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ABSTRACT OF THE DISSERTATION 

ANOMALY DETECTION IN SEQUENTIAL DATA:  

A DEEP LEARNING-BASED APPROACH 

by 

Jayesh Soni 

Florida International University, 2022 

Miami, Florida 

Professor Nagarajan Prabakar, Major Professor 

Anomaly Detection has been researched in various domains with several applications in 

intrusion detection, fraud detection, system health management, and bio-informatics. 

Conventional anomaly detection methods analyze each data instance independently 

(univariate or multivariate) and ignore the sequential characteristics of the data. Often, 

anomalies in the sequential data can be detected when the individual data instances are 

analyzed by grouping them into a sequence and hence cannot be detected by a conventional 

way of anomaly detection. Currently: (1) Deep learning-based algorithms are widely used 

for anomaly detection purposes. However, significant computational overhead time is 

incurred during the training process due to static constant batch size and learning rate 

parameters for each epoch, (2) the threshold to decide whether an event is normal or 

malicious is often set as static. This can drastically increase the false alarm rate if the 

threshold is set low or decrease the True Alarm rate if it is set to a remarkably high value, 

(3) Real-life data is messy. It is impossible to learn the data features by training just one 
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algorithm. Therefore, several one-class-based algorithms need to be trained. The final 

output is the ensemble of the output from all the algorithms. The prediction accuracy can 

be increased by giving a proper weight to each algorithm's output. By extending the state-

of-the-art techniques in learning-based algorithms, this dissertation provides the following 

solutions: (i) To address (1), we propose a hybrid, dynamic batch size and learning rate 

tuning algorithm that reduces the overall training time of the neural network. (ii) As a 

solution for (2), we present an adaptive thresholding algorithm that reduces high false 

alarm rates. (iii) To overcome (3), we propose a multilevel hybrid ensemble anomaly 

detection framework that increases the anomaly detection rate of the high dimensional 

dataset.
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CHAPTER 1 

INTRODUCTION 

Security breaches due to ransomware, virus, Trojans, etc., have been reportedly increasing 

in recent years [1]. A security vulnerability has been reported on a continuous basis which 

can be seen as a failure by the cybersecurity analysts towards mitigating such attacks. 

Malware also known as malicious code can be described as "a code written and executed 

intentionally to harm the system by either adding, modifying or deleting some of its 

parameters" [2]. A malware can either be a standalone program or attached to the known 

program. 

There are numerous reasons for the creation of malware. Some malware is developed as a 

concept to avoid future vulnerability. Such types of malware do not cause any harmful 

attacks on the systems. Some other types of malware created by cyber attackers are solely 

for stealing private information, infecting the system's main code, etc. There are many 

sensitive data stored in various current systems and numerous quantities. These give high 

opportunities to cyber attackers to gain profit illegally out of such legitimate systems. Since 

the early 2000s, the increase in malware has been exponential. With the migration of 

traditional office-based work to remote work, high-level targeted attacks have been 

performed against companies' critical infrastructure.  

To identify such malware, anti-virus software provides solutions in two main methods: 

signature-based, which utilizes the already known malware database to detect the new 

malware, and anomaly-based, which makes use of the normal patterns behavior of the 

program to discriminate between malicious and legitimate program [3]. Signature-based 
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methods can detect only the known malware, whereas anomaly-based methods can detect 

any malware. Signature-based methods need a labeled dataset of benign and malware code 

and thus are inefficient in identifying new malware in current world scenarios since most 

datasets are highly imbalanced. Anomaly-based methods need only a benign class of 

dataset, and anything that deviates from the normal class is considered anomalous. Thus 

anomaly-based detection methods are highly efficient in identifying new unknown 

malware. 

Machine Learning and Deep Learning-based anomaly detection algorithms have shown 

promising results [4, 5, 6, 7]. These learning-based methods have high capabilities in 

learning the feature representations of complex data. Graph-based data, Spatial-temporal 

data, and high dimensional data are some examples of complex data. Deep learning for 

anomaly detection utilizes neural networks to learn the explicit feature representations for 

detecting the anomaly. In a wide variety of applications, such learning-based anomaly 

detection methods have also outperformed the traditional anomaly detection methods.  

There are numerous ways to develop models that can capture the behavior of the process. 

One possible approach is to effectively utilize the sequence of system call sequences [8]. 

The important observation is the underlying fact that for a malicious code to cause harmful 

damage to the system, it has to interact with the operating system through system calls. If 

a particular sequence of system calls deviates from the normal expected behavior, we can 

assume an attack has happened. Thus it is essential to capture every single system call made 

by a process to its operating system during its execution for analyzing the whole traces of 

the system call. The anomaly detection methods have to take these sequences of system 
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calls to learn the normal behavior of the process and should be able to detect the 

abnormality in case the process is injected with a malicious code.   

A particular malicious code has to specify the target process to infect it with the malware. 

Thus, to further enhance the anomaly detection rate, the executive process (_EPROCESS) 

data structure can be considered. _EPROCESS is a kernel memory structure that contains 

various distinct attributes pertaining to the process. Every individual operating system 

process is represented by _EPROCESS. Each _EPROCESS structure has a Process 

Environment Block (PEB). The Dynamic Link Library (DLLs) loaded by the process is 

stored using three doubly-linked lists by PEB. MemoryOrderList, LoadOrderList and 

InitOrderList are such three linked lists. Each list holds the DLLs for a particular process 

differently. The MemoryOrderList uses the virtual memory address space of the loaded 

DLL. The LoadOrderList stores the DLLs in the order they were loaded in the process. 

The InitOrderList uses the order of the execution of the main function of each DLL.  

Thus ensemble analysis of the sequence of system calls and different process attributes is 

the key to efficient anomaly detection. 

1.1    Challenges 

Although the malware attacks are supposed to be identified by the underlying anti-malware 

tools and software as part of their services, there are some challenges as follows: 

(1) There are various learning-based models trained to detect whether there is an 

anomaly in the process or not. However, there is a lack of research for contextual 

point anomaly detection in the current literature.  
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The learning-based models [9, 10, 11] employed in the existing anomaly detection 

approaches predict the whole sequence of system calls as benign or malicious. 

However, to identify the real purpose of the calling actions behavior, an appropriate 

infected subsequence of system calls needs to be identified. As an existing example, 

Sequence Time-Delay Embedding (STIDE) [12], an extension of Time-Delay 

Embedding (TIDE) [8], uses the three-tier system to detect the anomalous events. 

The first two-stage of the three-tier approach utilizes the original input trace and 

applies the sliding windows of length k to generate substrings of fixed length as 

features, followed by database construction of the features for the training purpose. 

The third stage uses the static threshold count on the number of mismatches to 

decide whether a test sequence is anomalous or not. However, such methods lack 

generalization capabilities and need large storage capacities. Furthermore, training 

such models is a resource-intensive task that grows linearly with the length of the 

number of training sequences. 

(2) Currently, deep learning algorithms are trained for anomaly detection. However, 

significant computational overhead time is incurred during the training process 

due to static constant batch size and learning rate parameters for each epoch. 

Most of the real-world analyses in the spatial and temporal context, such as text 

analysis [13], intrusion detection [14], click fraud detection [15], and sensor 

anomaly detection [16], are big data and are highly imbalanced. Training the neural 

network such as Long Short Term Memory (LSTM) for a dataset using traditional 

methods requires enormous computational resources and is time-consuming. 

Furthermore, many hyper-parameters need to be tuned. One of the hyper-parameter 
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related to memory issues is the batch size. The number of data rows is used to 

calculate the gradient and further update the neural network's weights in each 

epoch. Currently, the batch size value is kept constant throughout the training 

period. However, changing the batch size adaptively can reduce the training time 

and further improve the utilization of the memory resources efficiently. The second 

important hyper-parameter is the learning rate, allowing the model to converge to 

global optima. Currently, adapting these two hyper-parameters is heavily 

researched in the computer vision area where Convolution Neural Network (CNN) 

is employed [17]. Several techniques are available [18, 19, 20, 21] to adaptively 

tune those two parameters. AdaBatch [22] is one of the most popular adaptive batch 

size techniques. Several variants of AdaBatch have been proposed in the recent past 

to improve the training time and maintain accuracy. Such approaches are applied 

to the image dataset [23, 24, 25]. However, very few studies have been performed 

in the recent past on the time series applications which employ the LSTM 

algorithm. One such study is the Dynamic Adaptive-Tuning Engine (DATE) [26]. 

However, they use constraints such as Sqrt Scaling and Linear Scaling, which are 

helpful but do not always prove highly efficient when using specific metrics and 

optimizers in the anomaly detection area since different optimizers require different 

initialization of the hyperparameters. 

(3) One class-based algorithm has shown high accuracy in detecting the anomaly. 

However, the threshold to decide whether an event is normal or malicious is often 

set as static. This can drastically increase the false alarm rate if the threshold is set 

low or decrease the True Alarm rate if it is set to a remarkably high value. 
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Most of the existing anomaly detection work focuses on prediction than detection. 

One of the most common issues of fixed thresholds is a low detection rate or high 

false alarm rate. Setting the threshold to an optimal value in the detection method 

is an active research area. Parametric and Non-Parametric techniques are being 

utilized to solve this problem. Parametric techniques such as calculating the 

Gaussian distribution by employing maximum likelihood estimation [27], double 

window scoring method [28], and p-value scoring [29] work on the assumption that 

the distribution of the data is known. This is the limitation of such parametric-based 

techniques. Non-parametric techniques such as distance-based [30] and residual 

evaluation do not need to know the data distribution. Dynamic Thresholding can be 

improved by performing some modifications (Anomaly Pruning [31]) or by adding 

some extensions (USAD [32]). 

(4) Real-life data is messy. It is impossible to learn the data features by training just 

one algorithm. Therefore, several one-class-based algorithms need to be trained. 

The final output is the ensemble of the output from all the algorithms. The 

prediction accuracy can be increased by giving a proper weight to each algorithm's 

output. 

Ensemble approaches are heavily studied in supervised learning, where we have 

training data with the target label. Ensembles for anomaly detection (unsupervised 

learning) are an emerging topic. Normalization and Combination are two of the 

issues common in the ensembles of unsupervised algorithms. Feature bagging [33] 

ranks the anomaly detection algorithms from the highest anomaly detection rate to 

the lowest detection rate. The major disadvantage of this approach is that it loses 
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information about the relative difference between the outlier scores. This can be 

enhanced by considering the rank and the probability distribution of the value. The 

choice of function needed to combine the output score is also equally important. 

Maximum Function, Averaging Function, Damped Averaging, and Pruned 

averaging are used. Currently, these combination function is dependent on the 

individual algorithm. This can be extended by developing an algorithm that first 

uses the normalization of the scores and then applies the combination approach to 

produce an optimal anomaly score. 

1.2    The objective of this Dissertation 

To address the above-said challenges, in this dissertation, we propose Machine Learning 

and Deep Learning-based solutions to improve the performance of the existing anomaly 

detection methods. The following serve as the objectives of this dissertation: 

 Proposing a hybrid adaptive Batch Size with a Learning Rate tuning algorithm for 

training the neural network in an optimized way. 

 To improve the existing state-of-the-art thresholding methods and reduce the false 

alarm rate. 

 Application of weighted ensemble approach as a hybrid solution for efficient 

anomaly detection.  

1.3   Contributions 

This dissertation presents solutions to the anomaly detection problem by extending the 

state-of-the-art techniques in unsupervised learning methods. 
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1.3.1 SysCallNet: Behavioral Analysis of System Calls using Deep Learning-based 

Algorithms for Anomaly Detection  

To partly address the challenge (1), we propose a two-dimensional framework to analyze 

the behavior of the system calls for anomaly detection. We analyzed two types of behavior: 

Temporal and Non-Temporal behavior. We trained sequential deep learning-based 

algorithms for temporal behavior, namely Long Short Term Memory (LSTM). For training 

the model, only a normal class of data was supplied. Next, the non-temporal behavior is 

analyzed independently by evaluating frequency and commonality behavior. We applied 

Cosine Similarity for analyzing frequency behavior and Jaccard Similarity for analyzing 

the commonality behavior.  

1.3.2 P-BoSC: An Extension of Bag of System Call Technique for Detection of 

Anomalous Points 

To fully address the challenge (1), prior works show that detecting the particular window 

of system calls has not been commonly used in combination with Bag of System Calls 

(BoSC). Hence, we propose an extension called Point-Bag of System Calls (P-BoSC), a 

Natural Language Processing-based technique to detect the anomaly and output the 

anomalous window. It is a hybrid method containing two steps. In the first step, we train 

the cosine similarity algorithm to learn the normal behavior of the data. Next, in the second 

step, if the output is anomalous while testing, the sequence is given input to PBoSC. PBoSC 

algorithm analyzes the frequency behavior and detects an anomalous sequence window.  
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1.3.3 DynaB: An Enhanced and Dynamic Batch Size Tuning for LSTM Neural 

Network 

Concerning challenge (2), we present a dynamic tuning algorithm that can change the batch 

size dynamically. The proposed algorithm consists of four stages: Gradient Warmup, Loss 

derivation, calculating the weighted loss with the historical batch size, and updating the 

batch size. The proposed work's objectives are, firstly, to model the time series sequence 

data on LSTM Network by relying only on the system call sequences, without the need for 

too many attributes. Secondly, warm up the gradient for the first two batches to derive the 

loss using the optimizers. Then, we evaluate the loss in terms of the number of the sequence 

of system calls predicted correctly. We evaluate Root Mean Square Error (RMSE), Mean 

Absolute Error (MAE), and Mean Absolute Percentage Error (MAPE) as a wide variety of 

loss functions. Next, using the historical batch size value with their incorporated loss, we 

dynamically decide on the new batch size rather than keeping the batch size constant. We 

go one depth further to achieve more granularity for calculating the loss gradient where 

instead of at each epoch level, it is calculated at each batch level. We achieve three 

significant benefits: Reduced training time, Optimized memory usage, and Loss reduction 

at an early epoch stage.  

1.3.4 DynaB-LR: A Hybrid Algorithm for Dynamic Batch Size and Learning Rate 

tuning for an optimized training of Neural Network 

As a solution to challenge (2), we propose a hybrid algorithm, Dynamic Batch Size and 

Learning Rate (DynaB-LR), that tunes the batch size and learning rate dynamically and 

consecutively. It is fast and can be applied to any time series-based dataset. At the same 
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time, it accounts for the learning algorithm obtaining the optimal value of these hyper-

parameters without the need for the user to manually input the number, unlike most of the 

other established algorithms such as [34]. The algorithm works in four steps. First, we 

simultaneously perform a gradual warmup for batch size and learning rate for the first two 

epochs. Then, during the warmup procedure, the loss gradient is calculated using the 

optimizer. In the third epoch, we dynamically change the batch size based on the loss 

calculation. In the next epoch, the learning rate is updated. We continue to update batch 

size and learning rate in alternate epochs till the model is trained successfully. Thus, this 

approach of dynamically tuning batch size and the learning rate results in optimizing the 

training time of the neural network. 

1.3.5   Machine Learning-based Cyber Threat Anomaly Detection in Virtualized 

Application Processes 

To address the challenge (4), we developed a two-step hybrid framework. Host-based 

systems frequently depend on various attributes of a process to describe the normal 

behavior of any process. Multiple malicious vectors can be launched on a process with 

different characteristics to infect it. First, we analyze ProcessList data structure and create 

Principal Component Analysis (PCA) features known as Eigen traces used for training 

multiple one-class anomaly detection models. These multiple models allow different 

attributes of process data to be assessed from numerous and diverse standpoints. As the 

anomaly scores of these models vary significantly, combining the scores to a single value 

is often challenging. Therefore, we apply a majority voting approach for the final anomaly 

score as the second step. This final score measures the occurrence of a malicious event. We 
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demonstrate the implementation of the proposed two-step approach using four different 

one-class classifiers: Mahalanobis Classifier, One-Class Support Vector Machine 

(OCSVM), Isolation Forest, and Dendrogram based Agglomerative Clustering.   

1.3.6   AdaThres: An Adaptive Thresholding Method to Mitigate the False Alarms 

To address the challenge (3), we develop an adaptive thresholding algorithm that can 

mitigate the issue of high FPR. The proposed algorithm applies three scoring mechanisms. 

They are Anomaly Pruning, Sequence Scoring, and Adaptive Thresholding. The model is 

trained on sequential data. Anomaly Pruning gives a score to an individual data point. It 

either rejects or accepts the data points to be considered for Sequence Scoring. This 

Sequence Scoring will give a score to an individual sequence. Finally, an Adaptive 

Thresholding is applied to the cumulative score of all the sequences to detect the anomalous 

nature of the analyzed data. Multiple experiments have been conducted using various 

optimizers to access our proposed approach. Using the proposed approach, we train a deep 

learning-based LSTM algorithm widely adopted for sequential data. Furthermore, we 

validate it with three different datasets of various sizes. 

1.3.7   EA-Net: A Hybrid and Ensemble Multi-Level Approach for Robust Anomaly 

Detection 

As a solution to challenge (4), we design a multi-level hybrid ensemble anomaly 

detection approach. At the First Level, we train several weak classifiers (weak one class 

classifiers). Next, we utilize deep learning-based AutoEncoder to reduce the dimension 

of the dataset. These are the two sets of hybrid features. Next, different one-class 

classifiers have their strength and limitations. Thus, we propose an adaptive weightage 
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approach that gives the weight to each classifier. Next, this input is passed to the second 

level. At this level, we have a deep neural network that learns the patterns of the dataset 

and generates an adaptive dynamic threshold to discriminate the input feature as an 

anomaly or benign. The major benefit of this approach is the reduced training time and 

high anomaly detection rate.  
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CHAPTER 2 

SYSCALL-NET: BEHAVIORAL ANALYSIS OF SYSTEM CALLS USING DEEP 

LEARNING-BASED ALGORITHMS FOR ANOMALY DETECTION 

With the advent of technology, sophisticated malware presents a significant threat to 

computer security. This work proposes anomaly detection techniques that learn three 

different behaviors of windows system-call sequences. We apply Long-Short-Term-

Memory (LSTM) for temporal behavior, Cosine Similarity for frequency distribution 

behavior, and Jaccard Similarity for commonality behavior. The proposed framework 

monitors the processes in a hypervisor-based environment to detect compromised virtual 

machines. System call sequences of normal and malware-infected processes were extracted 

with memory forensic techniques. Our proposed anomaly detection techniques learned the 

above three behavior of the system call sequences with 99% accuracy. 

2.1    Introduction 

Virtualization is popular nowadays in distributed systems due to its usage and applicability. 

Vast resource sharing and load balancing across multiple nodes are the significant 

advantages of virtualization. With the invention of virtualization technologies, hypervisor-

based methods have evolved to scan virtual machines (VMs) and identify threats. Every 

day, new malware is becoming more sophisticated and robust such that traditional malware 

detection techniques are incapable of detecting it and thus fail in protecting the VMs. 

© 2019. Reprinted, with permission, from J Soni, et al., Behavioral Analysis of System Call 

Sequences using LSTM Seq-Seq, Cosine Similarity and Jaccard Similarity for Real-time Anomaly 

Detection. In Proceedings of the 6th IEEE International Conference on Computational Science and 

Computational Intelligence (CSCI), Las Vegas, Nevada, pp. 214-219, Dec 5-7, 2019. DOI: 

https://doi.org/10.1109/CSCI49370.2019.00043 
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This complexity of malware becomes a cyber threat to organizations. To overcome this 

problem, hypervisor-based malware detection techniques have evolved and are 

outperforming compared to guest-based systems. Virtual Machine Introspection (VMI) is 

the most effective host-based malware detection technique to monitor and analyze cyber 

threats on virtual machines [35, 36, 37].  

Anti-viruses and security patches are a few existing security techniques available to prevent 

malicious attacks. Regardless of these techniques, there is still a possibility of unknown 

attacks on the VM due to the delay in installing the latest updates of the anti-virus software 

and security patches. Potential malware attacks are identified by studying the 

characteristics of the program execution, which is known as behavioral analysis [38]. 

System call sequence analysis [8, 39] leads to several behavioral analyses for malware 

detection. 

2.1.1 Summary of Contribution 

We propose a two-dimensional framework to analyze the behavior of the system calls for 

anomaly detection. We analyzed two types of behavior: Temporal and Non-Temporal 

behavior. For temporal behavior, we trained sequential deep learning-based algorithms, 

namely Long Short Term Memory (LSTM). For training the model, only a normal class of 

data was supplied. Next, the non-temporal behavior is analyzed independently by 

evaluating frequency and commonality behavior. We applied Cosine Similarity for 

analyzing frequency behavior and Jaccard Similarity for analyzing the commonality 

behavior.  
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2.1.2 Organization of the Chapter 

Section 2.2 discusses the state-of-the-art techniques related to the current approach. In 

section 2.3, we present an overview of the system call extraction. The feature extraction 

technique for the system call sequence is discussed in section 2.4. We provide an in-depth 

understanding of the proposed anomaly detection algorithms in section 2.5. The 

experimental setup is described in section 2.6. Next, in section 2.7, the results are 

discussed. Finally, we present our conclusions in section 2.8. 

2.2     Related Work 

Host-based malware detection in any production system is crucial for the security of its 

internal hardware and software components. Such host-based frameworks use the 

knowledge of existing malware to detect malicious activities. There are two types of 

malware analysis techniques: static and dynamic. 

The static method analyzes a source file without executing the code [40]. In paper [41], Ye 

et al. developed an Intelligent Malware Detection System (IMDS), which uses an 

association mining algorithm to obtain import function information. In paper [42], Masud 

et al. used the byte level code, containing five different static features extracted from 

assembly instructions. Alarifi and Wolthusen [43] take sequences from a virtual machine 

and then train the model using a Hidden Markov Model (HMM). Their HMM-based 

method gave fewer detection rates since it required fewer training samples. Wang et al. 

[44] use the probability score and threshold value.  
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However, techniques such as polymorphism, encryption, and advanced unknown malware 

are not traceable by static-based anomaly detection methods due to their dynamic 

characteristics. To overcome this limitation, we study the behavioral analysis of the 

process. The basic idea is to analyze the execution sequence of the process. 

Neural networks are extensively used for anomaly detection [45, 46]. Recently deep 

learning-based techniques such as LSTM have been used for improving the anomaly 

detection rate [47, 48, 49, 50]. However, they used a feature-based supervised classifier 

that required pre-labeled malicious data, which inherently limits the detection of any 

unknown attacks [51, 52, 53]. Moreover, their approach needs specific feature engineering 

to generate meaningful feature representations for the supervised classification problem 

[54, 55, 56, 57]. 

Our work proposes three unsupervised anomaly detection approaches by learning different 

behaviors of system call sequences. Our approach utilizes a technique that trains on benign 

(normal) data and checks for unusual activities that differ from normal behavior. Such 

procedures identify unknown attacks on the system. 

2.3     Overview of System Call Extraction Using VMI 

The proposed framework consists of four platforms, namely Virtualization, Advanced 

Cyber Analytics, Test Control Center, and Malware Repository. The following subsections 

outline the details of the individual modules. 

Virtualization Platform: This module uses the VMI API to introspect and perform memory 

analysis. The extracted low-level data from the hypervisor-based virtual machine memory 
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is transferred to the agent listener. Introspection interface with hypervisors to add, delete, 

or control virtual machines. Security agent with LibVMI library performs introspection to 

extract data from the virtual machine and transfer it to the agent listener. Lastly, the data is 

directed to a database server. 

Cyber Analytics Platform: In this module, we fetch data from the database server for data 

preprocessing and analysis. The module comprises of LSTM encoder-decoder algorithm 

to train models on the processed data.  

Test control center Platform: The operator in this module can control different operations 

of the whole framework. The operator can create, delete, stop, or pause the VM. Further, 

the operator can manage VMs by running benign and malware applications.  

Malware Repository Platform: This repository is the database for different multifunctional 

malware for Windows and Linux. 

The security agent extracts system call traces of Processes Under Examination (PUE) from 

the proposed framework. Agent listener stores the collected information in the database 

through a socket established by introspection. System call sequence data is preprocessed 

using feature engineering techniques and analyzed with anomaly detection algorithms. 

We generate malicious data sets of system call sequences through custom DLL injections. 

These custom malware hooks into the functions of the process, where the malware modifies 

system call sequences by adding, deleting, or modifying system calls. The detection 

algorithms need to identify this anomaly in system call sequences. 
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2.4     Feature Extraction Technique for System Call Sequence  

System call sequences of processes under examination are collected from a hypervisor. We 

consider a sequence as a document, and each system call as a word. 

Windows operating system has a total of 450 unique standard system calls. Each system 

call in the sequence is mapped to the corresponding standard system call index that ranges 

from 0 to 449. A sample mapping is shown below. 

