

of data. Figure 6.6 shows the result when tested with malicious data, where we see two

distinct clusters of data.

6.4.4 OCSVM

One class SVM is a type of SVM where we feed only one class (normal) of data during the

training process. It finds the hyperplane that separates the far-away data points from the

groups of data in a cluster. The results of OCSVM are shown in Figures 6.7 and Figure 6.8.

106

Figure 6.7: OCSVM Results (Normal)

Figure 6.8: OCSVM Results (Malicious)

Figure 6.7 shows the results when trained OCSVM was tested against the normal data,

giving a 97% accuracy rate. Figure 6.8 shows the results when tested against the malicious

data, and it was able to distinguish the normal data points and malicious data points.

6.5 Ensemble Approach

Table 6.4: Four Unique TestCase Results

Test

Cases

Algorithm Output

Score

Threshold

Value

Score

Difference

Normalized

Score Difference

Result Ensemble

Decision

1

Mahalanobis Classifier 0.93 0.70 + 0.23 +0.76 Normal

 Normal Agglomerative Clustering 0.97 0.80 + 0.17 +0.85 Normal

Isolation Forest 0.92 0.80 + 0.12 +0.60 Normal

One Class SVM 0.95 0.75 + 0.20 +0.80 Normal

2

Mahalanobis Classifier 0.45 0.70 - 0.25 -0.35 Compromised

Compromised

Agglomerative Clustering 0.70 0.80 - 0.10 -0.12 Compromised

Isolation Forest 0.93 0.80 + 0.13 +0.65 Normal

One Class SVM 0.80 0.75 + 0.05 +0.20 Normal

3

Mahalanobis Classifier 0.54 0.70 - 0.16 -0.22 Compromised

Compromised

Agglomerative Clustering 0.62 0.80 - 0.18 -0.22 Compromised

Isolation Forest 0.85 0.80 + 0.05 +0.25 Normal

One Class SVM 0.55 0.75 - 0.20 -0.26 Compromised

4

Mahalanobis Classifier 0.42 0.70 - 0.28 -0.40 Compromised

Compromised

Agglomerative Clustering 0.39 0.80 - 0.41 -0.51 Compromised

Isolation Forest 0.65 0.80 - 0.15 -0.18 Compromised

One Class SVM 0.40 0.75 - 0.35 -0.46 Compromised

107

Figure 6.9: Ensemble Decision for each TestCase Scenario

The score difference value is calculated as below:

𝑆𝑐𝑜𝑟𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑐𝑜𝑟𝑒𝑉𝑎𝑙𝑢𝑒 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐴𝑙𝑔

(6.6)

Since every algorithm has a different static threshold, we normalize the score difference

between -1.0 to +1.0. This value is derived by dividing the score difference by the maximum

possible score difference.

For 𝑆𝑐𝑜𝑟𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 >= 0 (i.e. Normal Cases),

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑐𝑜𝑟𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
𝑆𝑐𝑜𝑟𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

1 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑉𝑎𝑙𝑢𝑒

(6.7)

The characteristics of the test cases are as follows. Test case 1 is the normal scenario where

no malicious vectors were injected. All algorithms predicted this test case as normal. Thus

the ensemble output is also normal. In test case 2, a single run of one malicious test vector

was executed during the application process. In this case, two algorithms (Mahalanobis

Distance and Agglomerative Clustering) predicted the outcome as compromised. Thus, the

ensemble output is compromised since at least half of the algorithms yielded compromised

predictions.

108

In test case 3, two runs of the same malicious test vector as in test case 2 were executed

during the application process. In this case, three algorithms (Mahalanobis Distance,

Agglomerative Clustering, and OC-SVM) predicted the outcome as compromised. Thus,

the ensemble output is compromised since at least half of the algorithms yielded

compromised predictions.

In test case 4, two different malicious test vectors were executed during the application

process. In this case, all four algorithms predicted the outcome as compromised. Thus, the

ensemble output is compromised since at least half of the algorithms yielded compromised

predictions.

6.6 Conclusion

One-class classification is primarily valuable for anomaly detection when data points of

abnormal class are expensive to extract. As the behavior of an application process belongs

to this category, we proposed a framework for anomaly detection in a process running on

Xen hypervisor. This host-based approach analyzes various in-memory data structures of

a process to classify its behavior as either normal or malicious. This framework utilizes the

LibVMI library to extract the data and analyzes them in two stages. We pre-process the

data with statistical approaches in the first stage. Then, PCA is performed in the same stage

for dimensionality reduction of the data. This, in turn, reduces the training time of the

algorithms. In the last part of the first stage, four different one-class classifiers, namely

Mahalanobis Distance classifiers, Dendogram-based Agglomerative Clustering, Isolation

Forest, and One-Class SVM, are trained on the normal class of data. These algorithms learn

the normal behavior of a process during their training period. A unique static threshold is

109

assigned to each algorithm. Each algorithm uses its threshold value to classify the behavior

of the process.

The second stage of the framework applies the ensemble approach to the output scores

from all the algorithms. A process is considered compromised if at least half of the

algorithms determine its behavior as compromised. We presented the results of this

ensemble approach for four different test cases and two different test vectors.

6.7 Future Work

In our current work, an anomaly is detected by the trained algorithms based on a static

threshold relative to baseline results under the assumption that the workflow of the process

remains unchanged. However, this static threshold may not be suitable for a baseline

dataset of processes in a different environment. This can be overcome by employing a

dynamic thresholding approach where the threshold is determined during the training phase

for a given application. We plan to extend the current work by computing the dynamic

threshold for anomaly detection irrespective of the underlying application environment.

The accuracy for the same baseline data varies across different algorithms since multiple

algorithms provide a wide range of insights. Thus, it is essential to incorporate the results

from multiple algorithms with an ensemble approach for anomaly detection. In this study,

we presented four different one-class classifiers. We intend to add new algorithms such as

local outlier factor, self-organizing Maps, and restricted Boltzmann machines for improved

performance.

110

Each trained algorithm has been allocated the same weight with the assumption that all the

models are equally skillful for the ensemble result. Majority voting combines the outcome

from all the trained algorithms to generate the final anomaly detection score. To enrich this

approach, we will modify the majority voting by applying probabilistic-based weights to

each algorithm, wherein the algorithm that has performed the best during the training will

be allocated a higher weight value.

111

CHAPTER 7

ADA-THRES: AN ADAPTIVE THRESHOLDING METHOD TO

MITIGATE THE FALSE ALARMS

In a wide variety of domains, the advanced intrusion detection system consists of a

learning-based detection method and a signature-based analysis approach. Such a system

scans the incoming data, performs the analytics on it by using an anomaly detection

algorithm, and finally transfers the report of suspicious activity for further analysis if found.

The major problem of such a current system is the high false-positive rate (FPR),

specifically in the case of a highly complex system with a large dataset. Such high FPRs,

which are non-crucial, can easily overwhelm the user of the system and can further increase

the likelihood of ignoring such indications. Therefore, mitigation approaches aim to

develop a technique to reduce high FPR without losing any potential harmful threats.

Thus, in this chapter, we develop an adaptive thresholding algorithm that can mitigate the

issue of high FPR. The proposed algorithm applies three scoring mechanisms. They are

Anomaly Pruning, Sequence Scoring, and Adaptive Thresholding. The model is trained on

sequential data. Anomaly Pruning gives a score to an individual data point. It either rejects

or accepts the data points to be considered for Sequence Scoring. This Sequence Scoring

will give a score to an individual sequence. Finally, an Adaptive Thresholding is applied to

the cumulative score of all the sequences to detect the anomalous nature of the analyzed

data. Multiple experiments have been conducted using various optimizers to access our

proposed approach. Using the proposed approach, we train a deep learning-based LSTM

algorithm widely adopted for sequential data. Furthermore, we validate it with three

112

different datasets of various sizes. From the experimental results, we infer that the proposed

approach allows the model to train faster and reach the minimum loss at a faster rate.

7.1 Introduction

Intrusion detection and Threat Detection are the cybersecurity systems that constantly take

the huge volume of the multivariate dataset and perform anomaly detection and protect the

systems. One of the prerequisites of any anomaly-based detection system is to learn the

normal routine behavior of the process efficiently. Such a process can be heterogeneous

and complex in nature. The trained model can thus better perform the estimation of the

expected observations and can thus help in detecting abnormal behavior. Recent deep

learning methods have shown substantial capabilities in predicting future observations.

An anomaly detection system has to accomplish numerous challenges: Methodology for

scoring the observations and subsequently ranking them, a proper threshold to check the

compromised state of the system, outlier removals, reducing the false positive rate, and

finally, the explainability of the anomaly detection.

With the high uncertainties such as base rate [99], in detecting an anomaly, it is not easy to

set the optimal value of threshold to identify particular observations as normal or

anomalous. This remains true not only for single detectors but also for the multivariate and

high dimensional streams of datasets. Even if the threshold is misadjusted slightly, it can

generate a high number of false alarms or can miss the true anomalies [98, 101].

There is a major difference between anomalies and malicious events. Oftentimes, having

high accuracy in anomaly detection does not guarantee the overall high detection of

113

malicious events. The application of anomaly detection to discriminate the normal from

abnormal can produce high false alarms since malicious observations are rare in nature.

7.2 Related Work

Anomaly Detection based on the prediction methods is solely focused on the prediction

and not on the detection. Nonetheless, adjusting the threshold value to a specific range is

vital. There is mainly two way to perform this calculation. They are parametric and non-

parametric.

The data and its distribution must be known prior to the parametric-based techniques. Thus,

the fixed thresholding approach is a big limitation in this approach. To overcome this issue,

Clark et al. [100] introduce an approach that tries various threshold values and uses the one

with the lowest false positive rate. Sequential data are basically a stream of data, and thus

its data distribution can vary due to the concept drift problem. Therefore it is difficult to

recognize anomalies from the normal change in the data distribution. Furthermore, they

defined zero hypotheses to indicate that there is no concept drift problem in the current

observation window, and thus the threshold is not required. Next, if the delta variation in

the mean value of the anomaly score is detected by Z-test, then the threshold is updated. P-

value scoring is employed in [29], which rejects the null hypothesis. A Gaussian

distribution approach is utilized in [27]. The authors use the maximum likelihood estimation

to generate the values of μ and σ using the vector generated by error calculation. Next, they

employed a function to fit the error vectors into a normal distribution. A scoring method

based on the double window is introduced by Ahmad et al. [28]. To detect the change in

the short-term window and long-term window distribution, they maintain a history of the

114

current short window and previous long window. Thus, using this approach, they solve the

problem of concept drift in the data. There are some limitations in the parametric

approaches. First, the underlying assumed distribution of data may not always be followed

by anomalies. Due to this violation in statistical assumption, oftentimes, the residuals seem

normal. Next, it is difficult to depend continuously on the hypothesis test since it assumes

the absence of alternative hypotheses. Finally, the current world data is highly messy,

multivariate, and high-dimensional in nature. These complex features are highly ignored

by the parametric approaches and thus produce a high number of false alarms.