SystemCallSequence= [NtQueryVolumeInformationFile, 

NtQueryVolumeInformationFile, NtQueryInformationFile, NtSetInformationFile, 

NtDelayExecution, NtDelayExecution, NtWriteFile, NtClose, NtCreateFile, …] 

The corresponding mapping is as below: 

[73, 73, 17, 39, 52, 52, 8, 15, 85…] 

Next, we create a bag of system calls as a vector of 450 dimensions. The value of the ith 

cell in the vector implies the frequency of the ith standard system call in the entire system 

call sequence. 

2.5     Detection Algorithms Based on Behavioral Aspects 

In this section, we discuss an overview of anomaly detection algorithms, namely LSTM 

Seq-Seq, Cosine Similarity, and Jaccard Similarity, as shown in Figure 2.1. These 

algorithms work well even for high-dimensional data and large training examples. They 

have low runtime computational complexity, crucial for anomaly detection systems. These 

algorithms work in an unsupervised learning mode without any explicit training labels 

during the training phase. 
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Figure 2.1:  Behavior Detection Algorithm 

2.5.1 Temporal aspects: Long Short Term Memory (LSTM) Seq-Seq 

We train the LSTM Seq-Seq model on system calls by considering the system call 

sequences. Figure 2.2 depicts a high-level view of our LSTM training method. First, we 

preprocess the raw system call sequence and then train the LSTM model by optimizing its 

hyperparameters (Number of epochs, Batch size, and Sequence length) for higher accuracy 

and reduced runtime computational complexity. For the training of the LSTM model, we 

consider system call sequences as sentences where each system call in a sequence 

corresponds to a word in the sentence. We implemented sequence to sequence architecture 

with this approach, where we feed the first few system call sequences as input, and the 

trained LSTM model predicts the following system call sequence. 
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Figure 2.2: Overview of LSTM Model Building 

In NLP, we require a vocabulary to convert a sentence into its numerical vector. Similarly, 

we have the vocabulary for the Windows system calls. Let us define S as the system call 

sequence generated by the hypervisor during program execution. We convert this sequence 

into a sequence of numerical values in the range 0 to n-1, where n is the total number of 

unique system calls of the OS environment. The training set consists of m benign system 

call sequences represented as m training vectors. Since all system call sequences have the 

same number of system calls, all training vectors have a fixed number of numeric values 

(say k values). These numeric values correspond to the OS system call indices. For the 

training set of m system call sequences, we represent it as a set of m training vectors:  

𝑇𝑟 =  𝑇𝑟1, 𝑇𝑟2, 𝑇𝑟3, … , 𝑇𝑟𝑚     (2.1) 

 

and represent the test system call sequence as 𝑇𝑒 where 𝑇𝑒 and each 𝑇𝑟𝑖 have k numeric 

values. The neural network of the LSTM encoder generates the hidden state and the output 

with the forward propagation operation as below: 

ℎ𝑡 = (𝑆𝐻𝑋𝑥𝑡 +  𝑆𝐻𝐻ℎ𝑡−1) (2.2) 
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𝑦𝑡 = (𝑆𝑌𝐻ℎ𝑡) (2.3) 

 

The hidden state ℎ𝑡 is the encoded information, and vector c is known as the context vector, 

which is used in the decoder part. The equations for the weight update of an LSTM cell are 

as follows: 

(𝑔𝑡 , 𝑏𝑡−1, 𝑠𝑗−1) → (𝑏𝑡 , 𝑠𝑡)    (2.4) 

𝑦𝑡 = σ (𝑇𝑥𝑖𝑥𝑡 + 𝑇ℎ𝑖𝑝𝑡−1 + 𝑑𝑖)   (2.5) 
𝑓𝑡 = σ (𝑇𝑥𝑓𝑥𝑡 + 𝑇ℎ𝑓𝑝𝑡−1 + 𝑑𝑓)   (2.6) 

𝑜𝑡 = σ (𝑇𝑥𝑜𝑥𝑡 + 𝑇ℎ𝑜𝑝𝑡−1 + 𝑑𝑜)   (2.7) 
𝑔𝑡 =  𝑡𝑎𝑛ℎ(𝑇𝑥𝑐𝑥𝑡  + 𝑇ℎ𝑐𝑝𝑡−1  +  𝑑𝑐)   (2.8) 

𝑐𝑡 = 𝑓𝑡𝑐𝑡−1 +  𝑖𝑡𝑔𝑡)   (2.9) 
𝑘𝑡 = 𝑜𝑡 ∗ 𝑡𝑎𝑛ℎ(𝑐𝑡) (2.10) 

 

In the above equations, 𝑦𝑡, 𝑓𝑡, 𝑜𝑡, and 𝑐𝑡 are the input, forget, output gates, and memory 

cell activation vectors, respectively, σ is a sigmoidal function, and tanh is the hyperbolic 

tangent function. The target sequence is generated by the decoder part of the architecture 

that uses the following conditional probability equation. 

𝑝(𝑦1, 𝑦2, . . . , 𝑦𝑇  | 𝑥1, 𝑥2, . . . , 𝑥𝑖−1) =   ∏  𝑇′

𝑡=1  𝑝( 𝑦𝑇 | 𝑦1, 𝑦2, . . . , 𝑦𝑡−1) 

 

(2.11) 

The above conditional probability needs to be modified as below to include the attention 

mechanism. 

𝑝( 𝑦𝑖  | 𝑦1, 𝑦2, . . . , 𝑦𝑖−1, 𝑋) = 𝑔(𝑦𝑖−1, 𝑠𝑖, 𝑐𝑖) (2.12) 

 

Where 𝑐𝑖 is the context vector used by the attention mechanism during the training period. 
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𝑐𝑖 =  ∑ 𝑎𝑖𝑗  . ℎ𝑗 
𝑇𝑥

𝑗=1
 

 

(2.13) 

Where 𝑎𝑖𝑗 is the coefficient of the 𝑖𝑡ℎ hidden state at time step j. 

2.5.2 Frequency aspects: Cosine Similarity 

Cosine similarity measures the cosine angle between two numerical vectors. The following 

Euclidean distance method is used: 

𝐴. 𝐵 = ‖A‖ ‖B‖ 𝑐𝑜𝑠𝜃 (2.14) 

 

Cosine similarity between two n-dimensional vectors A and B is calculated as cos(θ): 

Similarity = cos(θ) =  
A.B

‖A‖ ‖B‖
 =  

∑ AiBi
n
i=1

√∑ Ai
2n

i=1 √∑ Bi
2n

i=1

 

 

(2.15) 

where Ai and Bi are the features of the vectors. 

We developed the following anomaly detection algorithm that uses the cosine similarity to 

detect anomalies at a particular time window in the process under examination. 

Algorithm 1 Anomaly Detection Algorithm using Cosine Similarity 
Input: Normal and Test System Call Sequence 
Output: TestSeq, Similarity_Value 
  1: for system call sequence of normal and malicious process do  
  2:     Convert System Call Name to System Call Number using Mapping Table  
  2:     𝐵𝑂𝑊𝐵𝑎𝑠𝑒𝑃𝑟 = Bag-of-words for normal process 
  3:     𝐵𝑂𝑊𝑇𝑒𝑠𝑡𝑃𝑟= Bag-of-words for malicious process 
  4:     𝐵𝑎𝑠𝑒𝑙𝑒𝑛𝑔𝑡ℎ = length(Sequence list of Normal Process) 

  5:     𝑇𝑒𝑠𝑡𝑙𝑒𝑛𝑔𝑡ℎ = length(Sequence list of Test Process) 

  6:     𝑀𝑖𝑛𝑙𝑒𝑛𝑔𝑡ℎ = minimum (𝐵𝑎𝑠𝑒𝑙𝑒𝑛𝑔𝑡ℎ , 𝑇𝑒𝑠𝑡𝑙𝑒𝑛𝑔𝑡ℎ) 

  7:     for 𝑖 = 0 to 𝑤𝑖𝑛𝑑𝑜𝑤𝑙𝑒𝑛𝑔𝑡ℎ  do  

  8:          𝐵𝑎𝑠𝑒𝑆𝑒𝑞  = 𝐵𝑂𝑊𝐵𝑎𝑠𝑒𝑃𝑟 [𝑖 ∶ 𝑖 + 𝑤𝑖𝑛𝑑𝑜𝑤𝑙𝑒𝑛𝑔𝑡ℎ] 
  9:          𝑇𝑒𝑠𝑡𝑆𝑒𝑞   = 𝐵𝑂𝑊𝑇𝑒𝑠𝑡𝑃𝑟    [𝑖 ∶ 𝑖 +  𝑤𝑖𝑛𝑑𝑜𝑤𝑙𝑒𝑛𝑔𝑡ℎ] 
10:         𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒 = (𝐶𝑜𝑠𝑖𝑛𝑒_𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐵𝑎𝑠𝑒𝑆𝑒𝑞 , 𝑇𝑒𝑠𝑡𝑆𝑒𝑞)) 
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11:            if 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒 < 0.99 then 
12:                Test Sequence is Anomalous 
13:            end if 
14:      end for 
15: end for 
 

We used different fixed window lengths and compute the cosine similarity for each window 

length. The test process is considered anomalous if a particular window has a similarity 

value of less than 0.99. From an example of the above algorithm shown in Figure 2.3, we 

observe that among the cosine similarities between normal and malicious sequences of three 

windows, the second window has a low similarity value since malicious test vectors have 

infected it. 

 

 
 

Figure 2.3: Anomalous window detection 
 

2.5.3 Commonality aspects: Jaccard Similarity 

Jaccard similarity is the ratio of the length of the intersection of two sets to the length of the 

union of the same two sets. Given two sets, X and Y, its Jaccard similarity is calculated as: 

𝐽(𝑋, 𝑌) =   
| 𝑋 ∩ Y |

| 𝑋 ∪ Y |
 

(2.16) 

 

We developed the following anomaly detection algorithm that uses the Jaccard similarity to 

detect anomalies in the process under examination on Windows VM. 
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Algorithm 2 Anomaly Detection Algorithm using Jaccard Similarity 

Input: Normal and Test System Call Sequence 
Output: Similarity_Value 
  1:     Convert System Call Name to System Call Number using Mapping Table  
  2:     𝐵𝑎𝑠𝑒𝑈𝑛𝑖𝑞𝑢𝑒𝑆𝐶 = {Unique System Call of Normal Process} 

  3:     𝑇𝑒𝑠𝑡𝑈𝑛𝑖𝑞𝑢𝑒𝑆𝐶 = {Unique System Call of Test Process} 

  4:     𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑙𝑖𝑠𝑡 = 𝐵𝑎𝑠𝑒𝑈𝑛𝑖𝑞𝑢𝑒𝑆𝐶 ∩ 𝑇𝑒𝑠𝑡𝑈𝑛𝑖𝑞𝑢𝑒𝑆𝐶 

  5:     𝑈𝑛𝑖𝑜𝑛𝑙𝑖𝑠𝑡 = 𝐵𝑎𝑠𝑒𝑈𝑛𝑖𝑞𝑢𝑒𝑆𝐶 ∪ 𝑇𝑒𝑠𝑡𝑈𝑛𝑖𝑞𝑢𝑒𝑆𝐶 

  6:     𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒 = length (
𝐼𝑛𝑡𝑒𝑟𝑠𝑒𝑐𝑡𝑖𝑜𝑛𝑙𝑖𝑠𝑡

𝑈𝑛𝑖𝑜𝑛𝑙𝑖𝑠𝑡
) 

  7:     if 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒 < 0.99 then 
  8:          Anomalous 
  9:     end if 
 
Jaccard Anomaly Detection algorithm works well irrespective of the size of the system call 

sequence. Since its result depends only on the unique system calls of normal and test data, 

the ratio of the intersection of unique system calls to the union of unique system calls of 

these two datasets is not affected by the variability of the length of system call sequences. 

 

2.6     Experimental Setup 

The proposed framework runs on Xen 4.12 hypervisor with libvert 5.4.0 library to manage 

virtual machines. In the current implementation of this framework, the modules 

Introspector and Security Agent extract and process the system call information. System 

call traces were collected from inspecting the VM process under examination. System call 

features are extracted with LibVMI library in combination with rekall profiles of Google. 

This rekall profile is a file in JSON that comprises memory mappings and offsets of 

Windows data structures and other resources. The above-specified modules, i.e., 

Introspector and Security agent, are written in Go Language to process the request and 

extract the system call traces from VM with LibVMI functions. The LibVMI library 



25 

 

handles introspection requests. The Libvirt library allows to create, start, and stop of virtual 

machines of Windows. 

2.7     Results 

The following subsections discuss the results of the LSTM Seq-Seq, Cosine Similarity, and 

Jaccard similarity algorithm. 

2.7.1 Result analysis of LSTM Seq-Seq Model 

We obtained system call sequences through the hypervisor and implemented LSTM Seq-

Seq architecture to detect anomalies by considering the temporal ordering of system calls. 

We tune up the following hyper-parameters for the LSTM model: 

 Sequence length: It is the length of the last processed system call sequence,  used 

as input to predict the adjacent next set of system call sequences. 

 Epochs: Number of iterations, a model passes through the entire data for training. 

 Batch-size: Number of system call sequences passed to the LSTM network in a 

single iteration. 

To evaluate the model, we define accuracy as:  

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑎𝑙𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠

 𝑡𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑎𝑙𝑙 𝑠𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑠 𝑝𝑒𝑟𝑓𝑜𝑟𝑚𝑒𝑑
 

(2.17) 

 

We trained the LSTM model with an Adam optimizer and categorical cross-entropy as a 

loss metric. We found that a batch size of 256 gives higher accuracy. 
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Figure 2.4 and Figure 2.5 show the accuracy and loss for different sequence lengths with 

batch sizes of 256 and epochs of 100. We found that the model trained with a sequence 

length of ten has the lowest loss and highest accuracy as listed in Table 2.1 and 2.2 . Our 

trained model gives 97% accuracy with a loss of 0.08. 

Table 2.1: Accuracy with Windows Size 

Window Size Accuracy 

 3 0.94 

10 0.97 

15 0.96 

 

Table 2.2: Loss with Windows Size 

Window Size Loss 

3 0.20 
10 0.08 
15 0.10 

 

 

Figure 2. 4: Accuracy with Epoch for Individual Sequence Length 

 
Figure 2. 5 : Loss with Epoch for Individual Sequence Length 
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From Figure 2.6, we observe that the time required for a neural network to train for one 

epoch increases with increasing sequence length. 

 

Figure 2.6: Time per Epoch for Individual Sequence Length 

Our optimized LSTM model is trained with the benign data of a PUE. We find that the 

model gives 93% accuracy for benign test data and 0.02% for malicious test data during the 

testing phase. 

2.7.2 Result analysis of Cosine Similarity anomaly detection algorithm 

We trained a Cosine Similarity algorithm with the sequence size of 300K (maximum 

sequence length of an application) system calls. Figure 2.7 depicts the seven most frequently 

occurring system calls (NtDelayExecution, NtQueryVolumeInformationFile, NtClose, 

NtCreateFile, NtQueryInformationFile, NtWriteFile, NtSetInformationFile) of benign PUE 

(benign data) and corresponding system call frequency of the malicious PUE(malicious 

data). 
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Figure 2.7: Top Seven SystemCalls in Benign and Malicious Data 

We tested this algorithm in the following two scenarios. Since this algorithm is based on the 

frequency of the system call, it requires both benign and malicious data to be of the same 

length. We divided the sequence into windows of system calls, each with a length of 1000 

system calls. This feature allows detecting anomalies at any particular time frame. 

First Case: We compared two different benign system call sequences, each of size 300k 

system calls. 

 

Figure 2.8: Cosine Similarity for Benign Data 

From Figure 2.8, we observe that the cosine similarity between two different benign 

sequences ranges from 0.84 to 1.00. It means the two sequences are 84% to 100% similar. 

Second Case: We compared a benign system call sequence with a malicious system call 

sequence generated through malicious test vectors. 
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Figure 2.9: Cosine Similarity for Malicious Data 

Malicious test vectors were injected for a short duration only at the beginning of the data 

collection. From Figure 2.9, we notice that the Cosine Similarity algorithm can easily 

capture the malicious activities by giving low similarity for that earlier time frame that was 

influenced by the malicious test vectors. 

2.7.3 Result Analysis of Jaccard Similarity anomaly detection algorithm 

The Jaccard Similarity anomaly detection algorithm considers the uniqueness of system 

call sequences rather than the frequency count of the system calls. 

From Figure 2.10, we confirm that Jaccard similarity works well irrelevant of the size of 

both benign and malicious sequences. Additionally, it gives low similarity for malicious 

sequences and high value for benign sequences. 

 

Figure 2.10: Jaccard Similarity 
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2.8     Conclusion 

In this chapter, we presented the implementation of anomaly detection techniques by 

considering temporal, frequency, and commonality behaviors of system-call sequences. 

We applied LSTM sequence-to-sequence for temporal behavior, Cosine Similarity for 

frequency behavior, and Jaccard Similarity for commonality behavior to detect anomalies 

in a process under examination using system-call sequences of the process. These detection 

algorithms perform well in detecting anomalies from previously unseen data and across 

multiple machine configurations. 

Among these three anomaly detection algorithms, Jaccard Similarity captures the least 

number of characteristics of the system call sequence while the algorithm's complexity is 

straightforward. Hence, its similarity result is very primitive in detecting anomalies. This 

algorithm is suitable only for coarse-level analysis. 

LSTM seq-to-seq trains with several overlapped subsequences of the input system call 

sequence from the other two anomaly detection algorithms. Therefore, it provides a fine-

grained detection of anomalies. On the other hand, it requires a long training period to learn 

the temporal behavior of the system call sequence. The Cosine Similarity algorithm detects 

anomalies reasonably well with improved accuracy than the Jaccard Similarity algorithm 

but is less fine-grained than the LSTM seq-to-seq algorithm. 

From our experiments, we recommend using Cosine Similarity in the first phase of 

anomaly detection to find out the susceptible anomaly window time frames. For further 

fine-grained insights into these susceptible anomaly windows, apply LSTM seq-to-seq 
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algorithm. This approach will reduce the overall analysis time and improve anomaly 

detection accuracy. 
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CHAPTER 3 

P-BOSC: AN EXTENSION OF BAG OF SYSTEM CALL TECHNIQUE FOR 

DETECTION OF ANOMALOUS POINTS 

With the rapid growth in technology, the impact of malware on the crucial system of 

computers has increased at an alarming rate. In this chapter, we utilized the Natural 

Language Processing technique, namely Bag of Words, and proposed an anomaly detection 

method. Each system call is considered as a single word. The proposed approach trains the 

model to learn the normal behavior of the processes running on virtual machines. We utilize 

virtual memory introspection to extract the sequence of system calls for the normal 

processes and malware-infected processes. Through data processing techniques such as 

filtering and redundancy removal, the extracted sequences are processed. The proposed 

algorithm employs cosine similarity for anomaly detection purposes. As an extension to 

this, we also proposed a novel window detection algorithm to detect the anomalous 

sequence window. Through experimental results, we achieved an anomaly detection rate 

of 99%. 

3.1     Introduction 

In today's world, there is an ever-growing usage of the distributed systems. Virtualization 

is one of the major components of such a system. Applicability is one of its popular reason. 

Virtualization protects the resources of the running systems, performs load balancing 

operations, and manages the sharing of the resources. Due to these reasons, numerous 

hypervisor-based approaches have been developed to scan virtual machines for threat 

detection. Currently, malware has become very sophisticated such that the current detection 
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methods fail to detect it, and ultimately the virtual machines are compromised. Thus, 

several cyber threats need to be mitigated to protect expensive resources and sensitive data 

by numerous industries and organizations. The virtual memory introspection technique is 

most widely used at the hypervisor level to capture the running states of virtual machines, 

which is also used for memory forensic analysis [34, 35, 36]. 

The frequency-based approach is used by Kang et al. [58]. The sequence of system calls S 

is represented as a list { M1, M2. . . Mn } in this approach, where the count of distinct system 

calls are represented by n and Mi represents the total count of an ith system call in a single 

sequence.  

Natural Language Processing based Bag-Of-Words (BoW) is very popular for text analysis 

purposes. In our context, we examine the richness of BoW by considering every system 

call as a single word for sequence analysis purposes. Based on this, we proposed an 

anomaly detection algorithm that can detect a window of the sequence which is malicious. 

The experimental results depict that analysis of system call sequences for detecting 

anomalies in the processes running on the hypervisor provides accurate detection. 

The rest of the chapter is organized in the following way. Related work to the area of 

anomaly detection using system calls is discussed in section 3.2. The system overview is 

explained in section 3.3. Extraction of the features and pre-processing techniques are 

discussed in section 3.4. In section 3.5, the proposed window anomaly detection algorithm 

is described in detail. Section 3.6 gives an overview of the environmental setup. 

Experimental results with in-depth discussion are performed in section 3.7, with the 

conclusion in section 3.8. 
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3.2     Related Work 

In a production-based system, to secure the software and its different components, it is 

imperative to classify and detect the malware. Two different types of analysis are widely 

researched in this area. They are static analysis and dynamic analysis. With the increase in 

threat through robust malware, there is a considerable growth of research in the area of 

anomaly detection. 

The source files are analyzed directly without any execution in the static method of analysis 

[40]. Ye et al. [41] generate different association-based rules by employing an association 

mining algorithm. This leads to the development of Intelligent Malicious code Detection 

System (IMDS), which generates the information pertaining to the import function. Finally, 

a rule-based classification algorithm was used for malware detection. Assembly-based 

instructions were used by Masud et al. [42], which were then transformed to bytecodes of 

4-gram. Furthermore, five unique static features were generated using feature engineering 

techniques. Finally, two machine learning-based classification algorithms, namely decision 

trees and support vector machines, were trained to classify malware. Nonetheless, there 

are some limitations to the static analysis approach. They are polymorphism, encryption, 

and many others. The analysis of the behavior of the application is termed dynamic 

analysis. Its overall idea is to examine the process during its execution [38]. This 

overcomes the limitations of static approaches. 

Hidden Markov Models (HMMs) based classifiers are being utilized by many researchers 

currently for anomaly detection using system call sequences [12, 46]. To improve the 

precision rate and achieve a high detection rate, each author proposes a distinct variety of 
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methods and techniques. HMMs trained by Alarifi and Wolthusen [43] utilize the 

sequences of system calls generated from VMs. Since their approach requires only a few 

examples to train HMM model, the detection rate was very low. Threshold Value followed 

by the probabilistic scoring of the sequence is analyzed by Yeung et al. [59]. Multi-layer 

anomaly detection model based on the sliding window technique is proposed by Hoang et 

al. [60]. Detection of an anomaly in the operations performed at user-level privileges is 

experimented with through HMMs by Cho et al. [14]. An extensive comparative analysis 

of HMMs, RIPPER [43], and STIDE [8] is performed by Warrender et al. [9]. Every method 

has its unique characteristics in terms of performance measurements. The storage 

requirement is very high for considerable sequence length during the training of HMMs. 

Furthermore, the need for heavy computational power increases with an increase in the 

multiple passes of the data. Modeling based on time series has been performed [56,71]. In 

another line of work, the distinct process of the kernel modules is being analyzed with the 

extraction of a sequence of system calls called kernel state modeling (KSM). First, it 

calculates the total count of states in the malicious sequences, followed by probability 

computation. Next, the comparative analysis is performed with the normal traces to analyze 

the deviation. For the UNM dataset, the detection rate of KSM is higher than HMMs. 

Various embedding based on the neural network is being utilized for the data with one 

dimension to extract multiple features [57, 61, 51, 48]. For multi-dimensional datasets, 

authors in [63, 64, 65, 66] developed learning-based approaches for the extraction of the 

features.   
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3.3     System Overview 

In this section, we discussed the implementation of the proposed framework. This includes 

the approach of extraction of system call sequences using a technique based on VMI with 

its analysis. Various traces of system calls during a process execution are collected, and 

the anomalous behavior of such a process on a VM is analyzed. The proposed framework 

consists of Architecture, Operational Methodology, and the development of custom 

malware. 

3.3.1 Architecture 

The architecture of the proposed anomaly detection framework comprises four unique 

components: Virtualization, Data Analysis, Malware Log, and Control Center. At a high 

level, it performs the introspection of memory to extract the features, perform advanced 

analysis and finally visualize the results. 

Individual modules with their sub-components are explained in the following sub-sections. 

Virtualization: In this module, VMI API is employed on VMs for memory forensics and 

smart memory introspection. Introspect and CyberAgent are two sub-components of this 

module. 

Introspect: It scans the VM's (operating on a hypervisor) memory to extract the essential 

data from low-level. This data is exported to the listener for analysis purposes. There is an 

interface between hypervisor and introspect. This allows complete control of the various 

states of the VMs. Some of the states are Run, Stop, and Shut-Down. 
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CyberAgent: It utilizes the LibVMI library to initiate the introspection of the memory. The 

primary objective is to mine the different data structure of memory from the virtual 

machines and transfer it to the analytics for analysis. This agent has a wide variety of 

capabilities. Such as initiation of the scans on the processes, extraction of invariant 

structures, and monitoring changes in the file. 

Data Analysis: In this module, we have several learning-based algorithms utilized to train 

the model. Next, the prediction is performed on the test dataset using the trained model. 

Here, the data extracted during the normal behavior of the process is viewed as baseline 

data, and malware-infected process data is considered malicious or test vector data. 

Introspect module is used to extract these datasets and store them in the database for 

analysis purposes. 

Malware Log: It comprises a numerous variety of malicious vectors which are used to 

manipulate the data structures at the kernel level. It contains malware for both Windows 

and Linux.  

Control Center: This module provides an extensive user interface for a user to control and 

manage the whole framework architecture. Several VMs operations such as create, delete, 

and so on can be handled from this module. Furthermore, it can be used to execute the 

benign and malicious test vectors on the running VMs. The visualization of the results 

obtained through the data analysis module can be easily monitored by the user. 
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3.3.2 Proposed Methodology 

The traces of the system calls are collected using the introspect and cyber agent module, 

which scans the memory of the running VMs. The listener collects the recorded 

information and stores it in the database. Furthermore, various one-class-based anomaly 

detection algorithms are trained using the collected data. The user can send a request to the 

introspect to control the VMs during the extraction of the system call traces. 

To manipulate the sequences of the system calls, custom test vectors are developed by 

employing the method of DLL injection. Numerous distinct system calls with a particular 

frequency range are injected into the processes by creating a file hidden on the disk.  

3.4     Feature Engineering  

A method based on angle similarity is employed to analyze the behavior of the process. 

We utilize the total frequency of each system call in the sequences of a particular rather 

than considering the temporal nature of the sequences. In this work, we developed a 

technique based on the angle similarity, which is heavily used in NLP text classification. 

Here, each system calls sequence is emphasized as a single document, and its unique 

system call is considered a single word. The benign sequence of system calls is extracted 

during the normal behavior of the process running on a Xen Hypervisor. Table 3.1 depicts 

the short sample sequence of extracted system calls. 

Table 3.1: Sample Sequence 

System Call Data 

NtOpenKey 

NtQueryKey 

NtSetInformationFile 
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NtQueryValueKey 

NtQueryKey 

NtQueryKey 

NtClose 

: 

: 

 

For analysis using the proposed algorithm, every individual system call needs to be 

converted into its corresponding numeric mapping number. In windows, the total amount 

of system calls that are unique is 450. Thus, each system call name will be converted into 

an integer number between 0 to 449. A sample conversion is described in Table 3.2. 

Table 3.2: Numeric Mapping of System Calls 

NtOpenKey NtQuery

Key 

NtSetInfor

mationFile 

NtQuery

ValueKey 

NtQuery

Key 

NtQuery

Key 

NtClose 

18 22 39 23 22 22 15 

 

Next, each sequence is converted to 450-dimensional vector data. This approach is called 

Bag of System Calls, where the value in each cell represents the total number of system 

calls of the ith column. Table 3.3 shows the transformed version of the extracted sequence 

of system calls. 

Table 3.3: Vector of Frequencies 

0 1 2 3 4 5 6 7 … 448 449 

1 0 0 0 6 10 17 0 … 0 0 
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3.5     Proposed Algorithm 

The proposed anomaly detection algorithm uses the transformed format of the benign and 

test vector processes and calculates the cosine similarity between them. This similarity 

computes the cosine angle. 

As shown in equation 3.1, the Euclidean dot product is utilized to calculate the cosine angle 

between two vectors.   

𝐴. 𝐵 = |𝐴||𝐵| cos 𝜃 (3.1) 

 

The cosine similarity value for two m dimensional vectors X and Y is computed using cos(θ) 

function as shown below: 

  𝑠𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦 = cos(𝜃) =  
𝑋. 𝑌

‖𝑋‖‖𝑌‖
=  

∑ 𝑋𝑖𝑌𝑖
𝑚
𝑖=1

√∑ 𝑋𝑖
2𝑚

𝑖=1 √∑ 𝑌𝑖
2𝑚

𝑖=1

                                                     
(3.2) 

 

3.5.1 Anomaly Detection Algorithm 

This section explains the proposed algorithm that analyzes the process running on VM on 

a particular hypervisor to detect the anomalies.  

 Algorithm 1 takes as an input the sequence of system calls of the normal and the test vector 

processes and the system call mapping table. It gives processes that are anomalous as an 

output.  

Algorithm 1 Anomaly Detection Algorithm  
Input: System Call Sequence of Baseline and Test Processes, Mapping Table (M) 
Output: Anomalous Process 
  1: for sequences of baseline process 𝐵(𝑃𝑖) = (𝑃1, 𝑃2, … 𝑃𝑛), do  



41 

 

  2:     Transform System Call Name to Unique Number  
  3:     𝐵𝑂𝑆𝑐𝐵𝑎𝑠𝑒𝑃𝑟 = Bag-of-SystemCalls for normal process 
  4: end for 
  5: for test processes 𝑇(𝑃𝑖) = (𝑃1, 𝑃2, … 𝑃𝑛) do  
  6:     𝐶𝑃𝑟 = 𝐵(𝑃𝑖) ∩  𝑇(𝑃𝑖) 
  7:      Transform System Call Name to Unique Number for test process in  𝐶𝑃𝑟 

  8:     𝐵𝑂𝑆𝑐𝐶𝑃𝑟
 = Bag-of-words for test process 

  9: end for 
10: for combined test processes 𝐶𝑃𝑟(𝑃𝑖) = (𝑃1, 𝑃2, … 𝑃𝑛) do  

11:     if 𝐵𝑂𝑆𝑐𝐶𝑃𝑟
  ≠ M (t) then 

12:         𝐶𝑃𝑟(𝑃𝑖) is anomalous 
13:     else 

14:          𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒 = (𝐶𝑜𝑠𝑖𝑛𝑒_𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(𝐵𝑂𝑆𝑐𝐵𝑎𝑠𝑒𝑃𝑟 ,𝐵𝑂𝑆𝑐𝐶𝑃𝑟
)) 

15:          if 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒 < 0.99 then 
16:              𝐶𝑃𝑟(𝑃𝑖)  is Anomalous 
17:          end if 
18:     end if 
18: end for 
 
The algorithm converts the sequence of all normal processes into the Bag of system calls. 

The same transformation is applied to all the test processes. Next, the cosine similarity is 

checked between each normal and test process. If the cosine similarity value is less than 

0.99, it is considered anomalous and returns as an output. 

3.5.2 Anomalous Window Detection Algorithm 

This section discusses the proposed algorithm that can detect the anomalous window in a 

sequence. This allows us to check what part of the sequence the attack occurs. 

Algorithm 2 Anomalous Window Detection Algorithm  
Input: Anomalous Process, sequence length  
Output: Anomalous Window  
  1: for Anomalous Processes 𝐴(𝑃𝑘) and Base Process 𝐵(𝑃𝑘) do  
  2:     for k in range (len (BoSC[𝐴(𝑃𝑘)] - 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑙𝑒𝑛𝑔𝑡ℎ] do 

  3:         Sequence(𝐵(𝑃𝑘)) = BoSC[𝐵(𝑃𝑖)] [𝑘 ∶ 𝑘 +  𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑙𝑒𝑛𝑔𝑡ℎ] 
  4:         Sequence(𝐴(𝑃𝑘)) = BoSC[𝐵(𝑃𝑖)] [𝑘 ∶ 𝑘 +  𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑙𝑒𝑛𝑔𝑡ℎ] 
  5:          𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒 = 𝐶𝑜𝑠𝑖𝑛𝑒_𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦(Seq(𝐵(𝑃𝑘))  ,Seq(𝐴(𝑃𝑘))) 
  6:          if 𝑆𝑖𝑚𝑖𝑙𝑎𝑟𝑖𝑡𝑦𝑉𝑎𝑙𝑢𝑒 < 0.99 then 
  7:              Sequence(𝐴(𝑃𝑘)) is Anomalous 
  8:          end if 
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  9:     end for 
10: end for 
 

Algorithm2 takes the anomalous process detected by Algorithm1 and the sequence length. 

Next, it divides the sequences of anomalous and base processes into a batch of sequences 

followed by their transformation into a Bag of System Calls. Finally, the cosine similarity 

value is computed between the individual batches of the base and anomalous process 

sequences. If the cosine similarity value is < 0.99, then that batch of the sequence is 

considered anomalous. Figure 3.1 shows the sample example. 

 

Figure 3. 1: Cosine Similarity Between Batches 

3.6     Environmental Setup 

Xen hypervisor is used in the development of the proposed framework. Libvirt library is 

used for controlling virtual machines. Next, the DRAKVUF library is used to get the virtual 

addresses of the memory during the execution of the processes. We have CyberAgent and 

Introspect modules in the current operation of the proposed framework. They use Google's 

recall profile with the DRAKVUF and employ the LibVMI library for extracting the traces 
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of the system calls. Furthermore, it is used to control and manage the VMs running on 

Windows. The recall profile contains several kernel features of the data structures 

pertaining to the windows and is in the JSON format. GO language is used to develop those 

two modules. Microsoft VS.Net is used to develop the main application, containing user-

specific API calls for initiating the communication. Next, the extracted data is stored in the 

database server using the agent. Lastly, the data is studied using advanced learning-based 

algorithms. Figure 3.2 depicts the overall framework. 

 

Figure 3.2: Environmental Framework 

3.7     Results Analysis 

The experimental results from the anomaly detection algorithm are conversed in this 

section. 

3.7.1 Anomalous Process Detection Algorithm 

The proposed algorithm is evaluated with the sequence of 1.5M system calls. We have 450 

unique system calls in the operating systems running under windows. The top 5 unique 

system calls with their counts for the benign and anomalous processes are depicted in 

Figure 3.3 and 3.4, respectively. We notice the difference between the frequencies of the 
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system calls of the normal process and the malicious process. Table 3.4 depicts the cosine 

similarity value of individual processes. From the experimental results, we deduct that the 

similarity value is lower for the malicious process than the normal processes. 

Table 3.4: CS Evaluated Results 

Application Type Normal Malicious 

Cosine Score 0.99 0.20 

 

 

Figure 3.3: Top System Calls with highest frequency in Baseline Data 

 

Figure 3.4: Top System Calls with highest frequency in Test Data 
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Furthermore, the proposed anomaly detection algorithm is not impacted by the arbitrary 

length of the sequence. This representation is depicted in figure 3.5. We perceive the 

similar cosine similarity value regardless of the sequence length. 

3.7.2 Anomalous Window Detection Algorithm 

We discuss the experimental results of the anomalous window detection algorithm in this 

section. Sequence length is one of the input parameters of this algorithm. Thus, we perform 

the experiments with varying sequence lengths. Based on Figure 3.6, we find that the 

sequence length with five system calls provides the optimal detection rate. 

 

Figure 3.5: Cosine Similarity between Normal and Malicious Process 

 

Figure 3.6: Cosine Similarity with Sequence Length 

We also evaluate the proposed algorithm by running the processes with different scan 

times. Based on the experimental results showed in Figure 3.7, we observed that the cosine 
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similarity value is regularly consistent for the sequence length of 5, even when the scan 

times are different. 

 

Figure 3.7: Cosine Similarity with varying scan duration 

 

3.8     Conclusion 

Various intrusion detection-based algorithms are developed with the hypothesis that the 

normal system routines differ vastly from the malicious or abnormal routines. The normal 

behavior of the program is learned by the anomaly detection algorithms. One behavior is 

the count of the occurrence of the system call executed by the process during its execution. 

Such sequences change with the interference of the malware, and thus it is one of the vital 

data structures for anomaly detection. In this chapter, we propose two algorithms for 

anomaly detection. These algorithms use natural language processing-based analysis to 

detect an anomaly in the process. Based on the frequency behavior of the sequence, the 

cosine similarity value is calculated by transforming the sequence of system calls to Bag 

of System calls. The first algorithm detects whether the process is anomalous or not, and 

the second algorithm identifies the specific window in the anomalous process. Based on 

the experimental results, we achieved an anomaly detection rate of 99%. 
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CHAPTER 4 

DYNA-B: AN ENHANCED AND DYNAMIC BATCH SIZE TUNING FOR LSTM 

NEURAL NETWORK 

In a wide variety of domains, it has been experimented that deep neural networks can be 

trained with increasingly large batch sizes without the loss of efficiency. However, such 

massive data parallelism differs from domain to domain. It is challenging computationally 

to train large deep neural networks on big datasets. To tackle these issues, there has been a 

surge in interest in utilizing large batch size values during the optimization part. A large 

batch size allows the training of deep neural networks faster. This enables developers and 

researchers to perform distributed processing. On the other hand, such utilization of large 

batch size during training possesses a very well-known problem called 'generalization gap' 

inducing the degradation in the performance across multiple datasets. There is minimal 

understanding of finding the optimal batch size value. 

To address this problem, we present an adaptive tuning algorithm that can change the batch 

size adaptively. The proposed algorithm consists of four stages: Gradient Warmup, Loss 

derivation, calculating the weighted loss with the historical batch size, and finally updating 

the batch size. We showcase its superior performance compared to the traditional constant 

batch size approach. We make the comparison with multiple system call datasets with 

varying sizes.  
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4.1     Introduction 

For large-scale empirical risk minimization, mini-batch stochastic gradient descent with its 

variants is the standard for the training of deep neural networks. These approaches are 

utilized with constant batch size values to evaluate empirical value. The determination of 

the variance in the estimates of the gradients is performed by the stochastic gradient 

descent (SGD) optimization algorithm. The behavior of this algorithm is impacted heavily 

by the batch size value. Also, during the process of optimization, the variance changes with 

constant batch size. This results in instability and non-convergence of the model to an 

optimal rate. 

SGD and its variants are heavily used for the training purpose of the deep learning models. 

Such models need a large amount of data for training, and also such networks are oversized 

by design. Thus, the training dataset is divided into a series of fixed-size batches as an 

implementation. During the training, every batch is processed in sequence in every epoch. 

The individual samples of a single batch can be processed and trained parallelly [66, 67].  

Currently, during the training of the neural network, the user typically chooses a static 

batch size b, which remains constant throughout the process. However, there are two 

crucial conflicts with this approach. Firstly, a small batch size value is essential because it 

allows the model to converge to the global optimal value. Secondly, a large batch size value 

improves the utilization of computational resources efficiency. Therefore, it is vital to have 

a trade-off between the values of batch size as being small or large during the training of 

the model.  
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4.1.1  Summary of contribution 

We developed an automated batch size learning algorithm that dynamically changes the 

value of the batch size during training the model. We also developed a brute force method 

to compare the efficacy of the developed algorithm. Three different datasets are being used 

to evaluate the proposed algorithm. Each dataset selected for the evaluation is of varying 

sizes. 

4.1.2  Organization of the chapter 

In section 4.2, we discuss the related work in the area of batch size. Next, in section 4.3, 

we define and explain the problem formulation. Next, Gradient Descent and its variants are 

defined in section 4.4. The datasets used for the experiment purpose are described in 

section 4.5. In section 4.6, we discuss the metrics used to evaluate the model. The brute 

force algorithm implementation is described in section 4.7. The proposed dynamic batch 

size algorithm is explained in depth in section 4.8.  The experimental results are discussed 

in section 4.9 with the conclusion in section 4.10.  

4.2     Related Work 

Dynamic updating of batch size has attracted significant attention recently. The variance 

of the gradient is utilized by Friedlander et al. [68] to derive a series of decreasing bounds. 

Their proposed approach converges faster and proves that an increase in batch size can 

replace the variability in the learning rate parameter. To prove it experimentally, they 

increase the batch size value to a constant factor (pre-specified) in each iteration without 

using a gradient estimate. 
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The closest to our work is performed by De et al. [69]. They use the estimate of the variance 

in the gradient. Defazio et al. [70] proposed SAGA, which aims to utilize the information 

of the gradient from the previous iteration to reduce the stochastic gradient's variance. 

Furthermore, their work examines the convergence behavior in terms of theoretical and 

empirical aspects of the convex optimization problems. Daneshmand et al. [71] combine 

various variance reduction methods with varying the sample size of the batch value. The 

limitation is that the sample size must be predefined before the training of the neural 

network model and is not dynamic at runtime. 

However, for a particular dataset and a model, there is very little information as to how to 

set the batch size value. Also, how the value differs with different datasets and models. 

Researchers and developers simply experiment with varying batch sizes and see which 

value works the best. The downside of this approach is that it requires lots of experiments 

that need computational power and require careful tuning of the algorithm.  

Our work performs the dynamic tuning of the batch size value in a two-step process: First, 

based on the loss generated after every batch of the input data passed, and secondly, 

perform the exponentially weighted sum of the historical loss to calculate the value for the 

subsequent batch size. 

4.3     Problem Formulation 

User processes interact with the operating system in the kernel mode. During the execution 

of the program, a piece of code is compiled. To execute the code, system calls are made. 

In this scenario, a sequence of system calls is a behavior of process interaction. If an 

intruder wants to manipulate the program, the sequence of the system calls will change. 
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Thus, to capture an anomaly in the process, it is essential to learn its sequence of system 

calls during the normal behavior. Various learning-based algorithms can learn the 

sequential data. We employed a deep learning-based Long Short Term Memory algorithm 

since it learns and captures long-term dependencies. Many hyperparameters need to be 

tuned. Below are a few of those hyper-parameters. 

1) Number of layers: Total number of hidden layers. 

2) Number of nodes: Total number of LSTM nodes in each layer. 

3) Epoch: Total number of times, a dataset is passed to the model. 

4) Batch size: Total number of data points, the model uses as a group to compute the 

loss and then update the weights. 

Figure 4.1 shows the problem outline. The sequence of system calls is converted to a 

numeric format. LSTM model learns the function F of the mapping input sequence to the 

output sequence.  

Let us say hypothetically that we have a sequence of 90 system calls. Then, we first convert 

it into input and output sequences. Each input and output have a length of 10 (called 

window size). Window size is the number of data points that are processed together at any 

instant. Window size cannot exceed the batch size. So, the total number of input-output 

sequences will be  

𝑇𝑜𝑡𝑎𝑙 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑠𝑦𝑠𝑡𝑒𝑚 𝑐𝑎𝑙𝑙𝑠

𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒
− 1 

(4.1) 
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Figure 4.1: BatchSize Training Problem 

Now, if the batch size is set to 2, then in each batch, we will have four input-output 

sequences. A batch of data will be given to the LSTM model, which learns the mapping 

function. Based on generated loss, it will update the weights using a gradient descent 

algorithm. The LSTM model uses these updated weights for processing the next batch of 

data, and the process continues until we reach the last batch. Currently, the main bottleneck 

is that the batch size value has to be set before the training of the model. Once we set the 

batch size value, it is impossible to change during the training process. 

Henceforth, to solve the problem mentioned above, we propose an iterative algorithm that 

can dynamically update the batch size value. This reduces the training time plus 

convergence to the global optima at a faster rate. 

4.4     Gradient Descent and its variants 

Gradient Descent plays a vital role in updating the weights of the neural network 

parameters. It is a way to minimize the objective function 𝐽(𝜃) by updating the model’s 
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parameters in the direction opposite to the gradient calculation ∇𝜃 𝐽(𝜃). There are three 

different types of gradient descent. They are as follows: 

Batch Gradient Descent (BGD): It uses the entire dataset to compute the gradient of the 

cost function. Therefore, the weights of the model parameters (𝜃) are updated only one 

time. It is not feasible for the big dataset.   

𝜃 =  𝜃 −  𝜂. ∇𝜃 𝐽(𝜃) (4.2) 

 

where 𝜂 is the learning rate. 

Stochastic Gradient Descent (SGD): It updates the weights of the model parameters after 

every individual data point. With such frequent updates, the model tends to overfit the 

training data. 

𝜃 =  𝜃 −  𝜂. ∇𝜃 𝐽(𝜃; 𝑥𝑖;  𝑦𝑖) (4.3) 

 

where 𝑥𝑖 is the single input sequence, and 𝑦𝑖 is the single output sequence. 

Mini-Batch Gradient Descent (MBGD): It is an intermediate of BGD and MBGD where 

the weights of the model parameters are updated after every n input-output sequence. This 

way, the model can converge to optimal minima.  

 

𝜃 =  𝜃 −  𝜂. ∇𝜃 𝐽(𝜃; 𝑥(𝑖:𝑖+𝑛);  𝑦(𝑖:𝑖+𝑛)) (4.4) 

 

where n is the size of the mini-batch. 
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4.4.1  Optimizers 

Nesterov Accelerated Gradient: It provides momentum to move the parameters θ in the 

right direction. The gradient is calculated by approximating the future position of the 

parameters. 

𝑣𝑡 =  𝛾𝑣𝑡−1 +  𝜂. ∇𝜃 𝐽(𝜃 − 𝛾𝑣𝑡−1) (4.5) 

 

𝜃 = 𝜃 − 𝑣𝑡 (4.6) 

 

where 𝛾 is the momentum term with the default value of 0.9. 

Adagrad: It is well suited for sparse data due to following reasons. First, for the parameters 

with infrequent features, it performs larger updates, whereas, for the parameters linked with 

the features occurring frequently, it performs smaller updates. The following equation 

updates the weights: 

𝜃𝑡+1 =  𝜃𝑡 −
𝜂

√𝐺𝑡 +  𝜀
 ⊙ 𝑔𝑡 (4.7) 

 

where the sum of the squares of the previous gradients is 𝐺𝑡,  𝜀 is the smoothing factor, and 

𝑔𝑡 is the gradient at time step t. 

Adadelta: It reduces the impact of decreasing the learning rate monotonically. It uses the 

fixed-size window to accumulate past gradients instead of considering all the gradients. It 

updates the weights based on the following update rule. 

∆𝜃𝑡 −
𝑅𝑀𝑆[∆𝜃]𝑡−1

𝑅𝑀𝑆[𝑔]𝑡
𝑔𝑡 

(4.8) 
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𝜃𝑡+1 =  𝜃𝑡 + ∆𝜃𝑡 (4.9) 

 

where 𝑅𝑀𝑆[∆𝜃]𝑡−1 is the root mean square error of the updates of the parameters. 

 RMSprop: It computes the exponentially decaying average of the gradients and divides the 

learning rate with that value. The update rule is: 

𝜃𝑡+1 =  𝜃𝑡 −
𝜂

√𝐸[𝑔2]𝑡 +  𝜀
 ⊙ 𝑔𝑡 (4.10) 

 

where 𝐸[𝑔2]𝑡 = 0.9𝐸[𝑔2]𝑡−1 + 0.1𝑔2
𝑡
 

Adam: It updates the weights by calculating the mean and uncentered variance of the 

gradients. The weight update rule is: 

𝜃𝑡+1 =  𝜃𝑡 −
𝜂

√𝑣𝑡 +  𝜀
  𝑚𝑡 (4.11) 

 

where 𝑚𝑡 =
𝑚𝑡−1

1 − 𝛽1
𝑡        and  𝛽1 and 𝛽2 are the decay rates. 

𝑣𝑡 =
𝑣𝑡−1

1 −  𝛽2
𝑡 (4.12) 

 

Adamax: The adam optimizer uses the 𝑙2 norm to calculate the 𝑣𝑡 parameter. Furthermore, 

these two values are inversely proportional to each other. Adamax improves Adam by 

using 𝑡ℎ𝑒 𝑙𝑝 norm. The update rule is: 

𝜃𝑡+1 =  𝜃𝑡 −
𝜂

𝑢𝑡
  𝑚𝑡 (4.13) 

 

Where 𝑢𝑡 is the revised version of 𝑣𝑡. 
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Nadam: It is the combination of Adam and NAG. It performs accurate steps towards the 

optimal direction by performing parameter updates before gradient calculation. The weight 

update rule is: 

𝜃𝑡+1 =  𝜃𝑡 −
𝜂

√𝑣𝑡   +  𝜀
  (𝛽1𝑚𝑡 +

(1 − 𝛽1)𝑔𝑡

1 −  𝛽1
𝑡  

(4.14) 

 

4.5     Dataset Description 

The following system call sequence datasets are used for experiment purposes. Each 

dataset is unique and has a varying size of sequences. 

Joint Mission Planning System (JMPS) Dataset: The Joint Mission Planning System, 

otherwise known as JMPS, is an application that aggregates different target data, platform 

data, and land elevation data for the user to use in mapping route plans for missions. It 

offers route planning capabilities for aerial, land, and sea missions to choose respective 

platforms/vehicles and entities and their characteristics concerning their route, other 

entities, and themselves. A typical mission plan on JMPS might involve multiple user-

made or imported aircraft routes belonging to ally, enemy, or other parties for a multitude 

of platforms, each with their radar and effective weapon ranges flying at different altitudes 

and speeds as to avoid detection or collision from some adversary or other entity (ground 

radars, mobile Surface-to-Air Missiles, jammers, etc.). This flexible layout of entities is 

displayed to the user as an order of battle in which the user plans around accordingly to 

fulfill some target or objective. 
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Test vectors injected into JMPS will thus slow down the application, achieve unauthorized 

access to data, and modify plan contents to the favor of some other actor as the plan report 

is being generated and sent. A test vector could inject many system threads to slow down 

the application, effectively behaving as a form of denial-of-service attack. Another test 

vector could attach itself to the process in kernel space and relay reads of process files to a 

desired outlet, compromising confidentiality. In the same way, a similar yet less general 

test vector can write specific JMPS data to process files that aid in altering a route so that 

an aircraft misses its target by however many units desired. 