The assumption on the data distribution is not required in the non-parametric-based

approaches. They usually take less computational power and are more popular than

parametric-based methods. Such methods use the distance measure between the model and

the test data and subsequently apply the threshold value on the calculated distance to detect

whether an observation is an anomaly or not. Wang et al. assign an anomaly score to the

test data by calculating its distance from the other groups. These methods are based on the

machine learning algorithms, specifically, the supervised classification type, which brings

an overhead for a real-time application. Furthermore, the computation of a threshold is

always an issue in such a distance-based approach. Evaluation of residuals based on the

unsupervised thresholding approach is presented by Hundman et al. [31]. However, their

approach gives scoring to the whole sequence for anomaly detection.

7.3 Contribution of the work

We developed an adaptive thresholding algorithm that can tune adaptively based on the

dataset and reduce the high false alarm rates. The proposed algorithm works in three steps:

115

Anomaly Pruning, Sequence Scoring, and Adaptive Thresholding. Anomaly Pruning

rejects the irrelevant anomalies which increase the false alarms. Sequence Scoring provides

the anomaly score for each window of the sequence. Finally, the cumulative score of all

the sequence windows is calculated and compared with the Adaptive Thresholding to

determine whether a test sequence is anomalous or not. We also developed a brute force

algorithm to compare the efficacy of the developed algorithm. Three different datasets are

being used to evaluate the proposed algorithm. Each dataset selected for the evaluation is

of varying sizes.

7.4 Organization of the chapter

In section 7.5, we define and explain the problem formulation with the challenges of

different types of anomaly. The static thresholding approach is described in section 7.6.

The proposed adaptive tuning of the threshold with its subcomponents is explained in depth

in section 7.7, with the discussion of the experimental results in section 7.8. Finally, we

conclude in section 7.9.

7.5 Problem Formulation

User processes go into the kernel mode to interact with the operating system. A particular

part of the code is compiled to execute the program. System calls are being made to execute

various lines of code. Thus, any process's behavior can be studied by examining its

sequence of system calls. These sequences will change if an attacker tries to manipulate

the program. LSTM model is trained to learn such sequential data. It takes a particular

window length of system calls as an input and predicts the next window of the system calls.

In our previous chapters, we have proposed a dynamic approach for optimizing the training

116

time of the algorithm. Thus, let us assume the LSTM model is trained and is now ready for

detection. The model is trained with the normal sequences of the system, so it only knows

the normal behavior of the processes. Anything that deviates from normal behavior is

considered an anomaly. The problem is as follows. Given an unknown test sequence of a

system call, check whether it is normal or anomalous. The process is executed in the

following manner. Upon receiving the test sequence of the system calls, it is first

transformed into a unique integer number. Next, this integer sequence is divided into

batches of input and output of fixed length. Each input batch is given to the LSTM model

to predict the output sequence. The predicted output sequence is compared with the actual

output sequence, and even if one single system call is mispredicted, the whole input

sequence is currently considered anomalous. This way, the count of the total anomalous

sequence is computed, and a static threshold is applied to generate the final result.

The major limitation is the calculation of the threshold value. The static value needs to be

tuned every time a new model is trained with new process data. Furthermore, this static

approach often fails with the different varieties of malware. Since each malware behaves

differently, the different static threshold has to be set for different malware. This is not

feasible since there is a high surge in the complex malware generated every day. Also, such

a static threshold creates too many false alarms and may sometimes miss the actual

anomaly. Thus to avoid this problem, a dynamic threshold needs to be set.

117

7.5.1 Challenges

Anomaly Detection is the methodology of detecting the patterns or structure in the data

that deviates from the normal pattern or behavior. Such patterns are often called an

anomaly.

A straightforward method of detecting an anomaly is to define an area of the normal

behavior of the process with the static threshold and deduce any data points or observations

outside the range of the normal area as anomalous. This simple approach is not practical

due to the following reasons:

1. Describing a normal area that can include all the possible behavior of the normal

operation of the process is not easy. Furthermore, the precise boundary line that can

discriminate between normal and malicious behavior is inaccurate. Therefore, some of the

malicious data points near the decision boundary can actually be normal data points.

2. The adversaries always try to make the malicious data points in such a way that it looks

like the normal point of observation. Therefore, the main goal of defining normal behavior

is tough.

3. Today's real-world applications are highly complex in nature with multivariate features.

Furthermore, they keep evolving with the increasing trends. Thus, the current

representation of the normal behavior may not be an accurate and precise representation of

the future version of the applications.

4. For numerous domains with a wide variety of applications, the precise definition of the

anomaly is difficult to develop. For instance, even a nominal deviation from the normal

118

operation in the medical field will be considered an anomaly. In contrast, the same

fluctuation in the domain of the stock market can be viewed as normal. Therefore, a

methodology proposed and created for a particular domain may not be sufficient and easy

to apply to another domain set.

5. There is always a critical issue in the availability of the training, validation, and testing

dataset in the form of the label as being normal or anomalous for the model development

purpose.

6. Many times, some of the observations of the dataset are noisy, which seems to be an

actual anomalous point, and henceforth, such noisy points are challenging to identify and

discard.

7.5.2 Types of Anomaly

In this section, we discuss the different types of anomalies in the sequential data.

Comprehensively, the anomalies can be classified into three distinct categories:

Point Anomalies: A particular data point can be considered an anomaly if it deviates largely

compared to the remaining data observations of the dataset. It is one of the simplest forms

of detection of an anomaly.

Contextual Anomalies: If a particular data instance is anomalous with respect to a unique

context; then, it is called contextual anomalies. Behavioral and Contextual are two types

of features considered to detect such anomalies. Behavioral features represent the non-

contextual form of the observations of the dataset. The anomalous behavior is computed

by selecting the different values of the behavioral features pertaining to the distinct context.

119

A particular observation might be considered an anomaly in a specific context but may be

considered a normal point in some other context. On the other hand, the contextual features

denote some form of context or neighbor of detecting an anomaly. This is one of the

important characteristics in differentiating the behavioral features from the contextual

features.

Collective Anomalies: The set of observations that are similar to each other but different

from the rest of the data are considered collective anomalies. The individual observations

may not be malicious on their own, but their presence in the collective anomalies makes it

an anomaly.

In the next section, we discuss the implementation of the static threshold and its

applicability for anomaly detection.

7.6 Static Threshold Approach

Figure 7.1 depicts the overall framework for detecting the test sequence as anomalous or

normal. The step-by-step procedure is described in Algorithm 1. It takes as an input the

system call sequences of base data as well as the test data. Next, upon the transformation

of the sequence to its corresponding numeric format, the sequence of both the dataset are

converted into input and output sequences. The input and output sequence of the base data

is used for training the model. The loss of the trained model is used to generate the threshold

value. Now, we fed the input sequence of the test data to the trained model. The model

generates the predicted output sequence, compared with the test output sequence, and the

error is calculated. If the error is less than the static threshold, then the test sequence is

considered normal else, anomalous.

120

Algorithm 1 Static Threshold Algorithm
Input: Base and Test System Call Sequences
Output: Probability of the anomalous

 1: 𝐵𝑎𝑠𝑒𝐼𝑛𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ = 𝐵𝑎𝑠𝑒𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒

 2: 𝐵𝑎𝑠𝑒𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ = 𝐵𝑎𝑠𝑒𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒

 3: LSTM = Train the model with the 𝐵𝑎𝑠𝑒𝐼𝑛𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ and 𝐵𝑎𝑠𝑒𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ

 4: 𝑆𝑡𝑎𝑡𝑖𝑐𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = Loss of the LSTM Model
 5: 𝑇𝑒𝑠𝑡𝐼𝑛𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ = 𝑇𝑒𝑠𝑡𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒

 6: 𝑇𝑒𝑠𝑡𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ = 𝑇𝑒𝑠𝑡𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒

 7: 𝐴𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠𝐶𝑜𝑢𝑛𝑡 = 0
 8: for i = 0 to Totalbatches do

 9: 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ = 𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ Predicted by the LSTM model

10: Error = |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ| - |𝑇𝑒𝑠𝑡𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ|

11: if Error! = 0 then
12: 𝐴𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠𝐶𝑜𝑢𝑛𝑡 += 1
13: end if
14: end for

15: if 𝐴𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠𝐶𝑜𝑢𝑛𝑡 > 𝑆𝑡𝑎𝑡𝑖𝑐𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
16: Test SystemCallSequence is Anomalous
17: else
18: Test SystemCallSequence is Normal
19: end if

Figure 7.1: Static Threshold Approach

The major limitation of this approach is non-adaptiveness, where a new static threshold has

to be set for a new process each time. Additionally, it induces high false alarm rates since

121

it gives a binary score to each sequence and generates the total cumulative score of all the

test data sequences.

To overcome this problem, we propose an adaptive thresholding approach that not only

can just be applied to any process but reduces the false alarms rate by pruning the irrelevant

error points.

7.7 Proposed Adaptive Thresholding Algorithm

In this section, we discuss the implementation of the proposed algorithm that can

adaptively tune the threshold value, which helps in reducing the overall false alarm rates.

Algorithm 1 Adaptive Thresholding Algorithm
Input: Normal System Call Sequences
Output: E, P, DT
 1: 𝐼𝑂𝐵𝑎𝑡𝑐ℎ = Input and Output Batches of Sequences
 2: for sequence in 𝐼𝑂𝐵𝑎𝑡𝑐ℎ do
 3: 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ = Output from LSTM Model

 4: 𝑅𝑎𝑤𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒= |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ| - |𝐼𝑂𝐵𝑎𝑡𝑐ℎ|

 5: 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑅𝑎𝑤𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
|�̅�−𝑋|

𝑋

 6: 𝐸𝑟𝑟𝑜𝑟𝑆𝑢𝑚 = ∑ 𝐸𝑟𝑟𝑜𝑟𝑠
 7: 𝐸𝑟𝑟𝑜𝑟𝐶𝑜𝑢𝑛𝑡 = ∑ 𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑁𝑜𝑛𝑍𝑒𝑟𝑜 𝐸𝑟𝑟𝑜𝑟𝑠
 8: end for

 9: 𝐸𝑝𝑜𝑐ℎ 𝑁𝑜𝑛 𝑍𝑒𝑟𝑜 𝐴𝑣𝑔 𝑃𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟 =
𝐸𝑝𝑜𝑐ℎ 𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟 𝑉𝑎𝑙𝑢𝑒𝑠

𝐸𝑝𝑜𝑐ℎ 𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑃𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟𝑠

10: 𝐸𝑝𝑜𝑐ℎ 𝑃𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟 =
𝐸𝑝𝑜𝑐ℎ 𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑃𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟𝑠

∑ 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠

11: Continue step from 2 to 10 for multiple epochs until the model converges

The proposed adaptive thresholding algorithm is depicted in the Figure 7.2. This algorithm

computes the threshold, which is adaptive to any process. It has three main subcomponents:

122

We calculate the Anomaly Pruning, Sequence Scoring, and Adaptive Threshold Value

during the training phase. This section is divided into Training and Testing Phase. We

apply these scores to evaluate the test data during the testing phase.

7.7.1 Training Phase

 The three components mentioned above are calculated during the training of the LSTM

algorithm.

Anomaly Pruning: Score used to discard the irrelevant anomalies.

Sequence Scoring: A score is given to each sequence of the batch.

Adaptive Threshold: Score used at an Epoch Level for the whole dataset.