Table 4.1 shows the total number of system calls in this dataset.  

Table 4.1: JMPS Dataset Information 

Data Type Length Category 

Training 1.6 Million Normal 

Testing 2 Million Malware Infected 

 

Australian Defense Force Academy Linux (ADFA-LD) Dataset: The host used to generate 

the sequence of system call data is configured with a Linux server. It captures the sequence 

of system calls during the normal operations of the process. Furthermore, several malware 

such as Hydra-SSH, Hydra-FTP, Webshell, Add user, Java-Meterpreter and Meter-preter 

are injected during the ongoing operation of a legitimate process. Table 4.2 and 4.3 shows 

the data distribution for normal and malware-injected traces respectively. 

Table 4.2: ADFA-LD Dataset Distribution for Normal Category 

Types of Trace Number of Traces Category 

Training 833 Normal 

Validation 4373 Normal 
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Table 4.3: ADFA-LD Dataset Distribution for Attack Category 

Types of Trace Number of Traces Category 

Hydra-SSH 148 Attack 

Hydra-FTP 162 Attack 

Webshell 118 Attack 

Adduser 91 Attack 

Java-Meterpreter 125 Attack 

Meterpreter 75 Attack 

 

University of New Mexico (UNM) Dataset: Each trace is generated by running one 

program. It has three types of files. The Sun file types contain information on “synthetic 

sendmail CERT”, “synthetic sendmail”, "live lpr MIT" and "live lpr UNM". The second 

type is Linux, and it contains information about DoS, inet, ps, login, and live named. Lastly, 

the third one is from the new Linux, which has information about xlock and synthetic ftp. 

The experiments are performed on sun file types. Table 4.4 shows the data distribution. 

Table 4.4: UNM Dataset Distribution 

Program Name Normal Traces Malicious Traces 

UNM Live lpr 1232 1001 

Live lpr MIT 2704 1001 

Synthetic sendmail 7 10 

Synthetic sendmail CERT 2 6 

 

4.6     Evaluation Metrics 

The following metrics evaluate the proposed algorithm experiments on the datasets 

discussed in section 4.5. 

Mean Absolute Error (MAE): These metric estimates mean of the absolute difference 

between actual input sequences of system calls to the predicted sequences of system calls. 
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𝑀𝐴𝐸 =  
1

𝑁
∑ | 𝑌 − 𝑌 | 

(4.15) 

 

Where N is the total number of sequences, Y is the actual input sequence, and �̅� is the input 

sequence predicted by the trained model. 

Mean Squared Error (MSE): It acts the same as MAE. The only difference is that it 

computes the squared deviations between the actual and the predicted sequences instead of 

taking the absolute value. 

𝑀𝑆𝐸 =  
1

𝑁
∑( 𝑌 − 𝑌)

2

 
(4.16) 

 

Root Mean Squared Error (RMSE): It applies the square root function to MSE. 

√
1

𝑁
∑( 𝑌 − 𝑌)

2
 

(4.17) 

 

Mean Absolute Percentage Error (MAPE): It measures the accuracy of the prediction 

value. 

𝑀𝐴𝑃𝐸 =  
100%

𝑛
∑

𝑌𝑡 − 𝑌�̅�

|𝑌𝑡|

𝑛

𝑡=1

 
(4.18) 

 

4.7     Algorithm Analysis 

This section discusses the brute force approach to finding the optimal batch size value. This 

approach is naïve and needs lots of computational time.  
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Brute force approach 

The brute force approach is described in Algorithm 1. It inputs the sequences of system 

calls and outputs the optimal batch size value. It starts by finding the initial interval range 

of batch size value. Next, for each batch size value in that interval range, we train the LSTM 

model and select the batch size with minimum loss as the local optimal batch size. Using 

this local optimal batch size, we narrow the initial interval range of the batch size to less 

range of values.   

Algorithm 1 Brute Force Algorithm for finding Optimal Batch Size Value  
Input: Normal System Call Sequences  
Output: Optimal Batch Size Value 
  1: N = Total length of Sequence 

  2: X = √𝑁     
  3: OptimalBatchSize = NULL 
  4: GlobalMinLoss = NULL 
  5: IntervalList = [1… X... 2X] 

  6: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑆𝑡𝑒𝑝 = 𝑓𝑙𝑜𝑜𝑟(√2𝑋) 

  7: BatchList = [] 
  8: for i in range (1, 2X, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑆𝑡𝑒𝑝 + 1) do 

  9:     Batchlist.append(i) 
10: end for 
10: LossList = [] 
11: for j in range (Batchlistlength) do 
12:     Loss = Train LSTM algorithm with Batchlist[j] and output the final loss  
13:     LossList.append(Loss) 
14: end for 
15: MinLoss = Min(LossList) 
16: 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = BatchSize with MinLoss 
17: if (MinLoss < GlobalMinLoss) then 
18:     OptimalBatchSize = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 
19: end if 
20: start = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 - 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑆𝑡𝑒𝑝 + 1 

21: end = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑒𝑠𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 + 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑆𝑡𝑒𝑝 – 1 

22: NextIntervalStep = 𝑓𝑙𝑜𝑜𝑟(√2 ∗ (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙𝑆𝑡𝑒𝑝 − 1) ) 

23: BatchList = [] 
24: for k in range (start, end, NextIntervalStep + 1) do 
25:     BatchList.append(k) 
26: end for 
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27: Repeat step 11 to 26 until BatchList=NULL 
 
Table 4.5 depicts the different number of the batch size that has been searched by Algorithm 

1 to find the optimal batch size value for all the three datasets. The LSTM model is trained 

with a default learning rate (i.e., 0.001). 

Table 4.5: Static BatchSize Algorithm Results 

Dataset Size in Length Number of BatchSize 

Searched 

JMPS 1.5 Million 76 

ADFA-LD 300,000 54 

UNM 500,000 66 

 

The model is trained with various optimizers listed in the section 4.4. We found out that 

Adam, Nadam, and Adamax give the optimal loss value based on the experimental result. 

Table 4.6 shows the optimal batch size value found using the brute force algorithm with a 

default learning rate of 0.001 for each dataset with the respective metrics and total training 

time in terms of Epoch. 

Table 4.6: Static BatchSize Algorithm Results Analysis 

Dataset Optimal BatchSize Minimum Loss Total #Epoch 

JMPS 596 0.193 92 

ADFA-LD 312 0.125 65 

UNM 402 0.263 72 

 

We further applied the brute force algorithm by trying different learning rate values. The 

learning rate value experimented are: {1, 0.1, 0.01, 0.0001, 0.00001, 0.000001}. We pick 

one learning rate value from the list and run the brute force algorithm each time. Table 4.7 

shows the experimental results. For two of the datasets, the result improved compared to 

the default learning rate. 
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Table 4.7: Static BatchSize Algorithm Results Analysis with Multiple LR 

Dataset Optimal 

BatchSize 

Best 

Learning 

Rate 

Minimum Loss Total #Epoch 

JMPS 501 0.00001 0.0732 88 

ADFA-LD 312 0.001 0.125 65 

UNM 437 0.00001 0.171 74 

 

We found out that the learning rate of 0.00001 was optimal for JMPS and UNM datasets. 

Figure 4.2, 4.3 and 4.4 shows the decreasing loss value for JMPS, ADFA-LD, and UNM 

datasets respectively. 

 

Figure 4.2: Brute Force BS for JMPS 

For the JMPS dataset, the lowest loss achieved was 0.0732 at epoch 88 with an optimal 

batch size value of 501 and a learning rate of 0.00001. 

For the ADFA-LD dataset, the lowest loss achieved was 0.125 at epoch 65 with an optimal 

batch size value of 312 and a learning rate of 0.001. 

For the UNM dataset, the lowest loss achieved was 0.171 at epoch 74 with an optimal batch 

size value of 437 and a learning rate of 0.00001. 
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To improve the training time in terms of the total number of epochs, we propose dynamic 

batch size value selection, which is discussed in the next section. 

 

Figure 4.3: Brute Force BS for ADFA-LD 

 

Figure 4.4: Brute Force BS for UNM 

4.8     Proposed Dynamic BatchSize Algorithm 

Algorithm 2 Dynamic BatchSize Algorithm  
Input: Normal System Call Sequences  
Output: Optimized Model 
  1: S= Normal System Call Sequences 
  2: N = Total length of Sequence   
  3: 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐵𝑆 = [ ] 
  4: 𝐿𝑜𝑐𝑎𝑙𝐿𝐿 = [ ] 
  5: 𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝐿 = [ ] 
  6: J = 0 
  7: 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 = N 
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  8: for i = 1 to 2 do 

  9:    BS=𝑓𝑙𝑜𝑜𝑟(√𝑁) 
10:    𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐵𝑆.append(BS) 
11:    𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑒𝑡 = S [j : j + BS + 1] 
12:    𝐿𝑜𝑠𝑠𝑉𝑎𝑙𝑢𝑒 = TrainOnBatch(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑒𝑡) 
13:    𝐿𝑜𝑐𝑎𝑙𝐿𝐿.append(LossValue) 
14:    𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝐿.append(𝐿𝑜𝑠𝑠𝑉𝑎𝑙𝑢𝑒) 
15:    J = BS 
16:    𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 - J 
17:    𝑁𝑒𝑤𝐵𝑆 = J 
18:    𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 = 2 * J + 1 
19: end for 
20: 𝐷𝑒𝑙𝑡𝑎𝐵𝑆 = [ ] 
21: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑒𝑙𝑡𝑎𝐵𝑆 = 0 
22: while (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 < N) do 
23:    𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = 𝑁𝑒𝑤𝐵𝑆 
24:    i = len(𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝐿) - 1 

25:    𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑙𝑡𝑎𝐵𝑆 = 
(𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝐿 [𝑖−1]− 𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝐿 [𝑖])

max (|𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝐿 [𝑖−1]|,   |𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝐿 [𝑖]|)
 

26:    𝐷𝑒𝑙𝑡𝑎𝐵𝑆.append(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑙𝑡𝑎𝐵𝑆) 
27:    𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 = 0.50 

28:   𝐷𝑒𝑙𝑡𝑎𝐵𝑆𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑊𝑒𝑖𝑔ℎ𝑡𝐿𝑖𝑠𝑡= [ ] 

29:   for k in range (len(𝐷𝑒𝑙𝑡𝑎𝐵𝑆), 0, -1) do 
30:      𝐷𝑒𝑙𝑡𝑎𝐵𝑆𝑊𝑒𝑖𝑔ℎ𝑡 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 * 𝐷𝑒𝑙𝑡𝑎𝐵𝑆 [k - 1] 

31:      𝐷𝑒𝑙𝑡𝑎𝐵𝑆WeightList.append(𝐷𝑒𝑙𝑡𝑎𝐵𝑆𝑊𝑒𝑖𝑔ℎ𝑡) 

32:      𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 = 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡

2
 

33:   end for 
34:   𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑙𝑡𝑎𝐵𝑆𝑊𝑒𝑖𝑔ℎ𝑡 = ∑ 𝐷𝑒𝑙𝑡𝑎𝐵𝑆WeightList 

35:   𝑁𝑒𝑤𝐵𝑆 = ceil(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑆 * (1 +  𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑙𝑡𝑎𝐵𝑆𝑊𝑒𝑖𝑔ℎ𝑡)) 

36:   𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐵𝑆.append(𝑁𝑒𝑤𝐵𝑆) 
37:   𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 - 𝑁𝑒𝑤𝐵𝑆 
38:   𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑒𝑡 = S[𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 : 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 + 𝑁𝑒𝑤𝐵𝑆 + 1] 
39:   Values= TrainOnBatch(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑒𝑡) 
40:   𝐿𝑜𝑐𝑎𝑙𝐿𝐿.append(Values[0]) 
41:   𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝐿.append(Values[0])     
42:   𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 + 𝑁𝑒𝑤𝐵𝑆 
43: end while 
Repeat step 21 to 40 for multiple epoch until the model converges 
 
The proposed adaptive algorithm works in the following way. Initially, for the first epoch, 

the value for two batch sizes is selected as √𝑁. This is called the warm-up phase, where 

the batch size is selectively constant. Now, the batch size value is calculated adaptively 
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starting from the third batch. It is computed as follows. We compute the difference between 

the loss generated from the previous batch to the current batch. To normalize this loss 

difference, we divide it by the loss value, which is the maximum. Next, we apply the weight 

to each of the previous losses generated with the previous selection of the batch size. As 

we go higher up to the previous losses, the weight is reduced to half. This is important 

because, with this approach, we enforce giving higher weightage to the current batch size 

than that of the previous batch size selection. This weight value is multiplied by their 

corresponding loss value, and finally, they all are added to produce a single value. Now, to 

check whether to increase or decrease the batch size value, we add the resultant sum value 

to 1. Furthermore, we multiply this additive term by the current batch size value to get the 

final batch size for the next iteration. This new batch size is used to select the chunk of the 

data for training the model—this way, and the batch size is selected adaptively. The above 

steps are repeated every time to calculate the batch size value. Once we reach the end of 

the dataset, it is called one epoch. We repeat the process for further epochs until the model 

converges. 

4.9     Experimental Results 

The following are the results from training the LSTM model using the proposed adaptive 

batch size selection algorithm. 

Table 4.8 shows the minimum loss achieved with all the datasets and the number of epochs 

needed to achieve minimum loss. This dataset shows the experimental results performed 

by keeping the default learning rate of 0.001.  
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Table 4.8: Dynamic BS with Default LR 

Dataset Minimum Loss Total #Epoch 

JMPS 0.0765 79 

ADFA-LD 0.142 56 

UNM 0.186 65 

 

Furthermore, we experimented with the proposed algorithm by changing the default 

learning rate value. Different learning rate experimented are {1, 0.1, 0.01, 0.0001, 0.00001, 

0.000001}. We pick one learning rate value from the list and run the proposed algorithm 

each time. Table 4.9 shows the experimental results. For two of the datasets, the result 

improved compared to the default learning rate of 0.001. 

Table 4.9: Dynamic BS with Multiple LR 

Dataset Best Learning Rate Minimum Loss Total #Epoch 

JMPS 0.00001 0.0766 74 

ADFA-LD 0.001 0.142 56 

UNM 0.00001 0.181 62 

 

In the proposed algorithm's case, we also found out that the learning rate of 0.00001 was 

optimal for JMPS and UNM datasets. Figure 4.5, 4.6 and 4.7 shows the decreasing loss 

value for JMPS, ADFA-LD, and UNM datasets. 

For the JMPS dataset, the lowest loss achieved was 0.0766 at epoch 74 with a learning rate 

of 0.00001. 

For the ADFA-LD dataset, the lowest loss achieved was 0.142 at epoch 56 with a learning 

rate of 0.001. 

For the UNM dataset, the lowest loss achieved was 0.181 at epoch 62 with a learning rate 

of 0.00001. 
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Figure 4.5: Dynamic BS for JMPS 

 

Figure 4. 6: Dynamic BS for ADFA-LD 

 

Figure 4.7: Dynamic BS for UNM 

For the JMPS dataset, compared to static batch size selection, the number of training 

epochs reduced to 74, which is 14 epochs less, with the loss reaching 0.0766, which is 

0.0034 higher. 



68 

 

For the ADFA-LD dataset, compared to static batch size selection, the number of training 

epochs was reduced to 56, which is 11 epochs less, with the loss reaching 0.142, which is 

0.017 higher. 

For the UNM dataset, compared to static batch size selection, the number of training epochs 

was reduced to 62, which is 12 epochs less, with the loss reaching 0.181, which is 0.010 

higher. 

4.10     Conclusion 

Deep Neural Networks have demonstrated state-of-the-art results in numerous wide-range 

of application domains. Such neural networks require lots of hyper-parameter tuning to 

generalize well. Tuning takes a vast amount of computational training time. The training 

time and generalizability depend on how often the model's weights are adjusted and the 

total rows of the dataset (called batch size) used to update those weights. Currently, the 

batch size has to be set before training the model. This limits the model's capability to reach 

optimal minimum loss at a reduced epoch. Thus, we proposed a dynamic batch size 

selection algorithm that dynamically updates the batch size value. The update mechanism 

is based on the historical loss achieved by historical batch size values. We experimented 

our proposed approach with three different datasets. ADFA-LD and UNM are open sources 

of benchmark datasets. We found that dynamically updating the batch size value trains the 

model at a faster epoch rate compared to the static batch size value with experimental 

results. Furthermore, we notice that changing a default constant learning rate impacts the 

training time of the model. 
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CHAPTER 5 

DYNAB-LR: A HYBRID ALGORITHM FOR DYNAMIC BATCH SIZE AND 

LEARNING RATE TUNING FOR AN OPTIMIZED TRAINING OF NEURAL 

NETWORK 

Learning-based algorithms are adopted widely to solve complex problems in the current 

world. Such a model requires tuning of the hyperparameters to achieve the optimal loss. 

Learning rate impacts the rate at which the model updates the weights. It is a crucial 

problem to adjust the learning rate schedule in stochastic gradient methods. If the 

parameters such as convexity constants are known prior, theoretical schedules can be 

computed. Nonetheless, these parameters are not known, and most of the current loss 

function is concave in nature. Thus, we propose a dynamic learning rate schedule that can 

dynamically update the value of the learning rate. This is an added extension on top of the 

dynamic update of the batch size. Therefore, we update both the batch size and learning 

rate dynamically in a consecutive manner. Multiple experiments have been conducted 

using various optimizers to assess our proposed approach. Using the proposed approach, 

we train a deep learning-based LSTM algorithm widely adopted for sequential data. 

Furthermore, we validate it with three different datasets of various sizes and distinct in 

nature. From the experimental results, we infer that the proposed approach allows the 

model to train faster and reach the minimum loss at a faster rate. 

5.1     Introduction 

Deep Neural Networks (DNNs) are powerful and widely used learning-based networks 

competent enough in computing and learning techniques. In DNNs, the information flows 
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from the input to the hidden layer and finally reaches the output layer. Each neuron in a 

particular layer computes the weighted sum from the previous layer's output and generates 

the output, fed as input to the next layer. Training is performed through a backpropagation 

algorithm. This algorithm uses the stochastic gradient descent method to update the 

weights. The main power of DNNs comes from the backpropagation algorithm. It computes 

the gradients to update the weights using the chain rule.   

A constant learning rate is used in broad research areas that use backpropagation to train 

the model [72]. However, for the optimal performance of the training, the tuning and design 

of the learning rate hyper-parameter are essential. The conventional way is to compute the 

statistical characteristics. Momentum usage [73] and simulated annealing [74] are some of 

the optimization methods in this research area. Hayjin, in his research, proposed that if the 

learning rate  <  (
2

𝜆𝑚𝑎𝑥
), then variance estimation can be used by gradient descent 

algorithm to converge, where 𝜆𝑚𝑎𝑥 is the maximum value of the eigenvector for a 

particular input feature vector. The limitation of the above rule is that it fails with the 

increasing length of the input feature vector. An optimized scheme of the first search and 

converge was proposed by Darken [75]. In his approach, he reduced the learning rate 

parameter by increasing the number of iterations. However, this approach requires high 

computational time and is often not considered a neural learning process. Instead of 

adjusting the weight parameters, Duchi et al. [76] and Zeiler et al. [77] propose Adagrad 

and Adadelta, respectively, to adjust the gradient's direction. Using the first order 

Newtonian method, they adjust the approximate value of its second order. Their approach 
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works well in the early training stages. However, towards the end of the training, it 

deteriorates, and learning slows down, failing to reach the optimal loss value. 

5.1.1     Summary of contribution 

We developed an automated learning rate tuning algorithm that dynamically changes the 

value of the learning rate during the training of the model. The proposed tuning algorithm 

is an extension of the batch size tuning algorithm. Here, both hyper-parameters, the batch 

size, and the learning rate are tuned dynamically and consecutively. We also developed a 

brute force method to compare the efficacy of the developed algorithm. Three different 

datasets that are sequential in nature are being used to evaluate the proposed algorithm. 

Each dataset selected for the evaluation is of varying sizes and belongs to different 

domains. 

5.1.2    Organization of the chapter 

In section 5.2, we discuss the related work in the area of learning rate updates. Next, in 

section 5.3, we define and explain the problem formulation. Next, learning rate 

preliminaries and their variants are defined in section 5.4. Brute force algorithm 

implementation is described in section 5.5. In section 5.6, we discuss the impact of the 

window size on the training of the network. The proposed dynamic learning rate tuning 

algorithm is explained in depth in section 5.7, with the discussion of the experimental 

results in section 5.8. Finally, we conclude in section 5.9. 
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5.2     Related Work 

Researchers have been actively focusing on stable and fast optimization algorithms. 

Despite the simplistic nature of the stochastic gradient descent algorithm, it is heavily used 

in various science and engineering domains. There are numerous rules for setting the value 

of the learning rate parameter. Given a list of prior statistical assumptions based on a 

particular loss function f, each rule has its way of justifying the convergence of the model. 

In the stochastic gradient rule, setting the learning rate value differently for different 

components is advantageous. The learning rate is set to a smaller value for the components 

with higher gradients and vice-versa. In some cases, such a heuristical approach is justified 

theoretically. Adaptive gradient methods use the root mean square's reciprocal value to 

update the learning rate of each parameter. The adaptive gradient's limitation is that it needs 

data to be sparse since sparse parameters are very informative. To overcome this issue, 

different modifications of the adaptive gradient have been proposed recently. RMSprop 

[78], Adam [79], Adadelta [80] and Nadam [81]. However, these approaches have no 

guaranteed results of convergence. Since the underlying problem of optimization changes 

due to the biased updates of the gradient, such an adaptive learning method becomes 

infeasible for the learning rate tuning problem. To mitigate this problem, Vasvani et al. 

[82] use the low value of learning rate for initial epochs. 

Another approach toward the learning rate tuning has been proposed by Needell et al. [83] 

in another line of work. The authors use Lipschitz constants for setting distinct and constant 

but different learning rates for various component variables. They compute the loss 
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function as a summation of its component variables by performing sampling during the 

gradient descent method.  

Due to the lack of experimental results, specifically in sequential learning with the deep 

neural network such as LSTM, there is no guarantee that the model will consistently reduce 

loss value with the warmup approach. Also, there is no such rule of thumb for conducting 

data-specific warmup experiments. Thus, researchers and domain experts apply the trial 

and error approach technique by applying different settings in different applications. This 

is computationally inefficient and requires a lot of training time. 

In this chapter, we propose an algorithm that can adaptively tune the learning rate 

parameter along with the tuning of the batch size parameter. The proposed approach does 

not require any manual tuning.  

5.3     Problem Formulation 

 For a user process to interact with the operating system, it has to operate in the kernel 

mode. A batch of code is compiled during the process runtime. System calls are made to 

execute a particular line of code. If we arrange all the system calls made by a process during 

its execution, we can define the normal behavior. This sequence of system calls is temporal 

and thus can be used to train the learning-based models. We employed a deep learning-

based Long Short Term Memory algorithm since it learns and captures long-term 

dependencies. Many hyperparameters need to be tuned. Below are a few of those hyper-

parameters that affect the training time. 

1) Epoch: Total amount of time a dataset is passed to the model. 
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2) Batch size: The total number of examples the model uses to generate the loss and 

update the weights further. 

3) Learning Rate: A constant factor that controls the amount of gradient loss that needs 

to be applied to the current weight. 

Figure 5.1 shows the problem outline. The sequence of system calls is converted to a 

numeric format. LSTM model learns the function F of the mapping input sequence to the 

output sequence.  

 

Figure 5.1: Learning Rate Problem Outline 

The LSTM model will take an input/output sequence of system calls. Each input and output 

is of identical length. With this, the model learns the normal sequential behavior of the 

process. Thus, anything that deviates from the normal sequence of system calls is 

considered an anomaly during testing. First, the model takes the ground-truth input/output 

sequence and predicts the output sequence. The predicted output sequence is compared 

with the actual output sequence, and loss is computed. This step is repeated for all the 
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input/output sequences of a particular batch, and the cumulative loss is generated at the end 

of the batch. Next, the gradient of the cost function is computed based on the generated 

loss. Then the constant learning rate parameter is then applied to the gradient value to 

update the weight value for every parameter. This whole process is continued for all the 

batches. Once all the batch of data is passed to the model, it is called an epoch. The model 

is trained with multiple epochs to learn and reach the optimal loss value.  

Currently, the learning rate parameter has to be defined prior to the training of the model, 

and it remains constant throughout the training period. This bottleneck limits the model 

from reaching the optimal loss value at an earlier epoch time. 

Henceforth, to solve the problem mentioned above, we propose an iterative algorithm that 

can dynamically update the learning rate value. This results in reducing the training time 

plus convergence to the global optima at a faster rate. 

5.4     Preliminaries 

Learning rate: It is a hyper-parameter that regulates the weight adjustment concerning the 

gradient computed based on loss. If the value is set to low, the model will take a long time 

to reach the optimal loss value. This low value may seem legitimate since we do not want 

to miss the local minimum, but on the other hand, it will take a considerable amount of 

time to converge if it gets stuck in the plateau region. 
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The equation for calculating the new weight based on learning rate is as follows: 

𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑤𝑒𝑖𝑔ℎ𝑡 =  𝑝𝑟𝑒𝑣𝑖𝑜𝑢𝑠𝑤𝑒𝑖𝑔ℎ𝑡 −  𝜂 ∗ 𝑔𝑟𝑎𝑑𝑖𝑒𝑛𝑡 (5.1) 

 

where 𝜂 is the learning rate. 

 

Figure 5. 2: Gradient Descent with small learning rate 

 

Figure 5.3 : Gradient Descent with large learning rate 

If the learning rate parameter is a very small number, the gradient descent will be slow, as 

pictured in Figure 5.2. If the learning rate parameter is a very large number, the gradient 

descent can fail to converge as shown in Figure 5.3 and miss the optimal minimum loss 

value. 
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The value for the learning rate is set randomly by the user based on their past experiences. 

It is not easy to get the right value. This parameter affects the convergence slope of the 

model. Therefore, it is necessary to find the optimal value for it from starting to reach an 

optimal value with fewer epochs. This, in turn, reduces the training time of the model. 

Even though finding the optimal value of the learning rate is a challenging problem, some 

well-researched approaches are available. Some of the popular techniques are explained in 

the section below. 

5.4.1     Learning Rate Techniques 

Decaying Learning Rate: With the increase in the number of epochs, the learning rate 

value decreases in this approach. The decrease rule is: 

𝛼 =
𝛼0

1 + (𝛽 ∗ 𝐸)
 (5.2) 

 

Where 𝛼0 is the initial learning rate, 𝛽 is the decay rate, and 𝐸 is the epoch number. 

Variants of Decaying Learning Rate: 

Exponential Decay: The learning rate decays exponentially throughout epoch time. 

𝛼 =  𝛼0 ∗ 𝛽𝐸 (5.3) 

 

Discrete Staircase: In this approach, the learning rate is decreased in specific discrete steps 

throughout epoch intervals. 

Epoch Number consideration: In this approach, we apply a constant factor and divide it by 

the square root of the epoch. 
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𝛼 = 𝐻 ∗ 
𝛼0

√𝐸
 (5.4) 

 

where 𝐻 is the constant factor. 

Mini-batch approach: It is similar to the above equation, except the mini-batch number is 

used instead of the epoch number. 

𝛼 = 𝐻 ∗ 
𝛼0

√𝑀
 (5.5) 

 

where 𝑀 is the mini-batch number. This approach can be used only when a mini-batch 

gradient descent approach is employed. 

Scheduled Drop Learning Rate: In this method, instead of updating the learning rate value 

in a monotonous fashion, it is decreased at a particular frequency or particular discrete 

proportional value. 

The major limitation of the scheduled drop learning rate and the decaying learning rate is 

no evaluation mechanism. The learning rate value is decreased irrespective of the model's 

convergence to the optimal loss value for a particular cost function. 

Adaptive Learning Rate: In this method, the value of the learning rate is dependent on the 

gradient of the loss function. It will either increase or decrease. If the gradient value is 

higher, then the value for the learning rate will be smaller. If the gradient value is smaller, 

then the value for the learning rate will be higher. Thus, based on the curve of the cost 

function, the learning rate will either accelerates in shallow areas or decelerates in the 

steeper area.  
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Cyclic Learning Rate: This method allows the training of the neural network with a 

learning rate that can be updated in a cyclic way rather than the non-cyclic way, which 

either decreases at every epoch or remains constant. The learning rate value oscillates 

between the predefined higher and lowers bound. 

The following are the steps for cyclic learning rate: 

1. Set the value for the lower bound of the learning rate called base_lr. 

2. Set the value for the upper bound of the learning rate called max_lr. 

3. Make the learning rate value goes back and forth between the lower and upper bound 

during training based on the increase and decrease in the gradient value of the cost function. 

So, at first, the learning rate value will be very small. Then, over some time, it will grow 

until it reaches the maximum upper bound value. At this point, it will start reducing to a 

lower value until it hits the minimum base value. This cyclic pattern of increase and 

decrease continues throughout the training period. 

5.5     Algorithm Analysis 

In this section, we discuss the brute force approach of trying various learning rate values. 

This approach is naïve and needs lots of computational time.  

Brute force approach 

The brute force approach is described in Algorithm 1. It inputs the sequences of system 

calls, learning rate, and batch size value and outputs the trained model. It starts by dividing 

the dataset into batches with the specified batch size value. Next, for each batch size value 
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in that interval range, we train the LSTM model with the input and output sequence of the 

corresponding batch. The model predicts the output sequence. Then, the cumulative loss is 

calculated for a single batch. The gradient is calculated based on this loss, and the learning 

rate is applied to the gradient. This will update the weight of the model parameter that the 

next batch of data will use. This whole process continues until the model converges to an 

optimal loss value.   

Algorithm 1 Brute Force Algorithm  
Input: Normal System Call Sequences, Batch Size, Learning Rate 
Output: Trained Model 
  1: 𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎  = Preprocess the sequence into input and output sequence 
  2: for i = 1 to BatchSize do 
  3:     𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎  [i][0] 

  4:     𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = 𝑇𝑟𝑎𝑖𝑛𝐷𝑎𝑡𝑎  [i][1] 

  5:     Model = LSTM model train on 𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 and 𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

  6:     𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 = Predicted sequence from Model 

  7: end for 
  8: 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝐿𝑜𝑠𝑠 = | 𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 – 𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 | 

  9: Δ𝜃 =  −𝜂 ∗ (
𝜕𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒𝐿𝑜𝑠𝑠

𝜕𝜃
) 

10: 𝜃𝑖+1 = 𝜃𝑖+1 +  Δ𝜃 
11: Repeat step 2 to 9 until for multiple epoch and until model converges 
 
The major limitation of this approach is that the value for batch size and learning rate needs 

to be specified before the training of the model, and it remains constant through the training 

period. This limits the model to train faster at an earlier epoch.  

5.6     Impact of Window Size 

The preprocessing step of the model training requires data to be in specific input and output 

format. This input and output have a specific length which is called window size. For 

instance, if the window size is 5, the model will take a sequence of 5 system calls as input 

and the following sequence of 5 system calls as output. We experimented with various 
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window sizes, and Table shows the loss results achieved after running the algorithm for 

100 epochs. We can depict that the lower the window size, the faster the model reaches the 

minimum loss. 

Table 5.1: Loss with window size 

WindowSize Loss 

3 0.29 

5 0.24 

10 0.45 

15 0.67 

20 0.94 

 

5.7     Proposed Dynamic BatchSize with Dynamic Learning Rate Algorithm 

Algorithm 2 Dynamic BatchSize and Learning Rate Algorithm  
Input: Normal System Call Sequences, Initial Learning Rate 
Output: Optimized Model 
  1: S= Normal System Call Sequences 
  2: N = Total length of Sequence   
  3: 𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐿𝑟 = [ ] 
  4: 𝐿𝑜𝑐𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠 = [ ] 
  5: 𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠 = [ ] 
  6: J = 0 
  7: 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 = N 
  8: BS= BatchSize obtained after training model for first epoch through Algorithm 
  9: for i = 1 to 2 do 
10:    𝜂 =Initial Learning Rate 
11:    𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐿𝑟.append(𝜂) 
12:    𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑒𝑡 = S [j : j + BS + 1] 
13:    𝐿𝑜𝑠𝑠𝑉𝑎𝑙𝑢𝑒 = TrainOnBatch(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑒𝑡) 
14:    𝐿𝑜𝑐𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠.append(LossValue) 
15:    𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠.append(𝐿𝑜𝑠𝑠𝑉𝑎𝑙𝑢𝑒) 
16:    J = BS 
17:    𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 - J 
18:    𝑁𝑒𝑤𝐿𝑟 = 𝜂 
19:    𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 = 2 * J + 1 
20: end for 

21: 𝐷𝑒𝑙𝑡𝑎𝐿𝑟 = [ ] 
22: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝐷𝑒𝑙𝑡𝑎𝐿𝑟 = 0 
23: while (𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 < N) do 
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24:    𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑖𝑧𝑒 = BS 
25:    𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑟 = 𝑁𝑒𝑤𝐿𝑟 
26:    i = len(𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠) - 1 

27:    𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑙𝑡𝑎𝐿𝑟 = 
(𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠 [𝑖−1]− 𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠[𝑖])

max (|𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠 [𝑖−1]|,   |𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠 [𝑖]|)
 

28:    𝐷𝑒𝑙𝑡𝑎𝐿𝑟.append(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑒𝑙𝑡𝑎𝐵𝑆) 
29:    𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 = 0.50 

30:   𝐷𝑒𝑙𝑡𝑎𝐿𝑟𝑀𝑢𝑙𝑡𝑖𝑝𝑙𝑦𝑊𝑒𝑖𝑔ℎ𝑡𝐿𝑖𝑠𝑡= [ ] 

31:   for k in range (len(𝐷𝑒𝑙𝑡𝑎𝐿𝑟), 0, -1) do 
32:      𝐷𝑒𝑙𝑡𝑎𝐿𝑟𝑊𝑒𝑖𝑔ℎ𝑡 = 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 * 𝐷𝑒𝑙𝑡𝑎𝐿𝑟 [k - 1] 

33:      𝐷𝑒𝑙𝑡𝑎𝐿𝑟WeightList.append(𝐷𝑒𝑙𝑡𝑎𝐿𝑟𝑊𝑒𝑖𝑔ℎ𝑡) 

34:      𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡 = 
𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑊𝑒𝑖𝑔ℎ𝑡

2
 

35:   end for 
36:   𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑙𝑡𝑎𝐿𝑟𝑊𝑒𝑖𝑔ℎ𝑡 = ∑ 𝐷𝑒𝑙𝑡𝑎𝐿𝑟WeightList 

37:   𝑁𝑒𝑤𝐿𝑟 = ceil(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐿𝑟 * (1 +  𝑇𝑜𝑡𝑎𝑙𝐷𝑒𝑙𝑡𝑎𝐿𝑟𝑊𝑒𝑖𝑔ℎ𝑡)) 

38:   𝐷𝑦𝑛𝑎𝑚𝑖𝑐𝐿𝑟.append(𝑁𝑒𝑤𝐿𝑟) 
39:   𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 = 𝑅𝑒𝑚𝑎𝑖𝑛𝑖𝑛𝑔𝐷𝑎𝑡𝑎𝑃𝑜𝑖𝑛𝑡𝑠 - 𝑁𝑒𝑤𝐿𝑟 
40:   𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑒𝑡 = S[𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 : 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 + 𝐵𝑆 + 1] 
41:   Values= TrainOnBatch(𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐵𝑎𝑡𝑐ℎ𝑆𝑒𝑡, 𝑁𝑒𝑤𝐿𝑟) 
42:   𝐿𝑜𝑐𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠.append(Values[0]) 
43:   𝐺𝑙𝑜𝑏𝑎𝑙𝐿𝑟𝐿𝑜𝑠𝑠.append(Values[0])     
44:   𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 = 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝐷𝑎𝑡𝑎𝐼𝑛𝑑𝑒𝑥 + 𝐵𝑆 
45: end while 
Repeat step 23 to 45 for all even number of epoch until the model converges 
 
The proposed dynamic algorithm works in the following way. It extends the dynamic batch 

size algorithm proposed in the previous chapter. Initially, the value for batch size is 

obtained from the dynamic batch size algorithm that trains the model using the specified 

learning rate for the first epoch. Next, the batch size value remains constant for the second 

epoch, and the learning rate is dynamically updated as follows. The learning rate is set 

according to the specified learning rate for the first two batches. This phase is called the 

warmup phase, where the learning rate is selectively constant. Now, the learning rate value 

is calculated dynamically starting from the third batch. It is computed as follows. 

We compute the difference between the loss generated from the previous batch to the 

current batch. To normalize this loss difference, we divide it by the loss value, which is the 
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maximum. Next, we apply the weight to each of the previous losses generated with the 

previous selection of the learning rate. As we go higher up to the previous losses, the weight 

is reduced to half. This is important because, with this approach, we enforce higher 

weightage to the current learning rate than that of the previous selection of the learning rate 

value. This weight value is multiplied by their corresponding loss value, and finally, they 

all are added to produce a single value. Now, to check whether to increase or decrease the 

learning rate value, we add the resultant sum value to 1. Furthermore, we multiply this 

additive term by the current learning rate value to get the final learning rate for the next 

iteration. This new learning rate is used to train the model for the next batch of the data—

this way, the learning rate is selected dynamically. The above steps are repeated every time 

to calculate the learning rate value. Once we reach the end of the dataset, it is called one 

epoch. This process of dynamically updating the batch size and learning rate goes on 

alternate epochs consecutively until the model converges. This process reduces the training 

time sub-optimally. 

5.8     Experimental Results 

The following are results from training the LSTM model using the proposed dynamic 

learning rate with a dynamic batch size selection algorithm. 

Table 5.2 shows the minimum loss achieved with all the datasets with the number of epochs 

needed to achieve minimum loss. The model is trained by keeping the default learning rate 

of 0.001.  
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Table 5.2: Loss with Default Learning Rate 

Dataset Minimum Loss Total #Epoch 

JMPS 0.0760 63 

ADFA-LD 0.135 47 

UNM 0.178 59 

 

Furthermore, we experimented the proposed algorithm by changing the default learning 

rate value. Different learning rate experimented are {1, 0.1, 0.01, 0.0001, 0.00001, 

0.000001}. We pick one learning rate value from the list and run the proposed algorithm 

each time. Table 5.3 shows the experimental results. For two of the dataset, the result 

improved compared to the default learning rate of 0.001. 

Table 5.3: Loss with Different Learning Rate 

Dataset Best Learning Rate Minimum Loss Total #Epoch 

JMPS 0.00001 0.0749 52 

ADFA-LD 0.001 0.135 47 

UNM 0.00001 0.177 53 

 

In the proposed algorithm's case, we also found out that the learning rate of 0.00001 was 

optimal for JMPS and UNM datasets. Figure 5.4, 5.5 and 5.6 shows the decreasing loss 

value for JMPS, ADFA-LD, and UNM datasets, respectively, with the increasing number 

of epochs. 
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Figure 5.4: Dynamic BS_LR for JMPS 

 

Figure 5.5: Dynamic BS_LR for ADFA-LD 

 

Figure 5.6 Dynamic BS_LR for UNM 

For the JMPS dataset, the lowest loss achieved was 0.0749 at epoch 52 with a learning rate 

of 0.00001. 



86 

 

For the ADFA-LD dataset, the lowest loss achieved was 0.135 at epoch 47 with a learning 

rate of 0.001. 

For the UNM dataset, the lowest loss achieved was 0.177 at epoch 53 with a learning rate 

of 0.00001. 

For the JMPS dataset, compared to dynamic batch size selection, the number of training 

epochs was reduced to 52, which is 22 epoch less, with the loss reaching 0.0749, which is 

0.0017 higher. 

For the ADFA-LD dataset, compared to dynamic batch size selection, the number of 

training epochs was reduced to 47, which is 9 epoch less, with the loss reaching 0.135, 

which is 0.007 higher. 

For the UNM dataset, compared to dynamic batch size selection, the number of training 

epochs was reduced to 53, which is 9 epochs less, with the loss reaching 0.177, which is 

0.004 higher. 

5.9     Conclusion 

Optimization of Deep Neural Networks using first-order algorithms has been researched in 

the literature. Stochastic Gradient Descent algorithms are one of the most popular ones. 

These algorithms need manual tuning and pre-specified values for most of the hyper-

parameters. Such specification changes with the different datasets of a wide variety of 

domains and also with different neural architectures. Despite their wide usage, the 

generalization capability is still an open issue since the value of the parameters stays 

constant throughout the training period.    This limits the model's capability to reach optimal 
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minimum loss at a reduced epoch. In the previous chapter, we proposed a dynamic batch 

size selection approach. We extend that approach by incorporating the learning rate 

parameter, which is also tuned dynamically. Thus, we proposed a dynamic learning rate 

selection algorithm that dynamically updates the value of the learning rate. The update 

mechanism is based on the historical loss. The proposed approach updates the batch size 

and learning rate dynamically and consecutively. We experimented our proposed approach 

with three different datasets. ADFA-LD and UNM are open-source benchmark datasets. 

With experimental results, we found out that dynamically updating the batch size with the 

learning rate value trains the model at a faster epoch rate than the static approach. 

Furthermore, we notice that changing a default constant learning rate impacts the training 

time of the model. 
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CHAPTER 6 

MACHINE LEARNING-BASED CYBER THREAT ANOMALY DETECTION IN 

VIRTUALIZED APPLICATION PROCESSES 

Intrusion-based detection systems spot traces of abnormal activities focused on the network 

and connected resources. Anomaly-based detection systems analyze events of applications 

for abnormal behavior based on the hypothesis that anomalies signify an indication of 

malicious events. Host-based systems frequently depend on various attributes of a process 

to describe the normal behavior of any process. Multiple malicious vectors can be launched 

on a process with different characteristics to infect it. We propose a two-step approach for 

host-based anomaly detection. First, we analyze ProcessList data structure and create 

Principal Component Analysis (PCA) features known as Eigen traces used for training 

multiple one-class anomaly detection models. These multiple models allow different 

attributes of process data to be assessed from numerous and diverse standpoints. As the 

anomaly scores of these models vary significantly, combining the scores to a single value is 

often challenging. Therefore, we apply a majority voting approach for the final anomaly 

score as the second step. This final score measures the occurrence of a malicious event. In 

this study, we demonstrate the implementation of the proposed two-step approach using 

four different one-class classifiers: Mahalanobis Classifier, One-Class Support Vector 

Machine (OCSVM), Isolation Forest, and Dendogram based Agglomerative Clustering. We 

show that the proposed anomaly system improves the accuracy of anomaly detection. 
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6.1     Introduction 

Intrusion-based Recognition Systems are a dynamic exploration arena in arrears to a strict 

and crucial requirement for cybersecurity methods in contradiction to continuously 

growing global outbreaks on computing organizations. Such attacks are characterized into 

two diverse types: 1) Known Attacks: where signatures are available for each attack, and 

2) Unknown Attacks: Attacks which are never been identified before. It is more 

straightforward to combat known attacks since numerous orientations provide valuable 

data about their behavioral patterns. Nevertheless, no such signatures exist for unknown 

attacks; the only information we know about them is that they do not belong to a particular 

process's regular method of operations. 

Recent techniques based on machine learning systems offer a variety of choices to analyze 

the incoming data for evaluation and show an efficient intrusion detection rate. We have 

two categories for Intrusion based detection systems: 1) Semi-supervised learning: 

Training with a labeled dataset for normal class 2) Unsupervised learning:  Training with 

no labeled dataset. Numerous process characteristics make detecting anomalous attacks 

quite challenging [84]. Foremost is defining a meticulous and accurate borderline for the 

regular normal class. Most of the time, the usual behavior of a process frequently changes, 

and so as the malicious vectors. Today's process behavior often may not be the same as 

tomorrow's. 

Data needs to be labeled in the Supervised classification type of machine learning system, 

whereas it is a crucial compelling problem for anomaly detection-based algorithms. The 

adversaries executing abnormal behavior on a particular system or process will try to 
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acclimate themselves to scheme a behavior as if it fits regular action, making the detection 

process complicated. Additionally, in nearly a few circumstances, the irregular behavioral 

points nearby to the regular borderline will be measured as benign behavior. 

The proposed idea is to build normal program behavior models by utilizing process-related 

data. The crucial reflection is the detail that a particular malicious vector interacts with the 

underlying system through process attributes to initiate damaging the system. An attack is 

presumed when the normal behavior of a known process diverges from the expected 

behavior.  

With the ongoing comprehensive research in this area, developing an anomaly detection 

system is required to diminish false and missed alarms and simultaneously maximize the 

anomalous detection rate. Therefore, this study presents an unsupervised (one class) 

learning approach to the dataset extracted from windows processes. We collected the 

dataset during numerous regular operations and malware vector attack operations. We pre-

process the extracted raw data with descriptive statistics and PCA's popular feature 

extraction technique. Furthermore, various learning-based algorithms, namely, 

Mahalanobis Classifier, OCSVM, Isolation Forest, and Dendogram-based Agglomerative 

Clustering, in conjunction with the dynamic thresholding, were used to detect the 

anomalous behavior. Using an ensemble of the proposed algorithms, we developed an 

anomaly detection system that tracks the particular applications to recognize malicious 

behavior.  

The rest of the chapter is structured as follows. Section 2 provides the literature review on 

this work. Section 3 defines the in-depth overview of the proposed methodology to solve 
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the anomaly detection problem. Section 4 discusses the experimental results, and finally, 

we conclude in section 5 with future work discussion in section 6. 

6.2     Related Work 

There are abundant methods testified in many of the literature works performed for 

abnormality detection. Tavallaee et al. [85] accumulated an all-inclusive review of studies 

on such systems. Out of 276 articles under consideration, they stated that 160 of them 

applied supervised classification-based machine learning algorithms, 62 of them projected 

methods developed on statistics, 36 of them utilized clustering-based algorithms, and the 

last 46 research papers have shown to use various fusion methods. Furthermore, the dataset 

was based on single host and network traffic data. 

Deshpande et al. [86] projected an anomaly detection model based on system call traces 

for cloud computing settings that signal users of cloud systems in contrast to disturbances 

within their scheme. They used a framework based on a Linux OS audit and extracted data 

such as system calls and their frequencies with process IDs recorded in a log stored in the 

database. For all new trace of system calls, their detection system uses the Euclidean 

distance to relate it with the normal vectors. Their study achieved an accuracy rate of 96% 

in distinguishing abnormal events on the datasets used in [87] and [91]. 

Several weaknesses [87] can be exploited in software-defined networking (SDN), which 

offers numerous proficiencies in preventing and mitigating such attacks. Mahrach et al. 

[89] projected a technique to detect anomalies using the SYN cookie technique at the switch 

level. Their research examines a particular application's descriptive mean on the data 
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collected throughout a specific period and prompts an alarm when the accrued capacity of 

extents surpasses a threshold.  

Aghaei et al. [90] used SMOTE-based technique to overcome the imbalanced data problem 

created during the most frequent data patterns extraction. They employed an ensemble 

approach and developed two different classification models using different classification 

algorithms [48], namely Naive Bayes, Decision Trees, Random Forest, etc. The first 

classification model is the binary classification model [57] used to classify the attacks as 

normal or malicious. The second one is the multiclass classification model used to classify 

all six different types of attacks. Their study reports a 99.9% detection rate for binary 

classification. The average accuracy score reported was only 55% for all attack classes for 

the multiclass classification. Serpen et al. [91] used a windowed technique to generate 

fixed-size feature vectors. Furthermore, they used the features generated from principal 

component analysis to reduce the dimensionality. Next, they trained and developed the k-

nearest neighbor algorithm to classify new test data. 

6.3     Proposed Methodology 

This section provides an in-depth overview of the proposed anomaly detection framework 

shown in Figure 6.1 with four stages: Data Extraction, Data Pre-Processing, Detection 

Algorithm Training, and Finally, Deployment. 
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Figure 6.1: Proposed Anomaly Detection Framework 

 

6.3.1 Stage-I: Data Extraction 

Extraction of process list data is made with the help of the Virtual Machine Introspection 

(VMI) mechanism [92]. Here, the Xen hypervisor inspects the running processes in a 

virtual machine and extracts different features of a process as described in Table 6.1. The 

authors devised an architecture to remove process information, as shown in Figure 6.2. 

There are three significant components present in this architecture: User Interface, Virtual 

Machine Introspection Layer, and Data Analytics Layer. The user interface can be used to 

initiate the data extraction process with the help of user-defined application programming 

interfaces (API). The user interface starts and stops the data extraction process with pre-

defined functionality. It can also view and manage virtual machines such as creation, 

deletion, and other activities. The virtual Machine Introspection Layer is the significant 

component of the architecture where the actual data extraction of the virtual machine 

occurs. It has different elements and performs several activities. 
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Figure 6.2: Architectural diagram of the Data extraction mechanism 

The hypervisor will receive the command from the user interface. It uses the LibVMI library 

to extract memory offsets of the running processes and push the extracted data to the Data 

Analytics layer. In the Data Analytics layer, the extracted data is received at the data layer 

and stored in the Database server for further processing. The machine learning models 

module in the Data Analytics layer will create different models using different machine 

learning algorithms. Table 6.2 depicts the benign and malicious dataset samples, and Table 

6.3 describes the extracted data set sizes. 