Figure 7.2: Adaptive Threshold Training Phase

It takes a sequence of system calls of the normal processes as input. The sequence is

transformed into the numeric format. Next, it is divided into Input and Output batches of

sequences. The LSTM model is trained with these Input and Output batches. Each time, a

123

single Input sequence is fed to the model to predict the corresponding output sequence. The

predicted sequence is compared one on one with the actual output sequence. Furthermore,

the normalized score is calculated as shown in equation 7.1 to normalize the error on the

particular sequence.

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑅𝑎𝑤𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
|�̅� − 𝑋|

𝑋

(7.1)

𝑋 is the actual output value, and �̅� is the predicted output value.

Using this, we compute two different scores.

1. Sum of the Errors

2. The total count of the non-zero errors

The above two scores are calculated for each batch of the data and finally at each epoch

level. Next, we develop the custom loss e from the above score, which the LSTM model

will use to calculate the gradient.

𝐸𝑝𝑜𝑐ℎ 𝑁𝑜𝑛 − 𝑍𝑒𝑟𝑜 𝐴𝑣𝑔 𝑃𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟 (e) =
𝐸𝑝𝑜𝑐ℎ 𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟 𝑉𝑎𝑙𝑢𝑒𝑠

𝐸𝑝𝑜𝑐ℎ 𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑃𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟𝑠
 (7.2)

𝐸𝑝𝑜𝑐ℎ 𝑃𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟 (p) =
𝐸𝑝𝑜𝑐ℎ 𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑃𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟𝑠

∑ 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠

(7.3)

We use the K-Fold Cross Validation technique to get the optimal value of e and p. For

experimental purposes, we set the value of K as 10. Each time nine parts of the data are used

for training, and the tenth part of the data is used for validation. The score k to the sequence

is given with the below equation:

124

𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑖𝑛𝑔 (𝑘) = 𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 ∗ 𝑒 ∗ 𝑝 (7.4)

Next, we calculate the total error made by the model. If that error is less than 𝛼 ∗ 𝑘, then

the sequence is considered normal else, the model considers it anomalous, which in this

case is viewed as False Positives.

𝑇𝑜𝑡𝑎𝑙𝐸𝑟𝑟𝑜𝑟𝑠 = ∑ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠

(7.5)

We calculate the False Positives of all the sequences of the validation dataset and compute

the total error made by the model on the current validation dataset. This step is repeated

for each set of data. With k being 10, we have ten different errors computed. Thus, using

this value, we finally compute the adaptive threshold as below:

𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 𝑁𝑜𝑟𝑚𝑎𝑙 𝐸𝑟𝑟𝑜𝑟 =
𝑀𝐴𝑋 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

∑ 𝑉𝑎𝑙𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒

(7.6)

This Permissible Normal Error is the adaptive threshold value.

7.7.2 Testing Phase

During the testing phase, the unknown test data, which contains the sequence of system

calls, is transformed and divided into the input and output sequence of the batches. Anomaly

Pruning Score (e), Sequence Scoring (SS), and Final Anomaly Score are used to obtain the

final resultant value, as shown in Figure 7.3. Initially, the trained LSTM model receives the

input sequence, predicting the output sequence, which is compared with the test output

sequence. Next, the normalized raw error is calculated, and if any individual error in that

normalized score is less than the Anomaly Pruning Score, it is considered an anomaly.

125

Next, we count the total number of errors 𝑇𝐸 made in a particular sequence and is discarded

based on the equation below.

𝑇𝐸 > 𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 ∗ 𝑒

(7.7)

We use the equation below to get the total number of Anomalous Sequences.

T =
∑ 𝑇𝑆

∑ 𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠

(7.8)

Figure 7.3: Adaptive Threshold Testing Phase

Finally, if 𝑇 > 𝛽 ∗ 𝐷𝑇, then the test data is considered anomalous else, it is observed as

normal.

Here, 𝛼 𝑎𝑛𝑑 𝛽 are the hyper-parameters of the proposed algorithm.

126

7.8 Experimental Results

This section discusses the results obtained by applying the proposed algorithm to three

sequential datasets: JMPS, ADFA-LD, and UNM.

Table 7.1: FPR for JMPS Dataset

Algorithm False Positive Rate

Static Approach 12%

Adaptive Thresholding Algorithm 3.1%

For the JMPS dataset, we experimented with both the static approach and the proposed

adaptive thresholding approach. For the static approach, we had to manually tune the

threshold to achieve the lowest FPR of 12% as shown in Table 7.1. However, with the

Adaptive thresholding algorithm, the FPR is drastically reduced to 3.1%. The main

improvement is pruning the individual anomaly, scoring the input/output sequence, and

comparing it with the permissible error.

Table 7.2: FPR for ADFA-LD Dataset

Algorithm False Positive Rate

Decision-Based Engine [102] 23%

OCSVM [103] 20%

Semantic Approach [104] 4.2%

EWR [105] 2.4%

Adaptive Thresholding Algorithm 0.7%

Table 7.2 shows the comparison results of the Adaptive Thresholding algorithm with the

other detection methods for ADFA-LD dataset. In [103], the frequencies-based approach is

used to classify the system call sequences of the test data. In their approach, they perform

various empirical tests to set the window size value. This results in unstable comparative

127

performance since the sequence length varies with different datasets. In [102], the authors

extract the dataset's most uncommon and common subsequence with their min and max

number of system calls. However, sequential information is not utilized in their approach.

The proposed adaptive thresholding approach gives the least false positive rate of 0.7%.

Table 7.3: FPR for UNM Dataset

Algorithm False Positive Rate

Dynamic Methodology [106] 19%

Probabilistic Approach [107] 14%

EWR [105] 10%

VMGaurd[108] 6.2%

Adaptive Thresholding Algorithm 1.2%

Table 7.3 shows the comparison results of the Adaptive Thresholding algorithm with the

other detection methods for UNM dataset. In [106], the authors train various machine

learning-based algorithms and achieve the lowest FPR of 19%. The major drawback of this

approach is that they converted the sequences into vectors of frequencies during the

preprocessing steps. Thus the contextual semantics of the temporal part is not taken into

consideration. The statistical based approach, namely maximum likelihood estimation, is

utilized by Srinivasan et al. [107]. They use the n-gram approach to convert the sequence

of system calls into meaningful features. The main limitation of this approach is the value

of n. With the increase in the value of n, their proposed model tends to give a higher false-

positive rate. VMGaurd method was developed by Mishra et al. [108]. They employed the

Term Frequency-Inverse Document Frequency method to extract the dataset's features.

Next, a machine learning-based random forest classifier is trained on those features. The

major limitation of their approach is that they required the labeled dataset for the normal

and attack test vectors. Our proposed approach requires only the normal dataset for training

128

the model. Based on the comparative analysis, our proposed adaptive thresholding approach

provides the least FPR of 1.2%.

7.9 Conclusion

With the increase in complex and multivalued malware attacks, detection has become

challenging. Also, the real-world dataset is messy and highly imbalanced, where most of

the dataset belongs to the normal class. Thus the classification-based approach is not

appropriate in such a scenario. Therefore, an Anomaly Detection System is developed,

which trains the model with the only normal data class. The model learns the behavior of

the data and decides the decision boundary with some threshold. Anything that deviates

from the decision boundary is considered anomalous. The major limitation of the current

approach is the manual setting of the threshold. It has the following two issues: high false-

positive rate and threshold need to be changed for every new process data. To solve this

problem, we propose an adaptive threshold algorithm. Based on Anomaly pruning,

sequence scoring, and final adaptive thresholding components, we trained and validated the

model that generates a low false-positive rate. We evaluated our proposed approach on

JMPS, ADFA-LD, and UNM datasets. ADFA-LD and UNM are open-source benchmark

datasets. We can conclude that our proposed approach results in a low false-positive rate for

all three datasets based on the experimental results.

129

CHAPTER 8

EA-NET: A HYBRID AND ENSEMBLE MULTI-LEVEL APPROACH FOR

ROBUST ANOMALY DETECTION

In the current world, the applications of anomaly detection range from fraud detection to

diagnosis in the medical area. Most of the current methodologies are applicable only when

a particular dataset pertains to certain assumptions and a distinct domain. Such assumptions

require prior knowledge of the dataset. The training development cycle time to find the

best single model is time-consuming and challenging. Unsupervised anomaly detection

methods do not use the target label for training. However, they result in high false positive

rates.

In this chapter, we address the problem of the ensemble anomaly detection approach that

generalizes well across multiple domains. We design a multi-level hybrid approach. At the

First Level, we train several weak classifiers (weak one class classifiers). Next, we utilize

deep learning-based AutoEncoder to reduce the dimension of the dataset. These are the two

sets of hybrid features. Next, different one-class classifiers have their strength and

limitations. Thus, we propose an adaptive weightage approach that gives the weight to each

classifier. Next, this input is passed to the second level. At this level, we have a deep neural

network that learns the patterns of the dataset and generates an adaptive dynamic threshold

to discriminate the input feature as an anomaly or benign. The major benefit of this

approach is the reduced training time and low false-positive rate. The training time is

reduced due to the reduction of the input feature dimensions at the first level.

130

8.1 Introduction

Anomaly Detection refers to the methodology of finding the data observations that deviate

from the expected normal patterns or behavior of data. Developing an efficient anomaly

detection solution is always a challenging task, even with the recent surge in the

development of learning-based algorithms. Most of the prior work conveys that the usage

of supervised-based machine learning algorithms can only recognize the anomalies

available in the dataset used for training the model. Nonetheless, any observation that

diverges from the expected behavior has been termed an irregularity. Therefore, such

irregularities may not be similar to those already available in the dataset [109]. Secondly,

different detection-based techniques rely on diverse and distinct rules in the dataset. Often

such algorithms are specific to a particular domain application. Thus, detecting anomalies

from across the multiple domains and in a wide variety of scenarios by a single model is

challenging [110]. Simply training multiple one-class classifiers iteratively with different

hyper-parameter optimization techniques is a time-consuming task. Furthermore, the

anomaly detection approach based on traditional methods often requires features that are

processed and engineered in a particular manner. This requires a high amount of

computational power and memory. Deep learning-based anomaly detection algorithms

[111] have computed higher efficiency to address the abovementioned challenges.

Nonetheless, their approach requires the data to be in a particular distribution, and also, the

developed methodology lacks the generalizability across multiple domains. Thus, in this

work, we propose a hybrid multi-level ensemble anomaly detection that learns to combine

the predictions from multiple one-class classifiers and trains a deep neural network that

gives the final probability of the observation as being normal or anomalous.

131

8.2 Literature Review

Based on the availability of the data, the anomaly detection approach is divided into three

main categories: supervised, semi-supervised and unsupervised. The supervised-based

approach trains the model on binary/multiclass data. It is not used widely for anomaly

detection due to the lack of class imbalance problem and lack of training data [84]. The

unsupervised approach detects abnormalities based solely on the normal class of data. The

conventional approach includes support vector machines [112] and data descriptors [113].