Table 6.1: Extracted Features 

No. Features Description 

1 VMName Name of the Virtual Machine 

2 ProcessID Unique Process Identifier Number 

3 ProcessName Name of the running process 

4 NumberOfPrivatePages Total number of private pages 

5 NumberOfLockedPages Total number of locked pages 

6 ModifiedPageCount Total number of pages modified 

7 WorkingSetPage Set of pages in the virtual address space 

8 ActiveThreads Number of Active Threads of a particular Process 

9 ReadOperationCount Count of read operations 

10 WriteOperationCount Count of write operations 

11 OtherOperationCount Count of I/O operations 

12 ReadTransferCount Amount of data read 

13 WriteTransferCount Amount of data written 

14 OtherTransferCount Amount of data transferred that are not read or written operations 
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15 KernelTime Time in kernel mode, in 100 nanosecond units 

16 UserTime Time in user mode 

17 BasePriority Current base priority of a thread 

18 DefaultPagePriority Default Page value set during the process creation 

19 DefaultIOPriority Default IO value set during the process creation 

20 StackCount Define the size of the process stack space 

21 PeakVirtualSize Extreme virtual address space that can be used at any time 

22 VirtualSize Comprises the size of all pages that the process has reserved 

23 DisableDynamicCode When turned on, the process cannot generate dynamic code 

24 DisallowStrippedImages Rejects the reallocation information 

25 DisallowWin32kSystemCalls User mode calls that are disallowed to be serviced by win32k.sys 

26 ActiveThreadsHighWatermark Unused Stack Space 

27 CommitCharge The total amount of virtual memory to be backed by either 

physical memory 

28 CommitChargePeak The highest amount that the commit charge has reached 

29 Cookie Files with small pieces of data 

30 CreateInterruptTime The time spent by the processor servicing hardware interrupts 

31 CreateUnbiasedInterruptTime The time that the system is in the working state 

32 DefaultHardErrorProcessing Default value to process the error 

33 DeviceAsid Device ID 

34 ExitStatus Status of process Exit 

35 Flags An 8-bit field of 1-bit flags relating to structures in effect for the 

GPO (Group Policy Object) 

36 Flags2 The computer configuration portion of GPO is disabled 

37 Flags3 The GPO is disabled 

38 ImagePathHash The full path to the executable file corresponding to each process 

39 LastAppStateUpdateTime Last update time of the process state 

40 LastFreezeInterruptTime Interrupt time during process freeze 

41 OwnerProcessID The process ID of the owning thread 

42 PriorityClass The priority category for the associated process, from which the 

BasePriority of the process is calculated 

43 ReadyTime The time thread is waiting to use a processor 

44 SectionSignatureLevel The default required signature level for any modules that get 

loaded into the process 

45 SequenceNumber Track Process Sequence 

46 SharedCommitCharge Total of potential storage space required, which could be in either 

RAM or the page file 

47 SignatureLevel The validated signature level of the image present in the Image 

Name field 

48 VadCount It contains a detailed count of a process' allocated memory 

segments 

49 LastThreadExitStatus Exit status after the last thread has been terminated. 
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Table 6.2: Sample PS Dataset 

  Sample Benign Rows Sample Malicious Rows 

No. FeatureName BR-1 BR-2 BR-3 MR-1 MR-2 MR-3 

1 VMName VM VM VM VM VM VM 

2 ProcessID 1900 1900 1900 392 392 392 

3 ProcessName PNam

e 

PName PName PName PName PName 

4 NumberOfPrivatePages 5063 4663 6219 11321 11105 8640 

5 NumberOfLockedPages 0 0 0 0 0 0 

6 ModifiedPageCount 381 377 424 516 495 462 

7 WorkingSetPage 92985

2 

929852 929852 51090 51090 51090 

8 ActiveThreads 20 19 20 625 622 323 

9 ReadOperationCount 0 0 0 0 0 0 

10 WriteOperationCount 0 0 0 0 0 0 

11 OtherOperationCount 0 0 0 17 17 0 

12 ReadTransferCount 0 0 0 0 0 0 

13 WriteTransferCount 0 0 0 0 0 0 

14 OtherTransferCount 0 0 0 0 0 0 

15 KernelTime 0 0 0 0 0 0 

16 UserTime 0 0 0 1 1 0 

17 BasePriority 8 8 8 8 8 8 

18 DefaultPagePriority 10 10 10 10 10 10 

19 DefaultIOPriority 4 8 4 4 4 4 

20 StackCount 160 152 160 4976 4976 2584 

21 PeakVirtualSize 79995

2896 

7951360

00 

7999528

96 

3339759

616 

3339759

616 

2082299

904 

22 VirtualSize 79957

6064 

7951360

00 

7986626

56 

3339759

616 

3339759

616 

2082299

904 

23 DisableDynamicCode 0 0 0 0 0 0 

24 DisallowStrippedImages 0 0 0 0 0 0 

25 DisallowWin32kSystem

Calls 

0 0 0 0 0 0 

26 ActiveThreadsHighWate

rmark 

20 19 20 622 622 323 

27 CommitCharge 10735 10509 12107 20016 20016 16063 

28 CommitChargePeak 10195 10635 12107 20016 20016 16063 

29 Cookie 40067

69173 

4006769

173 

4006769

173 

1182570

43 

1182570

43 

1182570

43 

30 CreateInterruptTime 88846

47474

4 

8884647

4744 

8884647

4744 

1252621

3484 

1256213

484 

1252621

3484 

31 CreateUnbiasedInterrupt

Time 

88846

47474

4 

8884647

4744 

8884647

4744 

1252621

3484 

1252621

3484 

1252621

3484 

32 DefaultHardErrorProces

sing 

1 1 1 1 1 1 

33 DeviceAsid 0 0 0 0 0 0 
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34 ExitStatus 259 259 259 259 259 259 

35 Flags 34062

6433 

3406264

33 

3406264

33 

3406264

33 

3406264

33 

3406264

33 

36 Flags2 33607

700 

3360770

0 

3360770

0 

3360770

0 

3360770

0 

3360770

0 

37 Flags3 32 32 32 32 32 32 

38 ImagePathHash 15542

79663 

1554279

663 

1554279

663 

1554279

663 

1554279

663 

1554279

663 

39 LastAppStateUpdateTim

e 

88846

47474

4 

8884647

4744 

8884647

4744 

1252621

3484 

1252621

3484 

1252621

3484 

40 LastFreezeInterruptTime 0 0 0 0 0 0 

41 OwnerProcessID 0 0 0 0 0 0 

42 PriorityClass 2 2 2 2 2 2 

43 ReadyTime 0 0 0 0 0 0 

44 SectionSignatureLevel 0 0 0 0 0 0 

45 SequenceNumber 628 628 628 589 589 589 

46 SharedCommitCharge 1227 1167 1227 1252 1252 1252 

47 SignatureLevel 0 0 0 0 0 0 

48 VadCount 192 195 194 1418 1418 809 

49 LastThreadExitStatus 0 0 0 0 0 0 

 

Table 6.3: Benign and Malicious Dataset Size 

Dataset Projected Use Class  Dimensions 

Dtrain Train Normal 19500 * 49 

Dtest Test Normal/Malicious 20960 * 49 

 

6.3.2    Stage-II: Data Pre-Processing 

The pre-processing of attributes of all processes (benign and malicious) is outlined in 

Algorithm 1, which comprises the following operations to clean the data: 

i) Remove rows with zero variance 

ii) Remove redundant rows 

iii) Remove highly correlated features 

iv) Normalize the dataset 

First, the algorithm will create an empty PFD (Processed Feature Dataset). Next, it will 

calculate the variance of each column, remove the columns with zero variance, and remove 
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the duplicate rows. Furthermore, it will calculate the Pearson correlation between every 

two pairs of columns and remove columns with correlation values greater than or equal to 

95%. Finally, it normalizes the remaining columns and adds them to the PFD. 

Zero Variance Features: The following attributes are removed due to zero variance. 

NumberOfLockedPages, WorkingSetPage, ReadOperationCount, WriteOperationCount, 

ReadTransferCount, WriteTransferCount, OtherTransferCount, BasePriority, 

DefaultPagePriority, DefaultIOPriority, DisableDynamicCode, DisallowStrippedImages, 

DisallowWin32kSystemCalls, CreateInterruptTime, CreateUnbiasedInterruptTime, 

DeviceAsid, ExitStatus, Flags3, LastAppStateUpdateTime, LastFreezeInterruptTime, 

PriorityClass, ReadyTime, SectionSignatureLevel, SequenceNumber, SignatureLevel, 

LastThreadExitStatus 

Highly Correlated Features: The following attributes are removed due to high correlation 

among themselves. 

ModifiiedPageCount, OtherOperationCount, KernelTime, UserTime,Cookie, 

DefaultHardErrorProcessing, Flags, Flags2, ImagePathHash, OwnerProcessID. 

Algorithm 1 Feature Processing Methodology 
Input: Dataset (Δ) with benign process attributes, PFD: Empty Processed Feature Dataset 
Output: Cleaned data 
  1: for column Ψ ϵ Δ do 
  2:     if (σ (Ψ) != 0 ) then 
  3:         PFD = PFD  U  Ψ 
  4:     end 
  5: end for 
  6: for row ω ϵ Δ do 
  7:     if (ω already exists) then 
  8:         PFD = PFD  -  ω 
  9:     end 
10: end for 
11: for column Ψ ϵ Δ in range  (i to n-1)  do 
12:     for column Ψ ϵ Δ in range ( j to n ) do 
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13:         if (Pearson_Correlation (Ψi , Ψj ) >= 0.95) then 
14:             PFD = PFD  -  Ψ 
15:         end 
16:     end for 
17: end for 
18: for column Ψ ϵ Δ do 

19:     Ψnew =
Ψi−min (Ψ)

𝑚𝑎𝑥(Ψ)−min (Ψ)
 

20:     PFD = PFD  U  Ψnew  - Ψ 
21: end for 
 
Algorithm 2 EigenTrace Methodology 
Input: PFD from Algorithm1 
Output: Reduce Dimensional Data 
  1: for column Ψ ϵ PFD do 
  2:     ζ = average trace vector Ψ 
  3: end for  
  4: P = PFD – ζ 
  5: Q = PPT   
  6: values, vectors = Eig(Q) //Compute Eigen Decomposition of the Covariance matrix Q 
  7: if (all values are same) then 
  8:     Data already in compressed form 
  9: else 
10:     Select N(Ψ) or less to compromise the chosen subspace 
11:     PrincipalComponents = select (values, vectors) 
12:     P = BT . A       //Project Data into the subspace 
13: end if 

Final used attributes: We generate the principal components from the following attributes 

as described in Algorithm 2. 

NumberOfPrivatePages, ActiveThreads, StackCount, PeakVirtualSize, VirtualSize, 

ActiveThreadsHighWatermark, CommitCharge, CommitChargePeak, 

SharedCommitCharge, VadCount. 

The principal components generated using Algorithm 2 are used to train One-Class 

Classifiers. 
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6.3.3    Stage-III: Detection Algorithm Training 

The following one-class classifiers are trained and optimized during this experimental stage 

to detect anomalies in our process list data structure. 

Isolation Forest 

The Isolation Forest algorithm [94] works based on two fundamental dataset principles: A. 

Over the total distribution of the dataset, the portion of the anomalous data points is low. B. 

The difference between the feature values of the anomalous data point and the normal data 

point is high. This algorithm uses iTree, a binary tree where each node has either zero or 

two children.  

Let us consider M as a node. M can be a node with zero children or a node with two children 

nodes (Ml, Mr). To build an isolation tree from a given sample data D = {d1, ..., dn}, we 

randomly select a feature f and split value v to divide D recursively until the following 

conditions occur: (i) Length of D is one, (ii) A particular height is reached (Defined as a 

hyperparameter) or (iii) D contains a constant value. Anomalies are detected according to 

their path length. The larger the path length, the higher the chance of an anomalous data 

point. 

Path Length p(d) of a particular point d is the count of edges d must traverse to reach the 

end node from the root node. 

An unsuccessful path length of any binary search tree is given as: 

𝐶(𝑚) = 2𝐺(𝑚 − 1) −
2(𝑚 − 1)

𝑚
 

(6.1) 

 

where G(i) is the harmonic quantity. 
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F(m) is the average of g(d) and use to normalize g(d). The anomaly A of an instance d is 

defined as: 

𝐴(𝑑, 𝑚) = 2
−

Avg(g(d))
F(m)  

(6.2) 

 

where Avg(g(d)) is the average of g(d).  

A = 0.5 when Avg(g(d)) = F(m); 

 A = 1 when Avg (g(d)) = 0; 

 A = 0 when Avg (g(d)) = m – 1 

A particular data point is considered anomalous based on the following criteria: 

(a) if A ≈ 1, then it is an anomaly,  

(b) if A << 0.5, then it is considered a normal instance, and 

     (c) if A≈ 0.5, there is no distinct anomaly. 

One-Class Support Vector Machine (SVM) 

OCSVM [95] is a semi-supervised learning-based algorithm that learns a decision boundary 

to classify a point similar or dissimilar to the training data. It takes training data of one class 

(normal) as input. This algorithm was developed by Schölkopf et al.  Given a training dataset 

E = {e1,.., em}, ei ∈ Rd. The algorithm tries to find a separating boundary with maximum 

distance. Mathematically, it is defined as follows: 

Arg-min w, ζ, p 
1

2
|| b ||2 + 

1

𝑢𝑛
 ∑ 𝜁𝑖 − 𝑜𝑚

𝑖=1  

 

(6.3) 

where, 

(𝑤, ω(𝑥𝑖)) ≥  o –  ζi and ζi ≥ 0   
 

(6.4) 
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Here m is the total training data points, and ω (•) is a non-linear kernel function. 

Furthermore, this algorithm uses normal vector b and offset o to learn the decision boundary. 

The degree of misclassification is calculated by the slack variable ζi. Finally, u, which lies 

between 0 and 1, determines which points are outside the decision boundary and inside the 

boundary. 

Mahalanobis Classifier 

The Mahalanobis classifier [97] is based on a statistical method that measures how far a 

particular data point is from a normal data points distribution cluster. Given a dataset with 

R datapoints and C features, the Mahalanobis distance 𝑀2 is calculated as a function of �̅� 

that comprises the mean of each feature and a covariance matrix E. 

𝑀2 (𝑉𝑅) = (𝑉𝑅 − �̅�)𝑇 𝐸−1(𝑉𝑅 −  �̅�) 

 

(6.5) 

where �̅�, 𝐸−1, 𝑎𝑛𝑑 𝑉𝑅 transform each value of every feature column to a standard normal 

distribution by mean centering, scaling, and rotating, respectively, following a chi-squared 

distribution. 

 

Dendogram based Agglomerative Clustering 

Given N data points to be clustered, the basic process of Agglomerative Clustering [96] is 

as follows: 

 Each data point is considered a cluster; therefore, there will be n clusters for n data 

points. 

 Find the two closest clusters and join them into a single cluster. 

 Continue clustering the data points until we reach a single cluster. 
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In Step 2, there are different ways to find the two closest clusters. They are: 

 Single-linkage: Distance between two nearest data points of two clusters is 

calculated. 

 Complete-linkage: Distance between two farthest data points of two clusters is 

calculated.  

 Average-linkage: The two clusters' mean of the data points are computed and used 

to calculate the inter-cluster distance. 

Custom Malware 

We developed a custom malware that adds malicious values to the attributes of the process 

using the DLL injection method. It creates additional threads by creating a new file that 

hooks into the write system call of the process. 

6.4     Experiments and Results  

This section discusses the experimental results for all four one-class classifiers. All the 

classifiers are trained on the normal class of data, and the normal (benign) and anomalous 

scores are evaluated. 

6.4.1    Mahalanobis Classifier 

Mahalanobis Distance Metric distinguishes the malicious point from the normal point by 

calculating the Mahalanobis distance, an extended version of Euclidean distance. From 

Figure 6.3, we notice that when the normal data is tested again, the distance range is around 

4000, whereas, in the malicious data, the distance range is about 30000. 
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Figure 6.3: Mahalanobis Distance Metric Results 

6.4.2    Isolation Forest 

 

Figure 6.4: Isolation Forest Results 

Isolation Forest is the version of the Random Forest train with only one class of data. As 

shown in Figure 6.4, each test case scores for inliers and outliers. Inliers are considered 

normal points, and outliers are considered anomalous points. When tested the normal data 

again, 93% to 99% of data were classified as inliers, and 1% to 4% were classified as 

outliers. Similarly, when tested against malicious data, 54% to 58% of data were classified 

as inliers, and the rest, 42% to 46% of data, were classified as outliers. 

6.4.3    Agglomerative Clustering 

Agglomerative clustering is a type of hierarchical clustering. We use the Euclidean distance 

and ward linkage method to generate the dendogram shown in Figures 6.5 and 6.6. 
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Figure 6.5: Agglomerative Clustering Results (Normal) 

 

Figure 6.6: Agglomerative Clustering Results (Malicious) 

The height value in the dendogram represents the distance between two clusters. As shown 

in Figure 6.5, when it is tested against the normal data, it shows only one cluster (normal) 

of data. Figure 6.6 shows the result when tested with malicious data, where we see two 

distinct clusters of data. 

6.4.4    OCSVM 

One class SVM is a type of SVM where we feed only one class (normal) of data during the 

training process. It finds the hyperplane that separates the far-away data points from the 

groups of data in a cluster. The results of OCSVM are shown in Figures 6.7 and Figure 6.8. 



106 

 

 

Figure 6.7: OCSVM Results (Normal) 

 

Figure 6.8: OCSVM Results (Malicious) 

Figure 6.7 shows the results when trained OCSVM was tested against the normal data, 

giving a 97% accuracy rate. Figure 6.8 shows the results when tested against the malicious 

data, and it was able to distinguish the normal data points and malicious data points. 

6.5     Ensemble Approach 

Table 6.4: Four Unique TestCase Results 

Test  

Cases 

Algorithm Output 

Score 

Threshold 

Value 

Score 

Difference 

Normalized 

Score Difference 

Result Ensemble 

Decision 

 

1 

Mahalanobis Classifier 0.93 0.70 + 0.23 +0.76 Normal  

    Normal Agglomerative Clustering 0.97 0.80 + 0.17 +0.85 Normal 

Isolation Forest 0.92 0.80 + 0.12 +0.60 Normal 

One Class SVM 0.95 0.75 + 0.20 +0.80 Normal 

 

2 

Mahalanobis Classifier 0.45 0.70 - 0.25 -0.35 Compromised  

Compromised 

 
Agglomerative Clustering 0.70 0.80 - 0.10 -0.12 Compromised 

Isolation Forest 0.93 0.80 + 0.13 +0.65 Normal 

One Class SVM 0.80 0.75 + 0.05 +0.20 Normal 

 

3 

Mahalanobis Classifier 0.54 0.70 -  0.16 -0.22 Compromised  

Compromised 

 
Agglomerative Clustering 0.62 0.80 -  0.18 -0.22 Compromised 

Isolation Forest 0.85 0.80 + 0.05 +0.25 Normal 

One Class SVM 0.55 0.75 -  0.20 -0.26 Compromised 

 

4 

Mahalanobis Classifier 0.42 0.70 -  0.28 -0.40 Compromised  

Compromised 

 
Agglomerative Clustering 0.39 0.80 -  0.41 -0.51 Compromised 

Isolation Forest 0.65 0.80 - 0.15 -0.18 Compromised 

One Class SVM 0.40 0.75 -  0.35 -0.46 Compromised 
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Figure 6.9: Ensemble Decision for each TestCase Scenario 

The score difference value is calculated as below: 

𝑆𝑐𝑜𝑟𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑐𝑜𝑟𝑒𝑉𝑎𝑙𝑢𝑒 − 𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝐴𝑙𝑔     

 

(6.6) 

Since every algorithm has a different static threshold, we normalize the score difference 

between -1.0 to +1.0. This value is derived by dividing the score difference by the maximum 

possible score difference. 

For 𝑆𝑐𝑜𝑟𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 >= 0 (i.e. Normal Cases), 

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑆𝑐𝑜𝑟𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =  
𝑆𝑐𝑜𝑟𝑒𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒

1 −  𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑𝑉𝑎𝑙𝑢𝑒
     

 

(6.7) 

The characteristics of the test cases are as follows. Test case 1 is the normal scenario where 

no malicious vectors were injected. All algorithms predicted this test case as normal. Thus 

the ensemble output is also normal. In test case 2, a single run of one malicious test vector 

was executed during the application process. In this case, two algorithms (Mahalanobis 

Distance and Agglomerative Clustering) predicted the outcome as compromised. Thus, the 

ensemble output is compromised since at least half of the algorithms yielded compromised 

predictions. 
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In test case 3, two runs of the same malicious test vector as in test case 2 were executed 

during the application process. In this case, three algorithms (Mahalanobis Distance, 

Agglomerative Clustering, and OC-SVM) predicted the outcome as compromised. Thus, 

the ensemble output is compromised since at least half of the algorithms yielded 

compromised predictions.  

In test case 4, two different malicious test vectors were executed during the application 

process. In this case, all four algorithms predicted the outcome as compromised. Thus, the 

ensemble output is compromised since at least half of the algorithms yielded compromised 

predictions. 

6.6     Conclusion 

One-class classification is primarily valuable for anomaly detection when data points of 

abnormal class are expensive to extract. As the behavior of an application process belongs 

to this category, we proposed a framework for anomaly detection in a process running on 

Xen hypervisor. This host-based approach analyzes various in-memory data structures of 

a process to classify its behavior as either normal or malicious. This framework utilizes the 

LibVMI library to extract the data and analyzes them in two stages. We pre-process the 

data with statistical approaches in the first stage. Then, PCA is performed in the same stage 

for dimensionality reduction of the data. This, in turn, reduces the training time of the 

algorithms. In the last part of the first stage, four different one-class classifiers, namely 

Mahalanobis Distance classifiers, Dendogram-based Agglomerative Clustering, Isolation 

Forest, and One-Class SVM, are trained on the normal class of data. These algorithms learn 

the normal behavior of a process during their training period. A unique static threshold is 
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assigned to each algorithm. Each algorithm uses its threshold value to classify the behavior 

of the process. 

The second stage of the framework applies the ensemble approach to the output scores 

from all the algorithms. A process is considered compromised if at least half of the 

algorithms determine its behavior as compromised. We presented the results of this 

ensemble approach for four different test cases and two different test vectors. 

6.7     Future Work 

In our current work, an anomaly is detected by the trained algorithms based on a static 

threshold relative to baseline results under the assumption that the workflow of the process 

remains unchanged. However, this static threshold may not be suitable for a baseline 

dataset of processes in a different environment. This can be overcome by employing a 

dynamic thresholding approach where the threshold is determined during the training phase 

for a given application. We plan to extend the current work by computing the dynamic 

threshold for anomaly detection irrespective of the underlying application environment.  

The accuracy for the same baseline data varies across different algorithms since multiple 

algorithms provide a wide range of insights. Thus, it is essential to incorporate the results 

from multiple algorithms with an ensemble approach for anomaly detection. In this study, 

we presented four different one-class classifiers. We intend to add new algorithms such as 

local outlier factor, self-organizing Maps, and restricted Boltzmann machines for improved 

performance. 
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Each trained algorithm has been allocated the same weight with the assumption that all the 

models are equally skillful for the ensemble result. Majority voting combines the outcome 

from all the trained algorithms to generate the final anomaly detection score. To enrich this 

approach, we will modify the majority voting by applying probabilistic-based weights to 

each algorithm, wherein the algorithm that has performed the best during the training will 

be allocated a higher weight value. 
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CHAPTER 7 

ADA-THRES: AN ADAPTIVE THRESHOLDING METHOD TO 

MITIGATE THE FALSE ALARMS 

In a wide variety of domains, the advanced intrusion detection system consists of a 

learning-based detection method and a signature-based analysis approach. Such a system 

scans the incoming data, performs the analytics on it by using an anomaly detection 

algorithm, and finally transfers the report of suspicious activity for further analysis if found. 

The major problem of such a current system is the high false-positive rate (FPR), 

specifically in the case of a highly complex system with a large dataset. Such high FPRs, 

which are non-crucial, can easily overwhelm the user of the system and can further increase 

the likelihood of ignoring such indications. Therefore, mitigation approaches aim to 

develop a technique to reduce high FPR without losing any potential harmful threats.  