Such algorithms assume data to be normal. The major limitations of traditional approaches

are: that the outcome is highly sensitive to the complex hyper-parameters. The trained

model cannot be extended to the multiclass dataset. The clustering approach is utilized in

[114, 115]. The limitations of these approaches are high computational time, and the results

are biased towards the static threshold value. Deep learning-based AutoEncoder is trained,

which generates the reconstruction error. This error is used to compute the anomaly score

[116]. Compared to traditional approaches, anomaly detection algorithms based on deep

learning have shown high results in extracting the complex feature representations of the

data. Scalability is one of the advantages of such an approach. Recently, a hybrid approach

is being implemented where authors in [117] use autoencoder to learn the latent space of

high dimensional complex dataset. This learned latent space is given as input to the one-

class classifiers for anomaly detection. It combines the feature extraction capability of the

neural network with the discriminative capabilities of the one-class classifiers. The

limitation of this approach is to rely solely on the AutoEncoder for feature extraction. To

overcome this problem, we enhance the approach that not only uses the AE for feature

132

extraction but also several weak one-class classifiers. This results in low false-positive

rates.

8.3 Contribution of the work

We develop a hybrid and multi-level ensemble anomaly detection framework. At the first

level, we reduce the feature dimensionality of the dataset. These features are hybrid since

we train multiple one-class classifiers and an AutoEncoder model. Such features have high

information gain and low entropy value. Different one-class classifiers have different

characteristics. Thus, we apply weightage to each of these weak classifiers. Next, we use

these features at the second level to train a deep neural network that outputs the anomaly

score. Here, we propose an adaptive threshold approach to decide the boundary. The

proposed framework has a low false-positive rate and trains the model at reduce

computational time.

8.4 Organization of the chapter

The rest of the chapter is structured in the following ways. In section 8.5, we explain

various one-class classifiers with dimensionality reduction techniques. Information theory

is explained in section 8.6. Open Source benchmark datasets used for evaluation are

described in section 8.7. The proposed hybrid multi-level ensemble anomaly detection

framework and algorithm are briefly explained in section 8.8. Next, we discuss the

experimental results in section 8.9 with the conclusion in section 8.10.

133

8.5 Learning Based Algorithms

8.5.1 One Class Classifiers

One class classification algorithms uses the only normal class of data. Thus, it learns the

normal behavior of the application, and anything that deviates will be considered an

anomaly. In this section, we will discuss one class classifiers such as Elliptical Envelop

and Local Outlier Factor. We already explained Mahalanobis Distance, One-Class

Support Vector Machine, and Isolation Forest in chapter 6.

Elliptical Envelope Method

This method extends the statistical 𝜇 ± 𝜎 approach for high dimensional feature vector. It

calculates the covariance matrix of the multi-dimensional gaussian distributed dataset. This

is achieved by transforming the dataset into an elliptical format. Thus, those observational

points far away from the transformed elliptical format are considered anomalous.

Here, the distance between a data point and its distribution of the model is computed using

the following equation:

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝜇,𝜁 (𝑥𝑖)2 = (𝑥𝑖 − 𝜇)𝑇𝜁−1(𝑥𝑖 − 𝜇) (8.1)

Where 𝜇 𝑎𝑛𝑑 𝜁 are the specified attribute and the covariance of the Gaussian data.

To compute the covariance matrix of a high dimensional dataset, the minimum covariance

determinant estimator is employed, up to
(𝑝−𝑘−1)

2
, where 𝑝 𝑎𝑛𝑑 𝑘 are the integer numbers

representing the total number of samples and the total number of variables, respectively.

MCD algorithm is used to compute the standard estimates.

134

Local Outlier Factor

This algorithm calculates the deviation of a particular data point’s local density to its

neighboring data points. An observation is considered an anomaly if its density is lower

than that of neighbors.

It computes the density relative to individual data points.

A-Distance: The total distance between a point and it’s A neighbor.

Reachability Distance: It is calculated as a maximum of the A-Distance of the neighboring

points using the below equation.

𝐿𝑅𝐷𝐴(𝑚) =
𝑁𝐴(𝑚)

∑ 𝑑𝐴(𝑚, 𝑜)𝑜𝜖𝑁𝐴(𝑚)

(8.2)

Now, the following steps are used to compute the LOF score.

1. For each data observation, its A-nearest neighbors are computed.

2. Local Reachability Density (LRD) is computed by calculating the local density of a data

point.

3. Finally, the LOF score is generated by comparing LRD with the LRD of A-neighbors.

𝐿𝑂𝐹(𝑚) =
∑

𝐿𝑅𝐷𝑘(𝑜)
𝐿𝑅𝐷𝐴(𝑚)𝑜𝜖𝑁𝐴(𝑚)

|𝑁𝐴(𝑚)|

(8.3)

This calculation makes LOF an efficient anomaly detection algorithm for the high-

dimensional dataset with a substantial imbalance of target labels.

135

8.5.2 Dimensionality Reduction

Current world datasets are very high-dimensional in nature. The total training time of the

algorithm increases substantially with the increase in the feature set of the dataset. Thus,

this section discusses the two most popular dimensionality reduction techniques.

Principal Component Analysis (PCA)

PCA decreases the total number of features while preserving vital information.

The following steps are used by PCA

Standardization: The continuous variables are transformed into a standardized format so

that every feature is on the same scale and thus can contribute evenly during analysis.

Covariance Matrix Calculation: The main goal of this step is to determine how different

features of the dataset vary from the mean to check if any relationship exists between them.

Eigen Values and Eigen Vector Calculation: In this step, the covariance matrix from step

2 calculates the eigenvalue and eigenvector to generate the final principal components.

These components explain the maximum amount of the variance of the dataset but with

less number of features. The first component will have the highest amount of information,

and the second component will have the second-highest variance of the information, and

so on. The interpretability of these components is less critical since they do not have any

semantic meaning associated with them.

136

AutoEncoder

AutoEncoder is a deep learning-based unsupervised algorithm that learns to compress the

extensive feature data into a compressed space. Next, it tries to reconstruct the original data

from the compressed space. The error between the original and reconstructed data is termed

a reconstruction error. This algorithm has the following four steps:

Encoder: The model learns to reduce the representation of the dataset.

Latent Space: A layer that stores the compressed representation.

Decoder: The model learns to reconstruct the data from the compressed space.

Reconstruction Error: It is the error between the original and reconstructed input. The less

the error, the better the model learned the data.

To minimize the reconstruction error, the backpropagation algorithm is employed.

Following are the hyper-parameters of this model that needs to be tuned.

Latent Size: Total number of nodes used to compress the data. The smaller the size, the

compact the latent space.

The number of Hidden Layers: Autoencoder can be deep and thus have multiple hidden

layers.

Number of Nodes: The total number of nodes per hidden layer shrinks from the input layer

to the latent space, and it grows back to the original value at the output layer.

137

8.6 Information Theory

Information is nothing but anything that can enhance our knowledge in understanding the

system or process. It is the reverse version of uncertainty. The more confident we are in a

particular area, the better our understanding is and vice-versa. This is the fundamental

principle of information theory. We are more uncertain when we have less knowledge

about it. Therefore, with proper information, we reduce the uncertainty.

The entropy is defined as function 𝐸 of probabilities(𝑅1, 𝑅2, , 𝑅𝑛). To quantify the

uncertainty, it has to satisfy three conditions:

 E is continuous. It defines that if any Ri fluctuates, the uncertainty will not change

much.

 The uncertainty will increase with the increase in n if all the probabilities have equal

value.

 Finally, the decomposition of the probabilities as a sum of weighted uncertainties

will always result in the same.

The only function that satisfies all three conditions is the Shannon Entropy.

E(𝑅1, 𝑅2, , 𝑅𝑛) = −𝐽 ∑ 𝑅𝑖

𝑛

𝑖=1

log (𝑅𝑖)
(8.4)

Where J is a constant number.

The amount of information gained can be calculated based on the entropy as follows. Let

us assume that W is the random variable that models our current representation of

138

knowledge before we learn a particular information d. Our updated knowledge will be thus

(𝐾 | 𝑑). Thus the information gain is:

𝐼(𝑑) = 𝐸(𝑊) − 𝐸(𝐾 | 𝑑)

(8.5)

8.7 Datasets

The following three open-source benchmark datasets are used for experiment purposes.

Each dataset is unique and has a varying size of feature set.

CIC-IDS2017 Dataset

It is one of the intrusion detection datasets released in 2017. There are a total of 2.8 million

records with 79 features. This dataset is generated by Canadian Institute for CyberSecurity.

It is generated over a period of five days. This dataset contains information on real-world

network traffic, which include the normal traces and the malicious traces in the PCAP

format.

UNSW-NB15 Dataset

This dataset is developed using the IXIA PerfectStorm tool. It was created in the Australian

Center for Cyber Security(ACCS) lab. It has a total of two million records with 44 features.

The dataset is a hybrid that captures the real-world scenario of normal activities. On the

other hand, it captures the synthetic attack behavior of the network traffic. There are nine

different types of attacks recorded in this dataset.

139

NSL-KDD Dataset

This dataset is an improved version of the KDD Cup 99 dataset. Each data observation is

labeled as a normal or malicious class of network data. There are a total of five classes of

data. They are Probing, Remote to User, User to Root, Denial of Service, and Normal.

There are 41 features (discrete and continuous) with 125K training data and 22K testing

data.

8.8 Proposed Ensemble Anomaly Detection Algorithm

In this section, we explain the proposed Ensemble Anomaly Detection Algorithm. The

pictorial view is depicted in Figure 8.1. It comprises two levels.

1. Hybrid Feature Extraction

2. Anomaly Detector

Figure 8.1: Ensemble Anomaly Framework

140

8.8.1 Hybrid Feature Extraction

In this component, we train multiple one-class classifiers: OCSVM, Isolation Forest,

Mahalanobis Classifier, Local Outlier Factor, and Elliptical Envelope. Each one class

classifier has its unique characteristics. Thus, we apply an adaptive weightage to each of

these algorithms. The workflow for calculating the weightage is described in Figure 8.2.

We apply the K-Fold cross-validation technique where the value of K is set to 10. Each

time, we calculate the total number of False Positives produced by the algorithm, and the

cumulative error is generated.

𝑇𝑜𝑡𝑎𝑙𝐹𝑃 =
𝐹𝑃𝑖 + 𝐹𝑃𝑖+1 + … + 𝐹𝑃𝑘

𝑘 ∗ ∑ 𝑉𝑎𝑙 𝐷𝑎𝑡𝑎

(8.6)

Now, based on the above equation, we calculate the weight of each of the classifiers as

follows:

𝑊𝑒𝑖𝑔ℎ𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 = 1 − 𝑇𝑜𝑡𝑎𝑙𝐹𝑃

(8.7)

Next, we train deep learning-based AutoEncoder to reduce the dimensionality of the dataset

to a smaller latent space. This algorithm takes as input the feature set and will reduce it to

a lower dimension.

Algorithm 1 Ensemble Anomaly Algorithm
Input: DataSet
Output: Normal or Anomalous Data Points
 1: N = Number of Rows
 2: 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡 = Train multiple One Class Classifiers and Generate Prediction

 3: FP = False Positives on the 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎

 4: 𝑇𝑜𝑡𝑎𝑙𝐹𝑃 =
𝐹𝑃𝑖+𝐹𝑃𝑖+1+ …+𝐹𝑃𝑘

𝑘 ∗ ∑ 𝑉𝑎𝑙 𝐷𝑎𝑡𝑎

 5: 𝑊𝑒𝑖𝑔ℎ𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 = 1 − 𝑇𝑜𝑡𝑎𝑙𝐹𝑃

 6: 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡 * 𝑊𝑒𝑖𝑔ℎ𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟

141

 7: 𝐴𝐸𝑂𝑢𝑡𝑝𝑢𝑡 = Output from trained AutoEncoder

 8: 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 U 𝐴𝐸𝑂𝑢𝑡𝑝𝑢𝑡

 9: DNN = Trained Neural Net on 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠
10: for i in range 0 to N do
11: 𝑂𝑢𝑡𝑝𝑢𝑡𝐷𝑁𝑁 = Prediction using DNN for Datai
12: if 𝑂𝑢𝑡𝑝𝑢𝑡𝐷𝑁𝑁 > 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then
13: Data point is anomalous
14: else
15: Data point is normal
16: end if
17: end for

 Next, it will reconstruct the original feature from the compressed space. The error in

reconstruction is the loss. The backpropagation algorithm is applied to update the weight

and reduce the loss. Thus, these two distinct sets of features are then fed to Anomaly

Detector.

Figure 8.2: Weight Mechanism

We achieve the following three benefits from these hybrid features:

High information gain, Low Entropy, and Reduced Dimensionality

To validate this, we calculate the information gain through Shannon entropy.

142

8.8.2 Anomaly Detector

This is the second level of the proposed framework. It will take as input the hybrid features

generated from Level 1. Next, it will train the deep neural network and output the

probability of observation as normal or anomalous. Here, we use K-Fold Cross Validation

to generate the value for Dynamic Threshold.

8.9 Experimental Results Analysis

This section discusses the results obtained by applying the proposed algorithm to three

intrusion detection datasets: CIC-IDS2017, UNSW-NB15, and NSL-KDD.

Table 8.1 shows the comparison results of the Proposed Ensemble Anomaly Detection

algorithm with the other detection methods for the CIC-IDS2017 dataset.

Table 8.1: Metrics for CIC-IDS2017 Dataset

Technique False Positive Rate

Consolidated J-48 [119] 6.64

LIBSVM [120] 5.13

FURIA [121] 3.16

WiSarD [118] 2.86

DT-Rule [122] 1.14

Proposed Approach 0.56

The authors [119] applied different resampling strategies to train the classification-based

machine learning algorithms. Their approach is based on the class distribution of the training

dataset. FURIA [121], authors proposed a novel fuzzy rule-based method for classification

purposes. The model learns the fuzzy rules instead of traditional rules, which are often based

on conventional unordered sets. LIBSVM [120] applies quadratic minimization to the

traditional SVM algorithm. WiSarD [118] transform the data into patterns of the n-tuple

143

recognizer and further trains the model by passing tuples as input. DT-Rule [122]

framework proposed by Ahmed et al. trains an ensemble of JRip, Forest PA, and REP tree.

Most of the traditional approaches are based on binary classification. Our proposed

ensemble anomaly approach provides the least FPR of 0.56% based on the comparative

analysis.

 Table 8.2 shows the comparison results of the Proposed Ensemble Anomaly Detection

algorithm with the other detection methods for the UNSW-NB15 dataset.

Table 8.2: Metrics for UNSW-NB15 Dataset

Technique False Positive Rate

E-Max [123] 23.79

Two-level Classification [124] 15.64

Stack Ensemble [125] 8.90

GBM [126] 8.60

Proposed Approach 4.37

The performance result of our proposed approach has shown a considerable improvement

compared to the existing works. E-Max [123] uses statistical analysis for ranking the

attributes and then uses features correlation techniques. They finally trained five different

classification algorithms. Two-level classification [124] is employed by Zong et al. They

train the model to detect the majority and minority classes of the dataset. Two-level

Ensemble is proposed in [125], where authors developed a feature selection method and

ensemble of two-level classification. Gradient Boosting Classifier is trained by Tama et al.

[126] with grid search optimization techniques. The major limitation of this approach is the

training time due to the high complexity of optimizing the hyper-parameters. Our proposed

144

ensemble anomaly approach provides the least FPR of 4.37% based on the comparative

analysis.

Table 8.3 shows the comparison results of the Proposed Ensemble Anomaly Detection

algorithm with the other detection methods for the NSL-KDD dataset.

Table 8.3: Metrics for NSL-KDD Dataset

Technique False Positive Rate

SVM [127] 15.0

GAR [128] 12.2

TDTC [129] 5.56

TwoLevelEnsemble [130] 2.52

Proposed Approach 1.09

Pervez et al. [127] trained the Support Vector Machine algorithm, merging different feature

selection techniques. They solve the binary class classification problem. Kanakarajan et al.

[128] utilize a meta-heuristic approach that enables the trained forest-based algorithm to

reach the optimal global value. To increase the ensemble diversity, they applied the annealed

randomness procedure. TDTC [129] uses a linear discriminant and component analysis

approach to reduce the feature set of the data and further train the k-nearest neighbor

algorithm. Two Level Ensemble was proposed in [130], where they train an ensemble of

multiple weak classifiers and further perform the statistical significance test. The major

drawback of these approaches are that the weak classifiers are trained on binary

classification dataset, and thus their approaches fail to detect any new unknown malware

data observation. Our proposed approach trains the model on the normal dataset and applies

the dynamic threshold. Thus, anything that deviates from normal behavior will be

145

considered an anomaly. Our proposed ensemble anomaly approach provides the least FPR

of 1.09% based on the comparative analysis.

8.10 Conclusion

This study explores anomaly detection for various highly imbalanced classes of the dataset.

Binary class and Multiclass are less efficient in detecting the new anomaly since they are

trained on the labeled dataset. Currently, various one-class classifiers have been developed,

which take as input the normal class of the dataset and learn the normal behavior of the

dataset. Anything that deviates from the normal decision boundary is considered an

anomaly. Each one class classifier has its characteristics. Thus, training only one algorithm

is not efficient for the highly complex real-world dataset with high dimensionality.

Therefore, we propose a hybrid two-level anomaly detection framework in this study. At

the first level, we train several one-class classifiers and an AutoEncoder algorithm. Next,

we apply the weight to each one class classifiers algorithm. These reduced feature sets will

be passed to the second level. We also calculate the information gain of the reduced features.

The second level trains a deep neural network that outputs the probability value for the

normal and anomalous points. We evaluated our proposed approach on open-source

benchmark CIC-IDS2017, UNSW-NB15, and NSL-KDD datasets. Our proposed approach

results in a low false-positive rate compared to the previous work for all three datasets based

on the experimental results.

146

CHAPTER 9

CONCLUSION

This dissertation focuses on the specific approach to model and analyze the sequential data

with the high dimensional feature set. Specifically, we proposed a framework and

algorithms for performing anomaly detection.

The first contribution is enhancing the behavior modeling of the system calls for anomaly

detection. We analyzed two types of behavior: Temporal and Non-Temporal behavior. We

trained sequential deep learning-based algorithms for temporal behavior, namely Long

Short Term Memory (LSTM). For training the model, only a normal class of data was

supplied. Next, the non-temporal behavior is analyzed independently by evaluating

frequency and commonality behavior. We applied Cosine Similarity to analyze frequency

behavior and Jaccard Similarity to analyze the commonality behavior. We propose an

extension called Point-Bag of System Calls (P-BoSC), a Natural Language Processing-

based technique to detect the anomaly and output the anomalous window.

The second contribution is providing a hybrid algorithm, Dynamic Batch Size and Learning

Rate (DynaB-LR) that tunes the batch size and learning rate dynamically and

consecutively. It is fast and can be applied to any time series-based dataset. At the same

time, it accounts for the learning algorithm obtaining the optimal value of these hyper-

parameters without the need for the user to manually input the number, unlike most of the

other established algorithms. We achieve three significant benefits: Reduced training time,

Optimized memory usage, and Loss reduction at an early epoch stage.

147

The third contribution is developing an adaptive thresholding algorithm that can mitigate

the issue of high FPR. The proposed algorithm applies three scoring mechanisms. They are

Anomaly Pruning, Sequence Scoring, and Adaptive Thresholding. The model is trained on

sequential data. Anomaly Pruning gives a score to an individual data point. It either rejects

or accepts the data points to be considered for Sequence Scoring. This Sequence Scoring

will give a score to an individual sequence. Finally, an Adaptive Thresholding is applied to

the cumulative score of all the sequences to detect the anomalous nature of the analyzed

data.

The third contribution is designing a multi-level hybrid ensemble anomaly detection

approach. At the First Level, we train several weak classifiers (weak one class classifiers).

Next, we utilize deep learning-based AutoEncoder to reduce the dimension of the dataset.

These are the two sets of hybrid features. Next, different one-class classifiers have their

strength and limitations. Thus, we propose an adaptive weightage approach that gives the

weight to each classifier. Next, this input is passed to the second level. At this level, we

have a deep neural network that learns the patterns of the dataset and generates an adaptive

dynamic threshold to discriminate the input feature as an anomaly or benign. The

significant benefit of this approach is the reduced training time and high anomaly detection

rate.

Additional improvements can be made, including the explainability and interpretability of

the deep learning algorithms and support of online learning in the anomaly detection area.

148

BIBLIOGRAPHY

[1] AV-TEST Security Report. (accessed: May 05th, 2022) https://www.av-

test.org/fileadmin/pdf/security_ report/AV-TEST_Security_Report.pdf.

[2] McGraw, Gary, and Greg Morrisett. "Attacking malicious code: A report to the

infosec research council." IEEE software 17, no. 5 (2000): 33-41.

[3] Gryaznov, Dmitry. "Scanners of the year 2000: Heuristics." In Proceedings of the

5th International Virus Bulletin, vol. 113. 1999.

[4] Arp, Daniel, Michael Spreitzenbarth, Malte Hubner, Hugo Gascon, Konrad Rieck,

and C. E. R. T. Siemens. "Drebin: Effective and explainable detection of android

malware in your pocket." In Ndss, vol. 14, pp. 23-26. 2014.

[5] Kolosnjaji, Bojan, Apostolis Zarras, George Webster, and Claudia Eckert. "Deep

learning for classification of malware system call sequences." In Australasian joint

conference on artificial intelligence, pp. 137-149. Springer, Cham, 2016.

[6] Miller, Brad, Alex Kantchelian, Michael Carl Tschantz, Sadia Afroz, Rekha

Bachwani, Riyaz Faizullabhoy, Ling Huang et al. "Reviewer integration and

performance measurement for malware detection." In International Conference on

Detection of Intrusions and Malware, and Vulnerability Assessment, pp. 122-141.

Springer, Cham, 2016.

[7] Nissim, Nir, Aviad Cohen, Robert Moskovitch, Assaf Shabtai, Mattan Edry, Oren

Bar-Ad, and Yuval Elovici. "Alpd: Active learning framework for enhancing the

detection of malicious pdf files." In 2014 IEEE Joint Intelligence and Security

Informatics Conference, pp. 91-98. IEEE, 2014.

[8] Forrest, Stephanie, Steven A. Hofmeyr, Anil Somayaji, and Thomas A. Longstaff.

"A sense of self for unix processes." In Proceedings 1996 IEEE Symposium on

Security and Privacy, pp. 120-128. IEEE, 1996.