Thus, in this chapter, we develop an adaptive thresholding algorithm that can mitigate the 

issue of high FPR. The proposed algorithm applies three scoring mechanisms. They are 

Anomaly Pruning, Sequence Scoring, and Adaptive Thresholding. The model is trained on 

sequential data. Anomaly Pruning gives a score to an individual data point. It either rejects 

or accepts the data points to be considered for Sequence Scoring. This Sequence Scoring 

will give a score to an individual sequence. Finally, an Adaptive Thresholding is applied to 

the cumulative score of all the sequences to detect the anomalous nature of the analyzed 

data. Multiple experiments have been conducted using various optimizers to access our 

proposed approach. Using the proposed approach, we train a deep learning-based LSTM 

algorithm widely adopted for sequential data. Furthermore, we validate it with three 
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different datasets of various sizes. From the experimental results, we infer that the proposed 

approach allows the model to train faster and reach the minimum loss at a faster rate. 

7.1      Introduction 

Intrusion detection and Threat Detection are the cybersecurity systems that constantly take 

the huge volume of the multivariate dataset and perform anomaly detection and protect the 

systems. One of the prerequisites of any anomaly-based detection system is to learn the 

normal routine behavior of the process efficiently. Such a process can be heterogeneous 

and complex in nature. The trained model can thus better perform the estimation of the 

expected observations and can thus help in detecting abnormal behavior. Recent deep 

learning methods have shown substantial capabilities in predicting future observations. 

An anomaly detection system has to accomplish numerous challenges: Methodology for 

scoring the observations and subsequently ranking them, a proper threshold to check the 

compromised state of the system, outlier removals, reducing the false positive rate, and 

finally, the explainability of the anomaly detection.  

With the high uncertainties such as base rate [99], in detecting an anomaly, it is not easy to 

set the optimal value of threshold to identify particular observations as normal or 

anomalous. This remains true not only for single detectors but also for the multivariate and 

high dimensional streams of datasets. Even if the threshold is misadjusted slightly, it can 

generate a high number of false alarms or can miss the true anomalies [98, 101]. 

There is a major difference between anomalies and malicious events. Oftentimes, having 

high accuracy in anomaly detection does not guarantee the overall high detection of 
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malicious events. The application of anomaly detection to discriminate the normal from 

abnormal can produce high false alarms since malicious observations are rare in nature. 

7.2     Related Work 

Anomaly Detection based on the prediction methods is solely focused on the prediction 

and not on the detection. Nonetheless, adjusting the threshold value to a specific range is 

vital. There is mainly two way to perform this calculation. They are parametric and non-

parametric. 

The data and its distribution must be known prior to the parametric-based techniques. Thus, 

the fixed thresholding approach is a big limitation in this approach. To overcome this issue, 

Clark et al. [100] introduce an approach that tries various threshold values and uses the one 

with the lowest false positive rate. Sequential data are basically a stream of data, and thus 

its data distribution can vary due to the concept drift problem. Therefore it is difficult to 

recognize anomalies from the normal change in the data distribution. Furthermore, they 

defined zero hypotheses to indicate that there is no concept drift problem in the current 

observation window, and thus the threshold is not required. Next, if the delta variation in 

the mean value of the anomaly score is detected by Z-test, then the threshold is updated. P-

value scoring is employed in [29], which rejects the null hypothesis. A Gaussian 

distribution approach is utilized in [27]. The authors use the maximum likelihood estimation 

to generate the values of μ and σ using the vector generated by error calculation. Next, they 

employed a function to fit the error vectors into a normal distribution. A scoring method 

based on the double window is introduced by Ahmad et al. [28]. To detect the change in 

the short-term window and long-term window distribution, they maintain a history of the 
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current short window and previous long window. Thus, using this approach, they solve the 

problem of concept drift in the data. There are some limitations in the parametric 

approaches. First, the underlying assumed distribution of data may not always be followed 

by anomalies. Due to this violation in statistical assumption, oftentimes, the residuals seem 

normal. Next, it is difficult to depend continuously on the hypothesis test since it assumes 

the absence of alternative hypotheses. Finally, the current world data is highly messy, 

multivariate, and high-dimensional in nature. These complex features are highly ignored 

by the parametric approaches and thus produce a high number of false alarms. 

The assumption on the data distribution is not required in the non-parametric-based 

approaches. They usually take less computational power and are more popular than 

parametric-based methods. Such methods use the distance measure between the model and 

the test data and subsequently apply the threshold value on the calculated distance to detect 

whether an observation is an anomaly or not. Wang et al. assign an anomaly score to the 

test data by calculating its distance from the other groups. These methods are based on the 

machine learning algorithms, specifically, the supervised classification type, which brings 

an overhead for a real-time application. Furthermore, the computation of a threshold is 

always an issue in such a distance-based approach. Evaluation of residuals based on the 

unsupervised thresholding approach is presented by Hundman et al. [31]. However, their 

approach gives scoring to the whole sequence for anomaly detection. 

7.3     Contribution of the work 

We developed an adaptive thresholding algorithm that can tune adaptively based on the 

dataset and reduce the high false alarm rates. The proposed algorithm works in three steps: 
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Anomaly Pruning, Sequence Scoring, and Adaptive Thresholding. Anomaly Pruning 

rejects the irrelevant anomalies which increase the false alarms. Sequence Scoring provides 

the anomaly score for each window of the sequence. Finally, the cumulative score of all 

the sequence windows is calculated and compared with the Adaptive Thresholding to 

determine whether a test sequence is anomalous or not. We also developed a brute force 

algorithm to compare the efficacy of the developed algorithm. Three different datasets are 

being used to evaluate the proposed algorithm. Each dataset selected for the evaluation is 

of varying sizes. 

7.4     Organization of the chapter 

In section 7.5, we define and explain the problem formulation with the challenges of 

different types of anomaly. The static thresholding approach is described in section 7.6. 

The proposed adaptive tuning of the threshold with its subcomponents is explained in depth 

in section 7.7, with the discussion of the experimental results in section 7.8. Finally, we 

conclude in section 7.9. 

7.5     Problem Formulation 

User processes go into the kernel mode to interact with the operating system. A particular 

part of the code is compiled to execute the program. System calls are being made to execute 

various lines of code. Thus, any process's behavior can be studied by examining its 

sequence of system calls. These sequences will change if an attacker tries to manipulate 

the program. LSTM model is trained to learn such sequential data. It takes a particular 

window length of system calls as an input and predicts the next window of the system calls. 

In our previous chapters, we have proposed a dynamic approach for optimizing the training 
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time of the algorithm. Thus, let us assume the LSTM model is trained and is now ready for 

detection. The model is trained with the normal sequences of the system, so it only knows 

the normal behavior of the processes. Anything that deviates from normal behavior is 

considered an anomaly. The problem is as follows. Given an unknown test sequence of a 

system call, check whether it is normal or anomalous. The process is executed in the 

following manner. Upon receiving the test sequence of the system calls, it is first 

transformed into a unique integer number. Next, this integer sequence is divided into 

batches of input and output of fixed length. Each input batch is given to the LSTM model 

to predict the output sequence. The predicted output sequence is compared with the actual 

output sequence, and even if one single system call is mispredicted, the whole input 

sequence is currently considered anomalous. This way, the count of the total anomalous 

sequence is computed, and a static threshold is applied to generate the final result. 

The major limitation is the calculation of the threshold value. The static value needs to be 

tuned every time a new model is trained with new process data. Furthermore, this static 

approach often fails with the different varieties of malware. Since each malware behaves 

differently, the different static threshold has to be set for different malware. This is not 

feasible since there is a high surge in the complex malware generated every day. Also, such 

a static threshold creates too many false alarms and may sometimes miss the actual 

anomaly. Thus to avoid this problem, a dynamic threshold needs to be set.  
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7.5.1 Challenges 

Anomaly Detection is the methodology of detecting the patterns or structure in the data 

that deviates from the normal pattern or behavior. Such patterns are often called an 

anomaly.  

A straightforward method of detecting an anomaly is to define an area of the normal 

behavior of the process with the static threshold and deduce any data points or observations 

outside the range of the normal area as anomalous. This simple approach is not practical 

due to the following reasons: 

1. Describing a normal area that can include all the possible behavior of the normal 

operation of the process is not easy. Furthermore, the precise boundary line that can 

discriminate between normal and malicious behavior is inaccurate. Therefore, some of the 

malicious data points near the decision boundary can actually be normal data points. 

2. The adversaries always try to make the malicious data points in such a way that it looks 

like the normal point of observation. Therefore, the main goal of defining normal behavior 

is tough.  

3. Today's real-world applications are highly complex in nature with multivariate features. 

Furthermore, they keep evolving with the increasing trends. Thus, the current 

representation of the normal behavior may not be an accurate and precise representation of 

the future version of the applications. 

4. For numerous domains with a wide variety of applications, the precise definition of the 

anomaly is difficult to develop. For instance, even a nominal deviation from the normal 
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operation in the medical field will be considered an anomaly. In contrast, the same 

fluctuation in the domain of the stock market can be viewed as normal. Therefore, a 

methodology proposed and created for a particular domain may not be sufficient and easy 

to apply to another domain set. 

5. There is always a critical issue in the availability of the training, validation, and testing 

dataset in the form of the label as being normal or anomalous for the model development 

purpose. 

6. Many times, some of the observations of the dataset are noisy, which seems to be an 

actual anomalous point, and henceforth, such noisy points are challenging to identify and 

discard. 

7.5.2 Types of Anomaly 

In this section, we discuss the different types of anomalies in the sequential data. 

Comprehensively, the anomalies can be classified into three distinct categories: 

Point Anomalies: A particular data point can be considered an anomaly if it deviates largely 

compared to the remaining data observations of the dataset. It is one of the simplest forms 

of detection of an anomaly.  

Contextual Anomalies: If a particular data instance is anomalous with respect to a unique 

context; then, it is called contextual anomalies. Behavioral and Contextual are two types 

of features considered to detect such anomalies. Behavioral features represent the non-

contextual form of the observations of the dataset. The anomalous behavior is computed 

by selecting the different values of the behavioral features pertaining to the distinct context. 
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A particular observation might be considered an anomaly in a specific context but may be 

considered a normal point in some other context. On the other hand, the contextual features 

denote some form of context or neighbor of detecting an anomaly. This is one of the 

important characteristics in differentiating the behavioral features from the contextual 

features. 

Collective Anomalies: The set of observations that are similar to each other but different 

from the rest of the data are considered collective anomalies. The individual observations 

may not be malicious on their own, but their presence in the collective anomalies makes it 

an anomaly.  

In the next section, we discuss the implementation of the static threshold and its 

applicability for anomaly detection. 

7.6     Static Threshold Approach 

Figure 7.1 depicts the overall framework for detecting the test sequence as anomalous or 

normal. The step-by-step procedure is described in Algorithm 1. It takes as an input the 

system call sequences of base data as well as the test data. Next, upon the transformation 

of the sequence to its corresponding numeric format, the sequence of both the dataset are 

converted into input and output sequences. The input and output sequence of the base data 

is used for training the model. The loss of the trained model is used to generate the threshold 

value. Now, we fed the input sequence of the test data to the trained model. The model 

generates the predicted output sequence, compared with the test output sequence, and the 

error is calculated. If the error is less than the static threshold, then the test sequence is 

considered normal else, anomalous. 
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Algorithm 1 Static Threshold Algorithm   
Input: Base and Test System Call Sequences 
Output: Probability of the anomalous 

  1: 𝐵𝑎𝑠𝑒𝐼𝑛𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ = 𝐵𝑎𝑠𝑒𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

  2: 𝐵𝑎𝑠𝑒𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ = 𝐵𝑎𝑠𝑒𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

  3: LSTM = Train the model with the 𝐵𝑎𝑠𝑒𝐼𝑛𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ and 𝐵𝑎𝑠𝑒𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ 

  4: 𝑆𝑡𝑎𝑡𝑖𝑐𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 = Loss of the LSTM Model   
  5: 𝑇𝑒𝑠𝑡𝐼𝑛𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ = 𝑇𝑒𝑠𝑡𝐼𝑛𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

  6: 𝑇𝑒𝑠𝑡𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ = 𝑇𝑒𝑠𝑡𝑂𝑢𝑡𝑝𝑢𝑡𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 

  7: 𝐴𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠𝐶𝑜𝑢𝑛𝑡 = 0 
  8: for i = 0 to Totalbatches do 

  9:     𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ = 𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ Predicted by the LSTM model 

10:     Error = |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ| - |𝑇𝑒𝑠𝑡𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ| 

11:     if Error! = 0 then 
12:         𝐴𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠𝐶𝑜𝑢𝑛𝑡 += 1 
13:     end if 
14: end for 

15: if 𝐴𝑛𝑜𝑚𝑎𝑙𝑜𝑢𝑠𝐶𝑜𝑢𝑛𝑡 > 𝑆𝑡𝑎𝑡𝑖𝑐𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then 
16:     Test SystemCallSequence is Anomalous 
17: else 
18:     Test SystemCallSequence is Normal 
19: end if 
 

 

Figure 7.1: Static Threshold Approach 

The major limitation of this approach is non-adaptiveness, where a new static threshold has 

to be set for a new process each time. Additionally, it induces high false alarm rates since 
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it gives a binary score to each sequence and generates the total cumulative score of all the 

test data sequences. 

To overcome this problem, we propose an adaptive thresholding approach that not only 

can just be applied to any process but reduces the false alarms rate by pruning the irrelevant 

error points. 

7.7     Proposed Adaptive Thresholding Algorithm 

In this section, we discuss the implementation of the proposed algorithm that can 

adaptively tune the threshold value, which helps in reducing the overall false alarm rates.  

Algorithm 1 Adaptive Thresholding Algorithm   
Input: Normal System Call Sequences 
Output: E, P, DT 
  1: 𝐼𝑂𝐵𝑎𝑡𝑐ℎ = Input and Output Batches of Sequences 
  2: for sequence in 𝐼𝑂𝐵𝑎𝑡𝑐ℎ do 
  3:     𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ = Output from LSTM Model  

  4:     𝑅𝑎𝑤𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒= |𝑃𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑𝑂𝑢𝑡𝑝𝑢𝑡𝐵𝑎𝑡𝑐ℎ| - |𝐼𝑂𝐵𝑎𝑡𝑐ℎ| 

  5:     𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑅𝑎𝑤𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒  =
|�̅�−𝑋|

𝑋
 

  6:     𝐸𝑟𝑟𝑜𝑟𝑆𝑢𝑚 = ∑ 𝐸𝑟𝑟𝑜𝑟𝑠 
  7:     𝐸𝑟𝑟𝑜𝑟𝐶𝑜𝑢𝑛𝑡 = ∑ 𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑁𝑜𝑛𝑍𝑒𝑟𝑜 𝐸𝑟𝑟𝑜𝑟𝑠 
  8: end for  

  9: 𝐸𝑝𝑜𝑐ℎ 𝑁𝑜𝑛 𝑍𝑒𝑟𝑜 𝐴𝑣𝑔 𝑃𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟 = 
𝐸𝑝𝑜𝑐ℎ 𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟 𝑉𝑎𝑙𝑢𝑒𝑠

𝐸𝑝𝑜𝑐ℎ 𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑃𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟𝑠
 

 

10: 𝐸𝑝𝑜𝑐ℎ 𝑃𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟 = 
𝐸𝑝𝑜𝑐ℎ 𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑃𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟𝑠

∑ 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
 

11: Continue step from 2 to 10 for multiple epochs until the model converges 
 
The proposed adaptive thresholding algorithm is depicted in the Figure 7.2. This algorithm 

computes the threshold, which is adaptive to any process. It has three main subcomponents:  
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We calculate the Anomaly Pruning, Sequence Scoring, and Adaptive Threshold Value 

during the training phase. This section is divided into Training and Testing Phase. We 

apply these scores to evaluate the test data during the testing phase. 

7.7.1 Training Phase 

 The three components mentioned above are calculated during the training of the LSTM 

algorithm.  

Anomaly Pruning: Score used to discard the irrelevant anomalies. 

Sequence Scoring: A score is given to each sequence of the batch. 

Adaptive Threshold: Score used at an Epoch Level for the whole dataset.  

 

Figure 7.2: Adaptive Threshold Training Phase 

It takes a sequence of system calls of the normal processes as input. The sequence is 

transformed into the numeric format. Next, it is divided into Input and Output batches of 

sequences. The LSTM model is trained with these Input and Output batches. Each time, a 
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single Input sequence is fed to the model to predict the corresponding output sequence. The 

predicted sequence is compared one on one with the actual output sequence. Furthermore, 

the normalized score is calculated as shown in equation 7.1 to normalize the error on the 

particular sequence.  

𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑𝑅𝑎𝑤𝐷𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 =
|�̅� − 𝑋|

𝑋
 

(7.1) 

 

𝑋 is the actual output value, and �̅� is the predicted output value. 

Using this, we compute two different scores. 

1. Sum of the Errors 

2. The total count of the non-zero errors 

The above two scores are calculated for each batch of the data and finally at each epoch 

level. Next, we develop the custom loss e from the above score, which the LSTM model 

will use to calculate the gradient.  

𝐸𝑝𝑜𝑐ℎ 𝑁𝑜𝑛 − 𝑍𝑒𝑟𝑜 𝐴𝑣𝑔 𝑃𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟  (e) = 
𝐸𝑝𝑜𝑐ℎ 𝑇𝑜𝑡𝑎𝑙 𝑝𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟 𝑉𝑎𝑙𝑢𝑒𝑠

𝐸𝑝𝑜𝑐ℎ 𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑃𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟𝑠
 (7.2) 

 

𝐸𝑝𝑜𝑐ℎ 𝑃𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟 (p) = 
𝐸𝑝𝑜𝑐ℎ 𝐶𝑜𝑢𝑛𝑡 𝑜𝑓 𝑃𝑎𝑖𝑟 𝐸𝑟𝑟𝑜𝑟𝑠

∑ 𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
 

 

(7.3) 

 

We use the K-Fold Cross Validation technique to get the optimal value of e and p. For 

experimental purposes, we set the value of K as 10. Each time nine parts of the data are used 

for training, and the tenth part of the data is used for validation. The score k to the sequence 

is given with the below equation: 
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𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒 𝑆𝑐𝑜𝑟𝑖𝑛𝑔 (𝑘) = 𝑤𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 ∗ 𝑒 ∗ 𝑝 (7.4) 

 

Next, we calculate the total error made by the model. If that error is less than 𝛼 ∗ 𝑘, then 

the sequence is considered normal else, the model considers it anomalous, which in this 

case is viewed as False Positives. 

𝑇𝑜𝑡𝑎𝑙𝐸𝑟𝑟𝑜𝑟𝑠 =  ∑ 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑡𝑖𝑣𝑒𝑠 

 

(7.5) 

  

We calculate the False Positives of all the sequences of the validation dataset and compute 

the total error made by the model on the current validation dataset. This step is repeated 

for each set of data. With k being 10, we have ten different errors computed. Thus, using 

this value, we finally compute the adaptive threshold as below: 

𝑃𝑒𝑟𝑚𝑖𝑠𝑠𝑖𝑏𝑙𝑒 𝑁𝑜𝑟𝑚𝑎𝑙 𝐸𝑟𝑟𝑜𝑟 = 
𝑀𝐴𝑋 (𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒𝑠)

∑ 𝑉𝑎𝑙𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒
 

 

 

(7.6) 

This Permissible Normal Error is the adaptive threshold value. 

7.7.2 Testing Phase 

During the testing phase, the unknown test data, which contains the sequence of system 

calls, is transformed and divided into the input and output sequence of the batches. Anomaly 

Pruning Score (e), Sequence Scoring (SS), and Final Anomaly Score are used to obtain the 

final resultant value, as shown in Figure 7.3. Initially, the trained LSTM model receives the 

input sequence, predicting the output sequence, which is compared with the test output 

sequence. Next, the normalized raw error is calculated, and if any individual error in that 

normalized score is less than the Anomaly Pruning Score, it is considered an anomaly. 



125 

 

Next, we count the total number of errors 𝑇𝐸 made in a particular sequence and is discarded 

based on the equation below. 

𝑇𝐸 > 𝑊𝑖𝑛𝑑𝑜𝑤𝑆𝑖𝑧𝑒 ∗ 𝑒 

 

 

(7.7) 

We use the equation below to get the total number of Anomalous Sequences. 

T =  
∑ 𝑇𝑆

∑ 𝑇𝑒𝑠𝑡𝐷𝑎𝑡𝑎𝑆𝑒𝑞𝑢𝑒𝑛𝑐𝑒𝑠
 

 
 

 

(7.8) 

 

Figure 7.3: Adaptive Threshold Testing Phase 

Finally, if  𝑇 >  𝛽 ∗ 𝐷𝑇, then the test data is considered anomalous else, it is observed as 

normal. 

Here, 𝛼 𝑎𝑛𝑑 𝛽 are the hyper-parameters of the proposed algorithm. 
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7.8     Experimental Results 

This section discusses the results obtained by applying the proposed algorithm to three 

sequential datasets: JMPS, ADFA-LD, and UNM.  

Table 7.1: FPR for JMPS Dataset 

Algorithm False Positive Rate 

Static Approach 12% 

Adaptive Thresholding Algorithm 3.1% 

 

For the JMPS dataset, we experimented with both the static approach and the proposed 

adaptive thresholding approach. For the static approach, we had to manually tune the 

threshold to achieve the lowest FPR of 12% as shown in Table 7.1. However, with the 

Adaptive thresholding algorithm, the FPR is drastically reduced to 3.1%. The main 

improvement is pruning the individual anomaly, scoring the input/output sequence, and 

comparing it with the permissible error.   

Table 7.2: FPR for ADFA-LD Dataset 

Algorithm False Positive Rate 

Decision-Based Engine [102] 23% 

OCSVM [103] 20% 

Semantic Approach [104] 4.2% 

EWR [105] 2.4% 

Adaptive Thresholding Algorithm 0.7% 

 

Table 7.2 shows the comparison results of the Adaptive Thresholding algorithm with the 

other detection methods for ADFA-LD dataset. In [103], the frequencies-based approach is 

used to classify the system call sequences of the test data. In their approach, they perform 

various empirical tests to set the window size value. This results in unstable comparative 
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performance since the sequence length varies with different datasets. In [102], the authors 

extract the dataset's most uncommon and common subsequence with their min and max 

number of system calls. However, sequential information is not utilized in their approach. 

The proposed adaptive thresholding approach gives the least false positive rate of 0.7%.   

Table 7.3: FPR for UNM Dataset 

Algorithm False Positive Rate 

Dynamic Methodology [106] 19% 

Probabilistic Approach [107] 14% 

EWR [105] 10% 

VMGaurd[108] 6.2% 

Adaptive Thresholding Algorithm 1.2% 

 

Table 7.3 shows the comparison results of the Adaptive Thresholding algorithm with the 

other detection methods for UNM dataset. In [106], the authors train various machine 

learning-based algorithms and achieve the lowest FPR of 19%. The major drawback of this 

approach is that they converted the sequences into vectors of frequencies during the 

preprocessing steps. Thus the contextual semantics of the temporal part is not taken into 

consideration. The statistical based approach, namely maximum likelihood estimation, is 

utilized by Srinivasan et al. [107]. They use the n-gram approach to convert the sequence 

of system calls into meaningful features. The main limitation of this approach is the value 

of n. With the increase in the value of n, their proposed model tends to give a higher false-

positive rate. VMGaurd method was developed by Mishra et al. [108]. They employed the 

Term Frequency-Inverse Document Frequency method to extract the dataset's features. 

Next, a machine learning-based random forest classifier is trained on those features. The 

major limitation of their approach is that they required the labeled dataset for the normal 

and attack test vectors. Our proposed approach requires only the normal dataset for training 
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the model. Based on the comparative analysis, our proposed adaptive thresholding approach 

provides the least FPR of 1.2%.  

7.9     Conclusion 

With the increase in complex and multivalued malware attacks, detection has become 

challenging. Also, the real-world dataset is messy and highly imbalanced, where most of 

the dataset belongs to the normal class. Thus the classification-based approach is not 

appropriate in such a scenario. Therefore, an Anomaly Detection System is developed, 

which trains the model with the only normal data class. The model learns the behavior of 

the data and decides the decision boundary with some threshold. Anything that deviates 

from the decision boundary is considered anomalous. The major limitation of the current 

approach is the manual setting of the threshold. It has the following two issues: high false-

positive rate and threshold need to be changed for every new process data. To solve this 

problem, we propose an adaptive threshold algorithm. Based on Anomaly pruning, 

sequence scoring, and final adaptive thresholding components, we trained and validated the 

model that generates a low false-positive rate. We evaluated our proposed approach on 

JMPS, ADFA-LD, and UNM datasets. ADFA-LD and UNM are open-source benchmark 

datasets. We can conclude that our proposed approach results in a low false-positive rate for 

all three datasets based on the experimental results.   
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CHAPTER 8 

EA-NET: A HYBRID AND ENSEMBLE MULTI-LEVEL APPROACH FOR 

ROBUST ANOMALY DETECTION 

In the current world, the applications of anomaly detection range from fraud detection to 

diagnosis in the medical area. Most of the current methodologies are applicable only when 

a particular dataset pertains to certain assumptions and a distinct domain. Such assumptions 

require prior knowledge of the dataset. The training development cycle time to find the 

best single model is time-consuming and challenging. Unsupervised anomaly detection 

methods do not use the target label for training. However, they result in high false positive 

rates.  