[9] Čeponis, Dainius, and Nikolaj Goranin. "Investigation of dual-flow deep learning

models LSTM-FCN and GRU-FCN efficiency against single-flow CNN models for

the host-based intrusion and malware detection task on univariate times series

data." Applied Sciences 10, no. 7 (2020): 2373.

149

[10] Fournier, Quentin, Daniel Aloise, Seyed Vahid Azhari, and François Tetreault. "On

Improving Deep Learning Trace Analysis with System Call Arguments." In 2021

IEEE/ACM 18th International Conference on Mining Software Repositories

(MSR), pp. 120-130. IEEE, 2021.

[11] Tandon, Gaurav, and Philip K. Chan. "Learning Useful System Call Attributes for

Anomaly Detection." In FLAIRS Conference, pp. 405-411. 2005.

[12] Warrender, Christina, Stephanie Forrest, and Barak Pearlmutter. "Detecting

intrusions using system calls: Alternative data models." In Proceedings of the 1999

IEEE symposium on security and privacy (Cat. No. 99CB36344), pp. 133-145.

IEEE, 1999.

[13] Liu, Ying, Han Tong Loh, and Aixin Sun. "Imbalanced text classification: A term

weighting approach." Expert systems with Applications 36, no. 1 (2009): 690-701.

[14] Khor, Kok-Chin, Choo-Yee Ting, and Somnuk Phon-Amnuaisuk. "A cascaded

classifier approach for improving detection rates on rare attack categories in

network intrusion detection." Applied Intelligence 36, no. 2 (2012): 320-329.

[15] Fawcett, Tom, and Foster Provost. "Adaptive fraud detection." Data mining and

knowledge discovery 1, no. 3 (1997): 291-316.

[16] Malhotra, Pankaj, Anusha Ramakrishnan, Gaurangi Anand, Lovekesh Vig, Puneet

Agarwal, and Gautam Shroff. "LSTM-based encoder-decoder for multi-sensor

anomaly detection." arXiv preprint arXiv:1607.00148 (2016).

[17] Lee, Sunwoo, Qiao Kang, Sandeep Madireddy, Prasanna Balaprakash, Ankit

Agrawal, Alok Choudhary, Richard Archibald, and Wei-keng Liao. "Improving

scalability of parallel CNN training by adjusting mini-batch size at run-time."

In 2019 IEEE International Conference on Big Data (Big Data), pp. 830-839.

IEEE, 2019.

[18] Balles, Lukas, Javier Romero, and Philipp Hennig. "Coupling adaptive batch sizes

with learning rates." arXiv preprint arXiv:1612.05086 (2016).

150

[19] Smith, Samuel L., Pieter-Jan Kindermans, Chris Ying, and Quoc V. Le. "Don't

decay the learning rate, increase the batch size." arXiv preprint

arXiv:1711.00489 (2017).

[20] Balles, Lukas, and Philipp Hennig. "Dissecting adam: The sign, magnitude and

variance of stochastic gradients." In International Conference on Machine

Learning, pp. 404-413. PMLR, 2018.

[21] Zhang, Guodong, Lala Li, Zachary Nado, James Martens, Sushant Sachdeva,

George Dahl, Chris Shallue, and Roger B. Grosse. "Which algorithmic choices

matter at which batch sizes? insights from a noisy quadratic model." Advances in

neural information processing systems 32 (2019).

[22] Devarakonda, Aditya, Maxim Naumov, and Michael Garland. "Adabatch:

Adaptive batch sizes for training deep neural networks." arXiv preprint

arXiv:1712.02029 (2017).

[23] Li, Yanghao, Naiyan Wang, Jianping Shi, Xiaodi Hou, and Jiaying Liu. "Adaptive

batch normalization for practical domain adaptation." Pattern Recognition 80

(2018): 109-117.

[24] You, Yang, Igor Gitman, and Boris Ginsburg. "Scaling sgd batch size to 32k for

imagenet training." arXiv preprint arXiv:1708.03888 6, no. 12 (2017): 6.

[25] Mikami, Hiroaki, Hisahiro Suganuma, Yoshiki Tanaka, and Yuichi Kageyama.

"Massively distributed SGD: ImageNet/ResNet-50 training in a flash." arXiv

preprint arXiv:1811.05233 (2018).

[26] You, Yang, Jonathan Hseu, Chris Ying, James Demmel, Kurt Keutzer, and Cho-

Jui Hsieh. "Large-batch training for LSTM and beyond." In Proceedings of the

International Conference for High Performance Computing, Networking, Storage

and Analysis, pp. 1-16. 2019.

151

[27] Malhotra, Pankaj, Lovekesh Vig, Gautam Shroff, and Puneet Agarwal. "Long short

term memory networks for anomaly detection in time series." In Proceedings, vol.

89, pp. 89-94. 2015.

[28] Ahmad, Subutai, Alexander Lavin, Scott Purdy, and Zuha Agha. "Unsupervised

real-time anomaly detection for streaming data." Neurocomputing 262 (2017): 134-

147.

[29] Schervish, Mark J. "P values: what they are and what they are not." The American

Statistician 50, no. 3 (1996): 203-206.

[30] Shipmon, Dominique T., Jason M. Gurevitch, Paolo M. Piselli, and Stephen T.

Edwards. "Time series anomaly detection; detection of anomalous drops with

limited features and sparse examples in noisy highly periodic data." arXiv preprint

arXiv:1708.03665 (2017).

[31] Hundman, Kyle, Valentino Constantinou, Christopher Laporte, Ian Colwell, and

Tom Soderstrom. "Detecting spacecraft anomalies using lstms and nonparametric

dynamic thresholding." In Proceedings of the 24th ACM SIGKDD international

conference on knowledge discovery & data mining, pp. 387-395. 2018.

[32] Audibert, Julien, Pietro Michiardi, Frédéric Guyard, Sébastien Marti, and Maria A.

Zuluaga. "USAD: unsupervised anomaly detection on multivariate time series."

In Proceedings of the 26th ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining, pp. 3395-3404. 2020.

[33] Lazarevic, Aleksandar, and Vipin Kumar. "Feature bagging for outlier detection."

In Proceedings of the eleventh ACM SIGKDD international conference on

Knowledge discovery in data mining, pp. 157-166. 2005.

[34] Kim, Gyuwan, Hayoon Yi, Jangho Lee, Yunheung Paek, and Sungroh Yoon.

"LSTM-based system-call language modeling and robust ensemble method for

designing host-based intrusion detection systems." arXiv preprint

arXiv:1611.01726 (2016).

152

[35] Ligh, Michael Hale, Andrew Case, Jamie Levy, and Aaron Walters. The art of

memory forensics: detecting malware and threats in windows, linux, and Mac

memory. John Wiley & Sons, 2014.

[36] Xen Project. (accessed: May 17th, 2022) https://www.xenproject.org

[37] Hizver, Jennia, and Tzi-cker Chiueh. "Real-time deep virtual machine introspection

and its applications." In Proceedings of the 10th ACM SIGPLAN/SIGOPS

international conference on Virtual execution environments, pp. 3-14. 2014.

[38] Egele, Manuel, Theodoor Scholte, Engin Kirda, and Christopher Kruegel. "A

survey on automated dynamic malware-analysis techniques and tools." ACM

computing surveys (CSUR) 44, no. 2 (2008): 1-42.

[39] Joshi, N., and D. B. Choksi. "Implementation of process forensic for system

calls." International Journal of Advanced Research in Engineering & Technology

(IJARET) 5, no. 6 (2014): 77-82.

[40] Payet, Étienne, and Fausto Spoto. "Static analysis of Android

programs." Information and Software Technology 54, no. 11 (2012): 1192-1201.

[41] Ye, Yanfang, Dingding Wang, Tao Li, and Dongyi Ye. "IMDS: Intelligent malware

detection system." In Proceedings of the 13th ACM SIGKDD international

conference on Knowledge discovery and data mining, pp. 1043-1047. 2007.

[42] Masud, Mohammad M., Latifur Khan, and Bhavani Thuraisingham. "A scalable

multi-level feature extraction technique to detect malicious

executables." Information Systems Frontiers 10, no. 1 (2008): 33-45.

[43] Alarifi, Suaad, and Stephen Wolthusen. "Anomaly detection for ephemeral cloud

IaaS virtual machines." In International Conference on Network and System

Security, pp. 321-335. Springer, Berlin, Heidelberg, 2013.

[44] Wang, Wei, Xiao-Hong Guan, and Xiang-Liang Zhang. "Modeling program

behaviors by hidden Markov models for intrusion detection." In Proceedings of

https://www.xenproject.org/

153

2004 International Conference on Machine Learning and Cybernetics (IEEE Cat.

No. 04EX826), vol. 5, pp. 2830-2835. IEEE, 2004.

[45] Cho, Sung-Bae, and Hyuk-Jang Park. "Efficient anomaly detection by modeling

privilege flows using hidden Markov model." computers & security 22, no. 1

(2003): 45-55.

[46] Soni, Jayesh, Nagarajan Prabakar, and Himanshu Upadhyay. "Deep learning

approach to detect malicious attacks at system level: poster." In Proceedings of the

12th Conference on Security and Privacy in Wireless and Mobile Networks, pp.

314-315. 2019.

[47] Ryan, Jake, Meng-Jang Lin, and Risto Miikkulainen. "Intrusion detection with

neural networks. advances in neural information processing systems." (1998).

[48] Soni, Jayesh, and Nagarajan Prabakar. "Effective machine learning approach to

detect groups of fake reviewers." In Proceedings of the 14th international

conference on data science (ICDATA’18), Las Vegas, NV, pp. 3-9. 2018.

[49] Wang, Gang, Jinxing Hao, Jian Ma, and Lihua Huang. "A new approach to

intrusion detection using Artificial Neural Networks and fuzzy clustering." Expert

systems with applications 37, no. 9 (2010): 6225-6232.

[50] Creech, Gideon, and Jiankun Hu. "A semantic approach to host-based intrusion

detection systems using contiguousand discontiguous system call patterns." IEEE

Transactions on Computers 63, no. 4 (2013): 807-819.

[51] Soni, Jayesh, Nagarajan Prabakar, and Himanshu Upadhyay. "Feature extraction

through deepwalk on weighted graph." In Proceedings of the 15th international

conference on data science (ICDATA’19), Las Vegas, NV. 2019.

[52] Staudemeyer, Ralf C., and Christian W. Omlin. "Evaluating performance of long

short-term memory recurrent neural networks on intrusion detection data."

In Proceedings of the South African institute for computer scientists and

information technologists conference, pp. 218-224. 2013.

154

[53] Debar, Herve, Monique Becker, and Didier Siboni. "A neural network component

for an intrusion detection system." In Proceedings 1992 IEEE Computer Society

Symposium on Research in Security and Privacy, pp. 240-240. IEEE Computer

Society, 1992.

[54] Mukkamala, Srinivas, Guadalupe Janoski, and Andrew Sung. "Intrusion detection

using neural networks and support vector machines." In Proceedings of the 2002

International Joint Conference on Neural Networks. IJCNN'02 (Cat. No.

02CH37290), vol. 2, pp. 1702-1707. IEEE, 2002.

[55] Staudemeyer, Ralf C. "Applying long short-term memory recurrent neural

networks to intrusion detection." South African Computer Journal 56, no. 1 (2015):

136-154.

[56] Soni, Jayesh, Nagarajan Prabakar, and Jong-Hoon Kim. "Prediction of component

failures of telepresence robot with temporal data." In 30th Florida conference on

recent advances in robotics. 2017.

[57] Thejas, G. S., Jayesh Soni, Kshitij Chandna, S. S. Iyengar, N. R. Sunitha, and

Nagarajan Prabakar. "Learning-based model to fight against fake like clicks on

instagram posts." In 2019 SoutheastCon, pp. 1-8. IEEE, 2019.

[58] Kang, Dae-Ki, Doug Fuller, and Vasant Honavar. "Learning classifiers for misuse

and anomaly detection using a bag of system calls representation." In Proceedings

from the Sixth Annual IEEE SMC Information Assurance Workshop, pp. 118-125.

IEEE, 2005.

[59] Yeung, Dit-Yan, and Yuxin Ding. "Host-based intrusion detection using dynamic

and static behavioral models." Pattern recognition 36, no. 1 (2003): 229-243.

[60] Hoang, Xuan Dau, Jiankun Hu, and Peter Bertok. "A multi-layer model for anomaly

intrusion detection using program sequences of system calls." In Proc. 11th IEEE

Int’l. Conf. 2003.

[61] Lee, Wenke, and Salvatore Stolfo. "Data mining approaches for intrusion

detection." (1998).

155

[62] Murtaza, Syed Shariyar, Wael Khreich, Abdelwahab Hamou-Lhadj, and Mario

Couture. "A host-based anomaly detection approach by representing system calls

as states of kernel modules." In 2013 IEEE 24th International Symposium on

Software Reliability Engineering (ISSRE), pp. 431-440. IEEE, 2013.

[63] Suresh Kumar, P., and S. Ramachandram. "Fuzzy-based integration of security and

trust in distributed computing." In Soft Computing for Problem Solving, pp. 899-

912. Springer, Singapore, 2019.

[64] Peddoju, Suresh K., Himanshu Upadhyay, and Shekhar Bhansali. "Health

monitoring with low power IoT devices using anomaly detection algorithm."

In 2019 Fourth international conference on fog and mobile edge computing

(FMEC), pp. 278-282. IEEE, 2019.

[65] Reddy, A. Rishika, and P. Suresh Kumar. "Predictive big data analytics in

healthcare." In 2016 Second International Conference on Computational

Intelligence & Communication Technology (CICT), pp. 623-626. IEEE, 2016.

[66] Bottou, Léon, Frank E. Curtis, and Jorge Nocedal. "Optimization methods for large-

scale machine learning." Siam Review 60, no. 2 (2018): 223-311.

[67] Goodfellow, Ian, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press,

2016.

[68] Friedlander, Michael P., and Mark Schmidt. "Hybrid deterministic-stochastic

methods for data fitting." SIAM Journal on Scientific Computing 34, no. 3 (2012):

A1380-A1405.

[69] De, Soham, Abhay Yadav, David Jacobs, and Tom Goldstein. "Automated

inference with adaptive batches." In Artificial Intelligence and Statistics, pp. 1504-

1513. PMLR, 2017.

[70] Defazio, Aaron, Francis Bach, and Simon Lacoste-Julien. "SAGA: A fast

incremental gradient method with support for non-strongly convex composite

objectives." Advances in neural information processing systems 27 (2014).

156

[71] Daneshmand, Hadi, Aurelien Lucchi, and Thomas Hofmann. "Starting small-

learning with adaptive sample sizes." In International conference on machine

learning, pp. 1463-1471. PMLR, 2016.

[72] Vasilkoski, Zlatko, Heather Ames, Ben Chandler, Anatoli Gorchetchnikov, Jasmin

Léveillé, Gennady Livitz, Ennio Mingolla, and Massimiliano Versace. "Review of

stability properties of neural plasticity rules for implementation on memristive

neuromorphic hardware." In The 2011 International Joint Conference on Neural

Networks, pp. 2563-2569. IEEE, 2011.

[73] Waltz, M., and K. S. Fu. "A heuristic approach to reinforcement learning control

systems." IEEE Transactions on Automatic Control 10, no. 4 (1965): 390-398.

[74] Yu, Xiao-Hu, and Guo-An Chen. "Efficient backpropagation learning using

optimal learning rate and momentum." Neural Networks 10, no. 3 (1997): 517-527.

[75] Darken, Christian, and John Moody. "Towards faster stochastic gradient

search." Advances in neural information processing systems 4 (1991).

[76] Duchi, John, and Yoram Singer. "Efficient online and batch learning using forward

backward splitting." The Journal of Machine Learning Research 10 (2009): 2899-

2934.

[77] Zeiler, Matthew D., Graham W. Taylor, and Rob Fergus. "Adaptive

deconvolutional networks for mid and high level feature learning." In 2011

international conference on computer vision, pp. 2018-2025. IEEE, 2011.

[78] Zou, Fangyu, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. "A sufficient

condition for convergences of adam and rmsprop." In Proceedings of the

IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11127-

11135. 2019.

[79] Zhang, Zijun. "Improved adam optimizer for deep neural networks." In 2018

IEEE/ACM 26th International Symposium on Quality of Service (IWQoS), pp. 1-2.

IEEE, 2018.

157

[80] Zeiler, Matthew D. "Adadelta: an adaptive learning rate method." arXiv preprint

arXiv:1212.5701 (2012).

[81] Ruder, Sebastian. "An overview of gradient descent optimization

algorithms." arXiv preprint arXiv:1609.04747 (2016).

[82] Vaswani, Ashish, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan

N. Gomez, Łukasz Kaiser, and Illia Polosukhin. "Attention is all you

need." Advances in neural information processing systems 30 (2017).

[83] Needell, Deanna, Rachel Ward, and Nati Srebro. "Stochastic gradient descent,

weighted sampling, and the randomized Kaczmarz algorithm." Advances in neural

information processing systems 27 (2014).

[84] Chandola, Varun. "Anomaly detection: A survey varun chandola, arindam

banerjee, and vipin kumar." (2007).

[85] Tavallaee, Mahbod, Natalia Stakhanova, and Ali Akbar Ghorbani. "Toward

credible evaluation of anomaly-based intrusion-detection methods." IEEE

Transactions on Systems, Man, and Cybernetics, Part C (Applications and

Reviews) 40, no. 5 (2010): 516-524.

[86] Deshpande, Prachi, Subhash Chander Sharma, Sateesh K. Peddoju, and S. Junaid.

"HIDS: A host based intrusion detection system for cloud computing

environment." International Journal of System Assurance Engineering and

Management 9, no. 3 (2018): 567-576.

[87] Rawat, Sanjay, Ved P. Gulati, Arun K. Pujari, and V. Rao Vemuri. "Intrusion

detection using text processing techniques with a binary-weighted cosine

metric." Journal of Information Assurance and Security 1, no. 1 (2006): 43-50.

[88] Aghaei, Ehsan, and Ehab Al-Shaer. "Threatzoom: neural network for automated

vulnerability mitigation." In Proceedings of the 6th Annual Symposium on Hot

Topics in the Science of Security, pp. 1-3. 2019.

158

[89] Mahrach, Safaa, Iman El Mir, Abdelkrim Haqiq, and Dijiang Huang. "SDN-based

SYN Flooding Defense in Cloud." Journal of Information Assurance & Security 13,

no. 1 (2018).

[90] Aghaei, Ehsan, and Gursel Serpen. "Ensemble classifier for misuse detection using

N-gram feature vectors through operating system call traces." International Journal

of Hybrid Intelligent Systems 14, no. 3 (2017): 141-154.

[91] Sirigineedi, Surya Srikar, Jayesh Soni, and Himanshu Upadhyay. "Learning-based

models to detect runtime phishing activities using urls." In Proceedings of the 2020

the 4th International Conference on Compute and Data Analysis, pp. 102-106.

2020.

[92] Serpen, Gursel, and Ehsan Aghaei. "Host-based misuse intrusion detection using

PCA feature extraction and kNN classification algorithms." Intelligent Data

Analysis 22, no. 5 (2018): 1101-1114.

[93] Peddoju, S. K., Upadhyay, H., Soni, J., & Prabakar, N. (2020). Natural language

processing based anomalous system call sequences detection with virtual memory

introspection. International Journal of Advanced Computer Science and

Applications (IJACSA), 11(5).

[94] Liu, Fei Tony, Kai Ming Ting, and Zhi-Hua Zhou. "Isolation forest." In 2008 eighth

ieee international conference on data mining, pp. 413-422. IEEE, 2008.

[95] Maglaras, Leandros A., Jianmin Jiang, and Tiago Cruz. "Integrated OCSVM

mechanism for intrusion detection in SCADA systems." Electronics Letters 50, no.

25 (2014): 1935-1936.

[96] Day, William HE, and Herbert Edelsbrunner. "Efficient algorithms for

agglomerative hierarchical clustering methods." Journal of classification 1, no. 1

(1984): 7-24.

[97] Xiang, Shiming, Feiping Nie, and Changshui Zhang. "Learning a Mahalanobis

distance metric for data clustering and classification." Pattern recognition 41, no.

12 (2008): 3600-3612.

159

[98] Bridges, Robert A., Jessie D. Jamieson, and Joel W. Reed. "Setting the threshold

for high throughput detectors: A mathematical approach for ensembles of dynamic,

heterogeneous, probabilistic anomaly detectors." In 2017 IEEE International

Conference on Big Data (Big Data), pp. 1071-1078. IEEE, 2017.

[99] Sommer, Robin, and Vern Paxson. "Outside the closed world: On using machine

learning for network intrusion detection." In 2010 IEEE symposium on security and

privacy, pp. 305-316. IEEE, 2010.

[100] Clark, James, Zhen Liu, and Nathalie Japkowicz. "Adaptive threshold for outlier

detection on data streams." In 2018 IEEE 5th International Conference on Data

Science and Advanced Analytics (DSAA), pp. 41-49. IEEE, 2018.

[101] Wang, Ke, and Salvatore J. Stolfo. "Anomalous payload-based network intrusion

detection." In International workshop on recent advances in intrusion detection,

pp. 203-222. Springer, Berlin, Heidelberg, 2004.

[102] Haider, Waqas, Jiankun Hu, and Miao Xie. "Towards reliable data feature retrieval

and decision engine in host-based anomaly detection systems." In 2015 IEEE 10th

Conference on Industrial Electronics and Applications (ICIEA), pp. 513-517.

IEEE, 2015.

[103] Xie, Miao, Jiankun Hu, and Jill Slay. "Evaluating host-based anomaly detection

systems: Application of the one-class SVM algorithm to ADFA-LD." In 2014 11th

International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp.

978-982. IEEE, 2014.

[104] Crochemore, Maxime, and Wojciech Rytter. Jewels of stringology: text algorithms.

World Scientific, 2002.

[105] Liao, Xiaoyao, Changzhi Wang, and Wen Chen. "Anomaly Detection of System

Call Sequence Based on Dynamic Features and Relaxed-SVM." Security and

Communication Networks 2022 (2022).