In this chapter, we address the problem of the ensemble anomaly detection approach that 

generalizes well across multiple domains. We design a multi-level hybrid approach. At the 

First Level, we train several weak classifiers (weak one class classifiers). Next, we utilize 

deep learning-based AutoEncoder to reduce the dimension of the dataset. These are the two 

sets of hybrid features. Next, different one-class classifiers have their strength and 

limitations. Thus, we propose an adaptive weightage approach that gives the weight to each 

classifier. Next, this input is passed to the second level. At this level, we have a deep neural 

network that learns the patterns of the dataset and generates an adaptive dynamic threshold 

to discriminate the input feature as an anomaly or benign. The major benefit of this 

approach is the reduced training time and low false-positive rate. The training time is 

reduced due to the reduction of the input feature dimensions at the first level. 
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8.1     Introduction 

Anomaly Detection refers to the methodology of finding the data observations that deviate 

from the expected normal patterns or behavior of data. Developing an efficient anomaly 

detection solution is always a challenging task, even with the recent surge in the 

development of learning-based algorithms. Most of the prior work conveys that the usage 

of supervised-based machine learning algorithms can only recognize the anomalies 

available in the dataset used for training the model. Nonetheless, any observation that 

diverges from the expected behavior has been termed an irregularity. Therefore, such 

irregularities may not be similar to those already available in the dataset [109]. Secondly, 

different detection-based techniques rely on diverse and distinct rules in the dataset. Often 

such algorithms are specific to a particular domain application. Thus, detecting anomalies 

from across the multiple domains and in a wide variety of scenarios by a single model is 

challenging [110]. Simply training multiple one-class classifiers iteratively with different 

hyper-parameter optimization techniques is a time-consuming task. Furthermore, the 

anomaly detection approach based on traditional methods often requires features that are 

processed and engineered in a particular manner. This requires a high amount of 

computational power and memory. Deep learning-based anomaly detection algorithms 

[111] have computed higher efficiency to address the abovementioned challenges. 

Nonetheless, their approach requires the data to be in a particular distribution, and also, the 

developed methodology lacks the generalizability across multiple domains. Thus, in this 

work, we propose a hybrid multi-level ensemble anomaly detection that learns to combine 

the predictions from multiple one-class classifiers and trains a deep neural network that 

gives the final probability of the observation as being normal or anomalous. 
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8.2     Literature Review 

Based on the availability of the data, the anomaly detection approach is divided into three 

main categories: supervised, semi-supervised and unsupervised. The supervised-based 

approach trains the model on binary/multiclass data. It is not used widely for anomaly 

detection due to the lack of class imbalance problem and lack of training data [84]. The 

unsupervised approach detects abnormalities based solely on the normal class of data. The 

conventional approach includes support vector machines [112] and data descriptors [113]. 

Such algorithms assume data to be normal. The major limitations of traditional approaches 

are: that the outcome is highly sensitive to the complex hyper-parameters. The trained 

model cannot be extended to the multiclass dataset. The clustering approach is utilized in 

[114, 115]. The limitations of these approaches are high computational time, and the results 

are biased towards the static threshold value. Deep learning-based AutoEncoder is trained, 

which generates the reconstruction error. This error is used to compute the anomaly score 

[116]. Compared to traditional approaches, anomaly detection algorithms based on deep 

learning have shown high results in extracting the complex feature representations of the 

data. Scalability is one of the advantages of such an approach. Recently, a hybrid approach 

is being implemented where authors in [117] use autoencoder to learn the latent space of 

high dimensional complex dataset. This learned latent space is given as input to the one-

class classifiers for anomaly detection. It combines the feature extraction capability of the 

neural network with the discriminative capabilities of the one-class classifiers. The 

limitation of this approach is to rely solely on the AutoEncoder for feature extraction. To 

overcome this problem, we enhance the approach that not only uses the AE for feature 
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extraction but also several weak one-class classifiers. This results in low false-positive 

rates. 

8.3     Contribution of the work 

We develop a hybrid and multi-level ensemble anomaly detection framework. At the first 

level, we reduce the feature dimensionality of the dataset. These features are hybrid since 

we train multiple one-class classifiers and an AutoEncoder model. Such features have high 

information gain and low entropy value. Different one-class classifiers have different 

characteristics. Thus, we apply weightage to each of these weak classifiers. Next, we use 

these features at the second level to train a deep neural network that outputs the anomaly 

score. Here, we propose an adaptive threshold approach to decide the boundary. The 

proposed framework has a low false-positive rate and trains the model at reduce 

computational time. 

8.4     Organization of the chapter 

The rest of the chapter is structured in the following ways. In section 8.5, we explain 

various one-class classifiers with dimensionality reduction techniques. Information theory 

is explained in section 8.6. Open Source benchmark datasets used for evaluation are 

described in section 8.7. The proposed hybrid multi-level ensemble anomaly detection 

framework and algorithm are briefly explained in section 8.8. Next, we discuss the 

experimental results in section 8.9 with the conclusion in section 8.10. 
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8.5     Learning Based Algorithms 

8.5.1 One Class Classifiers 

One class classification algorithms uses the only normal class of data. Thus, it learns the 

normal behavior of the application, and anything that deviates will be considered an 

anomaly. In this section, we will discuss one class classifiers such as Elliptical Envelop 

and Local Outlier Factor. We already explained Mahalanobis Distance, One-Class 

Support Vector Machine, and Isolation Forest in chapter 6. 

Elliptical Envelope Method  

This method extends the statistical 𝜇 ±  𝜎 approach for high dimensional feature vector. It 

calculates the covariance matrix of the multi-dimensional gaussian distributed dataset. This 

is achieved by transforming the dataset into an elliptical format. Thus, those observational 

points far away from the transformed elliptical format are considered anomalous. 

Here, the distance between a data point and its distribution of the model is computed using 

the following equation: 

𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒𝜇,𝜁  (𝑥𝑖)2 = (𝑥𝑖 −  𝜇)𝑇𝜁−1(𝑥𝑖 −  𝜇) (8.1) 

 

Where 𝜇 𝑎𝑛𝑑 𝜁 are the specified attribute and the covariance of the Gaussian data. 

To compute the covariance matrix of a high dimensional dataset, the minimum covariance 

determinant estimator is employed, up to 
(𝑝−𝑘−1)

2
, where 𝑝 𝑎𝑛𝑑 𝑘 are the integer numbers 

representing the total number of samples and the total number of variables, respectively. 

MCD algorithm is used to compute the standard estimates. 
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Local Outlier Factor 

This algorithm calculates the deviation of a particular data point’s local density to its 

neighboring data points. An observation is considered an anomaly if its density is lower 

than that of neighbors. 

It computes the density relative to individual data points.  

A-Distance: The total distance between a point and it’s A neighbor.  

Reachability Distance: It is calculated as a maximum of the A-Distance of the neighboring 

points using the below equation. 

𝐿𝑅𝐷𝐴(𝑚) =
𝑁𝐴(𝑚)

∑ 𝑑𝐴(𝑚, 𝑜)𝑜𝜖𝑁𝐴(𝑚) 
 

(8.2) 

 

Now, the following steps are used to compute the LOF score. 

1. For each data observation, its A-nearest neighbors are computed.    

2. Local Reachability Density (LRD) is computed by calculating the local density of a data 

point. 

3. Finally, the LOF score is generated by comparing LRD with the LRD of A-neighbors. 

𝐿𝑂𝐹(𝑚) =  
∑

𝐿𝑅𝐷𝑘(𝑜)
𝐿𝑅𝐷𝐴(𝑚)𝑜𝜖𝑁𝐴(𝑚)

|𝑁𝐴(𝑚)|
 

(8.3) 

 

This calculation makes LOF an efficient anomaly detection algorithm for the high-

dimensional dataset with a substantial imbalance of target labels. 
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8.5.2 Dimensionality Reduction 

Current world datasets are very high-dimensional in nature. The total training time of the 

algorithm increases substantially with the increase in the feature set of the dataset. Thus, 

this section discusses the two most popular dimensionality reduction techniques. 

Principal Component Analysis (PCA) 

PCA decreases the total number of features while preserving vital information. 

The following steps are used by PCA 

Standardization: The continuous variables are transformed into a standardized format so 

that every feature is on the same scale and thus can contribute evenly during analysis. 

Covariance Matrix Calculation: The main goal of this step is to determine how different 

features of the dataset vary from the mean to check if any relationship exists between them. 

Eigen Values and Eigen Vector Calculation: In this step, the covariance matrix from step 

2 calculates the eigenvalue and eigenvector to generate the final principal components. 

These components explain the maximum amount of the variance of the dataset but with 

less number of features. The first component will have the highest amount of information, 

and the second component will have the second-highest variance of the information, and 

so on. The interpretability of these components is less critical since they do not have any 

semantic meaning associated with them.    
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AutoEncoder 

AutoEncoder is a deep learning-based unsupervised algorithm that learns to compress the 

extensive feature data into a compressed space. Next, it tries to reconstruct the original data 

from the compressed space. The error between the original and reconstructed data is termed 

a reconstruction error. This algorithm has the following four steps: 

Encoder: The model learns to reduce the representation of the dataset. 

Latent Space: A layer that stores the compressed representation. 

Decoder: The model learns to reconstruct the data from the compressed space.  

Reconstruction Error: It is the error between the original and reconstructed input. The less 

the error, the better the model learned the data. 

To minimize the reconstruction error, the backpropagation algorithm is employed. 

Following are the hyper-parameters of this model that needs to be tuned. 

Latent Size: Total number of nodes used to compress the data. The smaller the size, the 

compact the latent space. 

The number of Hidden Layers: Autoencoder can be deep and thus have multiple hidden 

layers. 

Number of Nodes: The total number of nodes per hidden layer shrinks from the input layer 

to the latent space, and it grows back to the original value at the output layer. 
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8.6     Information Theory 

Information is nothing but anything that can enhance our knowledge in understanding the 

system or process. It is the reverse version of uncertainty. The more confident we are in a 

particular area, the better our understanding is and vice-versa. This is the fundamental 

principle of information theory. We are more uncertain when we have less knowledge 

about it. Therefore, with proper information, we reduce the uncertainty. 

The entropy is defined as function 𝐸 of probabilities(𝑅1, 𝑅2, . . . . , 𝑅𝑛). To quantify the 

uncertainty, it has to satisfy three conditions: 

 E is continuous. It defines that if any Ri fluctuates, the uncertainty will not change 

much. 

 The uncertainty will increase with the increase in n if all the probabilities have equal 

value. 

 Finally, the decomposition of the probabilities as a sum of weighted uncertainties 

will always result in the same.  

The only function that satisfies all three conditions is the Shannon Entropy. 

E(𝑅1, 𝑅2, . . . . , 𝑅𝑛) =  −𝐽 ∑ 𝑅𝑖

𝑛

𝑖=1

log (𝑅𝑖) 
(8.4) 

 

Where J is a constant number. 

The amount of information gained can be calculated based on the entropy as follows. Let 

us assume that W is the random variable that models our current representation of 
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knowledge before we learn a particular information d. Our updated knowledge will be thus 

(𝐾 | 𝑑). Thus the information gain is: 

𝐼(𝑑) = 𝐸(𝑊) − 𝐸(𝐾 | 𝑑) 

 
(8.5) 

 

8.7     Datasets 

The following three open-source benchmark datasets are used for experiment purposes. 

Each dataset is unique and has a varying size of feature set. 

CIC-IDS2017 Dataset 

It is one of the intrusion detection datasets released in 2017. There are a total of 2.8 million 

records with 79 features. This dataset is generated by Canadian Institute for CyberSecurity. 

It is generated over a period of five days. This dataset contains information on real-world 

network traffic, which include the normal traces and the malicious traces in the PCAP 

format. 

UNSW-NB15 Dataset 

This dataset is developed using the IXIA PerfectStorm tool. It was created in the Australian 

Center for Cyber Security(ACCS) lab. It has a total of two million records with 44 features. 

The dataset is a hybrid that captures the real-world scenario of normal activities. On the 

other hand, it captures the synthetic attack behavior of the network traffic. There are nine 

different types of attacks recorded in this dataset. 
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NSL-KDD Dataset 

This dataset is an improved version of the KDD Cup 99 dataset. Each data observation is 

labeled as a normal or malicious class of network data. There are a total of five classes of 

data. They are Probing, Remote to User, User to Root, Denial of Service, and Normal. 

There are 41 features (discrete and continuous) with 125K training data and 22K testing 

data. 

8.8     Proposed Ensemble Anomaly Detection Algorithm 

In this section, we explain the proposed Ensemble Anomaly Detection Algorithm. The 

pictorial view is depicted in Figure 8.1. It comprises two levels. 

1. Hybrid Feature Extraction 

2. Anomaly Detector 

 

Figure 8.1: Ensemble Anomaly Framework 
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8.8.1 Hybrid Feature Extraction 

In this component, we train multiple one-class classifiers: OCSVM, Isolation Forest, 

Mahalanobis Classifier, Local Outlier Factor, and Elliptical Envelope. Each one class 

classifier has its unique characteristics. Thus, we apply an adaptive weightage to each of 

these algorithms. The workflow for calculating the weightage is described in Figure 8.2. 

We apply the K-Fold cross-validation technique where the value of K is set to 10. Each 

time, we calculate the total number of False Positives produced by the algorithm, and the 

cumulative error is generated. 

𝑇𝑜𝑡𝑎𝑙𝐹𝑃 =  
𝐹𝑃𝑖 + 𝐹𝑃𝑖+1 +  … + 𝐹𝑃𝑘

𝑘 ∗  ∑ 𝑉𝑎𝑙 𝐷𝑎𝑡𝑎
 

 

(8.6) 

Now, based on the above equation, we calculate the weight of each of the classifiers as 

follows: 

𝑊𝑒𝑖𝑔ℎ𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 = 1 − 𝑇𝑜𝑡𝑎𝑙𝐹𝑃 

 

 

(8.7) 

Next, we train deep learning-based AutoEncoder to reduce the dimensionality of the dataset 

to a smaller latent space. This algorithm takes as input the feature set and will reduce it to 

a lower dimension. 

Algorithm 1 Ensemble Anomaly Algorithm   
Input: DataSet 
Output: Normal or Anomalous Data Points  
  1: N = Number of Rows 
  2: 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡 = Train multiple One Class Classifiers and Generate Prediction 

  3: FP = False Positives on the 𝑉𝑎𝑙𝑖𝑑𝑎𝑡𝑖𝑜𝑛𝐷𝑎𝑡𝑎  

  4: 𝑇𝑜𝑡𝑎𝑙𝐹𝑃 =  
𝐹𝑃𝑖+𝐹𝑃𝑖+1+ …+𝐹𝑃𝑘

𝑘 ∗ ∑ 𝑉𝑎𝑙 𝐷𝑎𝑡𝑎
 

  5: 𝑊𝑒𝑖𝑔ℎ𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 = 1 − 𝑇𝑜𝑡𝑎𝑙𝐹𝑃 

  6: 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟𝑂𝑢𝑡𝑝𝑢𝑡 *  𝑊𝑒𝑖𝑔ℎ𝑡𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑟 
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  7: 𝐴𝐸𝑂𝑢𝑡𝑝𝑢𝑡  = Output from trained AutoEncoder 

  8: 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 = 𝑊𝑒𝑖𝑔ℎ𝑡𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 U 𝐴𝐸𝑂𝑢𝑡𝑝𝑢𝑡 

  9: DNN = Trained Neural Net on 𝐶𝑜𝑚𝑏𝑖𝑛𝑒𝑑𝐹𝑒𝑎𝑡𝑢𝑟𝑒𝑠 
10: for i in range 0 to N do 
11:     𝑂𝑢𝑡𝑝𝑢𝑡𝐷𝑁𝑁 = Prediction using DNN for Datai  
12:     if  𝑂𝑢𝑡𝑝𝑢𝑡𝐷𝑁𝑁 > 𝐴𝑑𝑎𝑝𝑡𝑖𝑣𝑒𝑇ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑 then 
13:         Data point is anomalous 
14:     else 
15:         Data point is normal 
16:     end if 
17: end for 
 
 Next, it will reconstruct the original feature from the compressed space. The error in 

reconstruction is the loss. The backpropagation algorithm is applied to update the weight 

and reduce the loss. Thus, these two distinct sets of features are then fed to Anomaly 

Detector. 

 

Figure 8.2: Weight Mechanism 

We achieve the following three benefits from these hybrid features: 

High information gain, Low Entropy, and Reduced Dimensionality 

To validate this, we calculate the information gain through Shannon entropy. 
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8.8.2 Anomaly Detector 

This is the second level of the proposed framework. It will take as input the hybrid features 

generated from Level 1. Next, it will train the deep neural network and output the 

probability of observation as normal or anomalous. Here, we use K-Fold Cross Validation 

to generate the value for Dynamic Threshold. 

8.9     Experimental Results Analysis 

This section discusses the results obtained by applying the proposed algorithm to three 

intrusion detection datasets: CIC-IDS2017, UNSW-NB15, and NSL-KDD. 

Table 8.1 shows the comparison results of the Proposed Ensemble Anomaly Detection 

algorithm with the other detection methods for the CIC-IDS2017 dataset. 

Table 8.1: Metrics for CIC-IDS2017 Dataset 

Technique False Positive Rate 

Consolidated J-48 [119] 6.64 

LIBSVM [120]     5.13     

FURIA [121] 3.16 

WiSarD [118] 2.86 

DT-Rule [122] 1.14 

Proposed Approach 0.56 

 

The authors [119] applied different resampling strategies to train the classification-based 

machine learning algorithms. Their approach is based on the class distribution of the training 

dataset. FURIA [121], authors proposed a novel fuzzy rule-based method for classification 

purposes. The model learns the fuzzy rules instead of traditional rules, which are often based 

on conventional unordered sets. LIBSVM [120] applies quadratic minimization to the 

traditional SVM algorithm. WiSarD [118] transform the data into patterns of the n-tuple 
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recognizer and further trains the model by passing tuples as input. DT-Rule [122] 

framework proposed by Ahmed et al. trains an ensemble of JRip, Forest PA, and REP tree. 

Most of the traditional approaches are based on binary classification. Our proposed 

ensemble anomaly approach provides the least FPR of 0.56% based on the comparative 

analysis. 

 Table 8.2 shows the comparison results of the Proposed Ensemble Anomaly Detection 

algorithm with the other detection methods for the UNSW-NB15 dataset. 

Table 8.2: Metrics for UNSW-NB15 Dataset 

Technique False Positive Rate 

E-Max [123] 23.79 

Two-level Classification [124] 15.64 

Stack Ensemble [125] 8.90 

GBM [126] 8.60 

Proposed Approach 4.37 

 

The performance result of our proposed approach has shown a considerable improvement 

compared to the existing works. E-Max [123] uses statistical analysis for ranking the 

attributes and then uses features correlation techniques. They finally trained five different 

classification algorithms. Two-level classification [124] is employed by Zong et al. They 

train the model to detect the majority and minority classes of the dataset. Two-level 

Ensemble is proposed in [125], where authors developed a feature selection method and 

ensemble of two-level classification. Gradient Boosting Classifier is trained by Tama et al. 

[126] with grid search optimization techniques. The major limitation of this approach is the 

training time due to the high complexity of optimizing the hyper-parameters. Our proposed 
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ensemble anomaly approach provides the least FPR of 4.37% based on the comparative 

analysis. 

Table 8.3 shows the comparison results of the Proposed Ensemble Anomaly Detection 

algorithm with the other detection methods for the NSL-KDD dataset. 

Table 8.3: Metrics for NSL-KDD Dataset 

Technique False Positive Rate 

SVM [127] 15.0 

GAR [128] 12.2 

TDTC [129] 5.56 

TwoLevelEnsemble [130] 2.52 

Proposed Approach 1.09 

 

Pervez et al. [127] trained the Support Vector Machine algorithm, merging different feature 

selection techniques. They solve the binary class classification problem. Kanakarajan et al. 

[128] utilize a meta-heuristic approach that enables the trained forest-based algorithm to 

reach the optimal global value. To increase the ensemble diversity, they applied the annealed 

randomness procedure. TDTC [129] uses a linear discriminant and component analysis 

approach to reduce the feature set of the data and further train the k-nearest neighbor 

algorithm. Two Level Ensemble was proposed in [130], where they train an ensemble of 

multiple weak classifiers and further perform the statistical significance test. The major 

drawback of these approaches are that the weak classifiers are trained on binary 

classification dataset, and thus their approaches fail to detect any new unknown malware 

data observation. Our proposed approach trains the model on the normal dataset and applies 

the dynamic threshold. Thus, anything that deviates from normal behavior will be 
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considered an anomaly. Our proposed ensemble anomaly approach provides the least FPR 

of 1.09% based on the comparative analysis. 

8.10 Conclusion 

This study explores anomaly detection for various highly imbalanced classes of the dataset. 

Binary class and Multiclass are less efficient in detecting the new anomaly since they are 

trained on the labeled dataset. Currently, various one-class classifiers have been developed, 

which take as input the normal class of the dataset and learn the normal behavior of the 

dataset. Anything that deviates from the normal decision boundary is considered an 

anomaly. Each one class classifier has its characteristics. Thus, training only one algorithm 

is not efficient for the highly complex real-world dataset with high dimensionality. 

Therefore, we propose a hybrid two-level anomaly detection framework in this study. At 

the first level, we train several one-class classifiers and an AutoEncoder algorithm. Next, 

we apply the weight to each one class classifiers algorithm. These reduced feature sets will 

be passed to the second level. We also calculate the information gain of the reduced features. 

The second level trains a deep neural network that outputs the probability value for the 

normal and anomalous points. We evaluated our proposed approach on open-source 

benchmark CIC-IDS2017, UNSW-NB15, and NSL-KDD datasets. Our proposed approach 

results in a low false-positive rate compared to the previous work for all three datasets based 

on the experimental results.    

 

 



146 

 

CHAPTER 9 

CONCLUSION 

This dissertation focuses on the specific approach to model and analyze the sequential data 

with the high dimensional feature set. Specifically, we proposed a framework and 

algorithms for performing anomaly detection. 

The first contribution is enhancing the behavior modeling of the system calls for anomaly 

detection. We analyzed two types of behavior: Temporal and Non-Temporal behavior. We 

trained sequential deep learning-based algorithms for temporal behavior, namely Long 

Short Term Memory (LSTM). For training the model, only a normal class of data was 

supplied. Next, the non-temporal behavior is analyzed independently by evaluating 

frequency and commonality behavior. We applied Cosine Similarity to analyze frequency 

behavior and Jaccard Similarity to analyze the commonality behavior. We propose an 

extension called Point-Bag of System Calls (P-BoSC), a Natural Language Processing-

based technique to detect the anomaly and output the anomalous window. 

The second contribution is providing a hybrid algorithm, Dynamic Batch Size and Learning 

Rate (DynaB-LR) that tunes the batch size and learning rate dynamically and 

consecutively. It is fast and can be applied to any time series-based dataset. At the same 

time, it accounts for the learning algorithm obtaining the optimal value of these hyper-

parameters without the need for the user to manually input the number, unlike most of the 

other established algorithms. We achieve three significant benefits: Reduced training time, 

Optimized memory usage, and Loss reduction at an early epoch stage. 
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The third contribution is developing an adaptive thresholding algorithm that can mitigate 

the issue of high FPR. The proposed algorithm applies three scoring mechanisms. They are 

Anomaly Pruning, Sequence Scoring, and Adaptive Thresholding. The model is trained on 

sequential data. Anomaly Pruning gives a score to an individual data point. It either rejects 

or accepts the data points to be considered for Sequence Scoring. This Sequence Scoring 

will give a score to an individual sequence. Finally, an Adaptive Thresholding is applied to 

the cumulative score of all the sequences to detect the anomalous nature of the analyzed 

data. 

The third contribution is designing a multi-level hybrid ensemble anomaly detection 

approach. At the First Level, we train several weak classifiers (weak one class classifiers). 

Next, we utilize deep learning-based AutoEncoder to reduce the dimension of the dataset. 

These are the two sets of hybrid features. Next, different one-class classifiers have their 

strength and limitations. Thus, we propose an adaptive weightage approach that gives the 

weight to each classifier. Next, this input is passed to the second level. At this level, we 

have a deep neural network that learns the patterns of the dataset and generates an adaptive 

dynamic threshold to discriminate the input feature as an anomaly or benign. The 

significant benefit of this approach is the reduced training time and high anomaly detection 

rate.  

Additional improvements can be made, including the explainability and interpretability of 

the deep learning algorithms and support of online learning in the anomaly detection area. 
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