[106] Melvin, A. Alfred Raja, G. Jaspher W. Kathrine, S. Sudhakar Ilango, S. Vimal,

Seungmin Rho, Neal N. Xiong, and Yunyoung Nam. "Dynamic malware attack

dataset leveraging virtual machine monitor audit data for the detection of intrusions

160

in cloud." Transactions on Emerging Telecommunications Technologies (2021):

e4287.

[107] Srinivasan, Siddharth, Akshay Kumar, Manik Mahajan, Dinkar Sitaram, and

Sanchika Gupta. "Probabilistic real-time intrusion detection system for docker

containers." In International Symposium on Security in Computing and

Communication, pp. 336-347. Springer, Singapore, 2018.

[108] Mishra, Preeti, Vijay Varadharajan, Emmanuel S. Pilli, and Uday Tupakula.

"Vmguard: A vmi-based security architecture for intrusion detection in cloud

environment." IEEE Transactions on Cloud Computing 8, no. 3 (2018): 957-971.

[109] Ruff, Lukas, Robert A. Vandermeulen, Nico Görnitz, Alexander Binder,

Emmanuel Müller, Klaus-Robert Müller, and Marius Kloft. "Deep semi-supervised

anomaly detection." arXiv preprint arXiv:1906.02694 (2019).

[110] Aggarwal, Charu C. "Outlier ensembles: position paper." ACM SIGKDD

Explorations Newsletter 14, no. 2 (2013): 49-58.

[111] Pang, Guansong, Chunhua Shen, and Anton van den Hengel. "Deep anomaly

detection with deviation networks." In Proceedings of the 25th ACM SIGKDD

international conference on knowledge discovery & data mining, pp. 353-362.

2019.

[112] Schölkopf, Bernhard, John C. Platt, John Shawe-Taylor, Alex J. Smola, and Robert

C. Williamson. "Estimating the support of a high-dimensional distribution." Neural

computation 13, no. 7 (2001): 1443-1471.

[113] Tax, David MJ, and Robert PW Duin. "Support vector domain description." Pattern

recognition letters 20, no. 11-13 (1999): 1191-1199.

[114] Eskin, Eleazar, Andrew Arnold, Michael Prerau, Leonid Portnoy, and Sal Stolfo.

"A geometric framework for unsupervised anomaly detection." In Applications of

data mining in computer security, pp. 77-101. Springer, Boston, MA, 2002.

161

[115] McInnes, Leland, John Healy, and Steve Astels. "hdbscan: Hierarchical density

based clustering." J. Open Source Softw. 2, no. 11 (2017): 205.

[116] Zhou, Chong, and Randy C. Paffenroth. "Anomaly detection with robust deep

autoencoders." In Proceedings of the 23rd ACM SIGKDD international conference

on knowledge discovery and data mining, pp. 665-674. 2017.

[117] Erfani, Sarah M., Sutharshan Rajasegarar, Shanika Karunasekera, and Christopher

Leckie. "High-dimensional and large-scale anomaly detection using a linear one-

class SVM with deep learning." Pattern Recognition 58 (2016): 121-134.

[118] De Gregorio, Massimo, and Maurizio Giordano. "An experimental evaluation of

weightless neural networks for multi-class classification." Applied Soft

Computing 72 (2018): 338-354.

[119] Ibarguren, Igor, Jesús M. Pérez, Javier Muguerza, Ibai Gurrutxaga, and Olatz

Arbelaitz. "Coverage-based resampling: Building robust consolidated decision

trees." Knowledge-Based Systems 79 (2015): 51-67.

[120] Chang, Chih-Chung, and Chih-Jen Lin. "LIBSVM: a library for support vector

machines." ACM transactions on intelligent systems and technology (TIST) 2, no.

3 (2011): 1-27.

[121] Hühn, Jens, and Eyke Hüllermeier. "FURIA: an algorithm for unordered fuzzy rule

induction." Data Mining and Knowledge Discovery 19, no. 3 (2009): 293-319.

[122] Ahmim, Ahmed, Leandros Maglaras, Mohamed Amine Ferrag, Makhlouf Derdour,

and Helge Janicke. "A novel hierarchical intrusion detection system based on

decision tree and rules-based models." In 2019 15th International Conference on

Distributed Computing in Sensor Systems (DCOSS), pp. 228-233. IEEE, 2019.

[123] Moustafa, Nour, and Jill Slay. "The evaluation of Network Anomaly Detection

Systems: Statistical analysis of the UNSW-NB15 data set and the comparison with

the KDD99 data set." Information Security Journal: A Global Perspective 25, no.

1-3 (2016): 18-31.

162

[124] Zong, Wei, Yang-Wai Chow, and Willy Susilo. "A two-stage classifier approach

for network intrusion detection." In International Conference on Information

Security Practice and Experience, pp. 329-340. Springer, Cham, 2018.

[125] Tama, Bayu Adhi, Marco Comuzzi, and Kyung-Hyune Rhee. "TSE-IDS: A two-

stage classifier ensemble for intelligent anomaly-based intrusion detection

system." IEEE Access 7 (2019): 94497-94507.

[126] Tama, Bayu Adhi, and Kyung-Hyune Rhee. "An in-depth experimental study of

anomaly detection using gradient boosted machine." Neural Computing and

Applications 31, no. 4 (2019): 955-965.

[127] Pervez, Muhammad Shakil, and Dewan Md Farid. "Feature selection and intrusion

classification in NSL-KDD cup 99 dataset employing SVMs." In The 8th

International Conference on Software, Knowledge, Information Management and

Applications (SKIMA 2014), pp. 1-6. IEEE, 2014.

[128] Kanakarajan, Navaneeth Kumar, and Kandasamy Muniasamy. "Improving the

accuracy of intrusion detection using gar-forest with feature selection."

In Proceedings of the 4th International Conference on Frontiers in Intelligent

Computing: Theory and Applications (FICTA) 2015, pp. 539-547. Springer, New

Delhi, 2016.

[129] Pajouh, Hamed Haddad, Reza Javidan, Raouf Khayami, Ali Dehghantanha, and

Kim-Kwang Raymond Choo. "A two-layer dimension reduction and two-tier

classification model for anomaly-based intrusion detection in IoT backbone

networks." IEEE Transactions on Emerging Topics in Computing 7, no. 2 (2016):

314-323.

[130] Tama, Bayu Adhi, Lewis Nkenyereye, SM Riazul Islam, and Kyung-Sup Kwak.

"An enhanced anomaly detection in web traffic using a stack of classifier

ensemble." IEEE Access 8 (2020): 24120-24134.

163

VITA

JAYESH SONI

2018-Present Ph.D., Computer Science

 Knight School of Computing and Information Sciences

Florida International University, Miami, Florida

2016-2018 Research Scholar

 Knight School of Computing and Information Sciences

 Florida International University, Miami, Florida

2015-2017 Master of Technology, Computer Science

Dept. of Computer Science and Engineering

Manipal University Jaipur (MUJ)

Jaipur, Rajasthan, India

2014-2015 Software Developer

Refresh IT Software Solutions

Ahmedabad, Gujarat, India

2010 -2014 Bachelor of Engineering, Computer Science

Dept. of Computer Science and Engineering

Gujarat Technological University (GTU)

Ahmedabad, Gujarat, India

PUBLICATIONS AND PRESENTATIONS

Soni, Jayesh, and Nagarajan Prabakar. "KeyNet: Enhancing Cybersecurity with Deep

Learning-Based LSTM on Keystroke Dynamics for Authentication." In International

Conference on Intelligent Human Computer Interaction, pp. 761-771. Springer, Cham,

2021.

Soni, Jayesh, Suresh K. Peddoju, Nagarajan Prabakar, and Himanshu Upadhyay.

"Comparative Analysis of LSTM, One-Class SVM, and PCA to Monitor Real-Time

Malware Threats Using System Call Sequences and Virtual Machine Introspection." In

International Conference on Communication, Computing and Electronics Systems, pp.

113-127. Springer, Singapore, 2021.

Soni, Jayesh, Nagarajan Prabakar, and Himanshu Upadhyay. "Visualizing High-

Dimensional Data Using t-Distributed Stochastic Neighbor Embedding Algorithm." In

Principles of Data Science, pp. 189-206. Springer, Cham, 2020.

164

Soni, Jayesh, Nagarajan Prabakar, and Himanshu Upadhyay. "Behavioral Analysis of

System Call Sequences Using LSTM Seq-Seq, Cosine Similarity and Jaccard Similarity

for Real-Time Anomaly Detection." In 2019 International Conference on Computational

Science and Computational Intelligence (CSCI), pp. 214-219. IEEE, 2019.

Soni, Jayesh, Nagarajan Prabakar, and Himanshu Upadhyay. “Feature Extraction through

Deepwalk on Weighted Graph”, Proceedings of the 15th Springer International Conference

on Data Science (ICDATA), Las Vegas, Nevada, pp. 164-170, July 29 - Aug 1, 2019.

Soni, Jayesh, Nagarajan Prabakar, and Himanshu Upadhyay. “Comparative Analysis of

LSTM Sequence-Sequence and Auto Encoder for real-time anomaly detection using

system call sequences”, International Journal of Innovative Research in Computer and

Communication Engineering (IJIRCCE), Vol. 7, Issue 12, pp. 4225-4230, January 2019.

Soni, Jayesh, Nagarajan Prabakar, and Himanshu Upadhyay."Deep learning approach to

detect malicious attacks at system level: poster." In Proceedings of the 12th Conference on

Security and Privacy in Wireless and Mobile Networks, pp. 314-315. 2019.

Soni, Jayesh, and Nagarajan Prabakar. "Effective machine learning approach to detect

groups of fake reviewers." In Proceedings of the 14th international conference on data

science (ICDATA’18), Las Vegas, NV, pp. 3-9. 2018.

Soni, Jayesh, Nagarajan Prabakar, and Himanshu Upadhyay. “Towards detecting fake

spammers groups in social media: An unsupervised Deep Learning approach”, accepted

for publication in Deep Learning for Social Media Data Analytics (SMDA 2021) in

Springer Book Series “Studies in Big Data”.

Soni, Jayesh, Nagarajan Prabakar, and Himanshu Upadhyay. “Machine Learning-based

Cyber Threat Anomaly Detection in Virtualized Application Processes” submitted for

Review in The 24th International Conference on Artificial Intelligence (ICAI'22) in

Springer Book Series “Transactions on Computational Science & Computational

Intelligence”.

Soni, Jayesh, Nagarajan Prabakar, and Himanshu Upadhyay. “Quantum Computing

enabled Machine Learning for an enhanced model training approach”, submitted for

Review in Springer QC2022: Quantum Computing: A Shift from Bits to Qubits in “Studies

in Computational Intelligence" book series.

Soni, Jayesh, Nagarajan Prabakar, and Himanshu Upadhyay. “A Transfer Learning

Approach for Hurricane Damage Assessment using satellite imagery”, submitted for

Review in SciTech Publishing EDMDL2022: “Earth Observation Data Analytics Using

Machine and Deep Learning”.

	Anomaly Detection in Sequential Data: A Deep Learning-Based Approach
	Recommended Citation

	Anomaly Detection in Sequential Data: A Deep Learning-Based Approach

