554 research outputs found

    From Social Data Mining to Forecasting Socio-Economic Crisis

    Full text link
    Socio-economic data mining has a great potential in terms of gaining a better understanding of problems that our economy and society are facing, such as financial instability, shortages of resources, or conflicts. Without large-scale data mining, progress in these areas seems hard or impossible. Therefore, a suitable, distributed data mining infrastructure and research centers should be built in Europe. It also appears appropriate to build a network of Crisis Observatories. They can be imagined as laboratories devoted to the gathering and processing of enormous volumes of data on both natural systems such as the Earth and its ecosystem, as well as on human techno-socio-economic systems, so as to gain early warnings of impending events. Reality mining provides the chance to adapt more quickly and more accurately to changing situations. Further opportunities arise by individually customized services, which however should be provided in a privacy-respecting way. This requires the development of novel ICT (such as a self- organizing Web), but most likely new legal regulations and suitable institutions as well. As long as such regulations are lacking on a world-wide scale, it is in the public interest that scientists explore what can be done with the huge data available. Big data do have the potential to change or even threaten democratic societies. The same applies to sudden and large-scale failures of ICT systems. Therefore, dealing with data must be done with a large degree of responsibility and care. Self-interests of individuals, companies or institutions have limits, where the public interest is affected, and public interest is not a sufficient justification to violate human rights of individuals. Privacy is a high good, as confidentiality is, and damaging it would have serious side effects for society.Comment: 65 pages, 1 figure, Visioneer White Paper, see http://www.visioneer.ethz.c

    Boa: Ultra-large-scale software repository and source-code mining

    Get PDF
    In today’s software-centric world, ultra-large-scale software repositories, e.g. SourceForge, GitHub, and Google Code, are the new library of Alexandria. They contain an enormous corpus of software and related information. Scientists and engineers alike are interested in analyzing this wealth of information. However, systematic extraction and analysis of relevant data from these repositories for testing hypotheses is hard, and best left for mining software repository (MSR) experts! Specifically, mining source code yields significant insights into software development artifacts and processes. Unfortunately, mining source code at a large-scale remains a difficult task. Previous approaches had to either limit the s cope of the projects studied, limit the scope of the mining task to be more coarse-grained, or sacrifice studying the history of the code. In this paper we address mining source code: a) at a very large scale; b) at a fine-grained level of detail; and c) with full history information. To address these challenges, we present domain-specific language features for source code mining in our language and infrastructure called Boa. The goal of Boa is to ease testing MSR-related hypotheses. Our evaluation demonstrates that Boa substantially reduces programming efforts, thus lowering the barrier to entry. We also show drastic improvements in scalabilit

    Bringing ultra-large-scale software repository mining to the masses with Boa

    Get PDF
    Mining software repositories provides developers and researchers a chance to learn from previous development activities and apply that knowledge to the future. Ultra-large-scale open source repositories (e.g., SourceForge with 350,000+ projects, GitHub with 250,000+ projects, and Google Code with 250,000+ projects) provide an extremely large corpus to perform such mining tasks on. This large corpus allows researchers the opportunity to test new mining techniques and empirically validate new approaches on real-world data. However, the barrier to entry is often extremely high. Researchers interested in mining must know a large number of techniques, languages, tools, etc, each of which is often complex. Additionally, performing mining at the scale proposed above adds additional complexity and often is difficult to achieve. The Boa language and infrastructure was developed to solve these problems. We provide users a domain-specific language tailored for software repository mining and allow them to submit queries via our web-based interface. These queries are then automatically parallelized and executed on a cluster, analyzing a dataset containing almost 700,000 projects, history information from millions of revisions, millions of Java source files, and billions of AST nodes. The language also provides an easy to comprehend visitor syntax to ease writing source code mining queries. The underlying infrastructure contains several optimizations, including query optimizations to make single queries faster as well as a fusion optimization to group queries from multiple users into a single query. The latter optimization is important as Boa is intended to be a shared, community resource. Finally, we show the potential benefit of Boa to the community by reproducing a previously published case study and performing a new case study on the adoption of Java language features

    SourcererCC: Scaling Code Clone Detection to Big Code

    Full text link
    Despite a decade of active research, there is a marked lack in clone detectors that scale to very large repositories of source code, in particular for detecting near-miss clones where significant editing activities may take place in the cloned code. We present SourcererCC, a token-based clone detector that targets three clone types, and exploits an index to achieve scalability to large inter-project repositories using a standard workstation. SourcererCC uses an optimized inverted-index to quickly query the potential clones of a given code block. Filtering heuristics based on token ordering are used to significantly reduce the size of the index, the number of code-block comparisons needed to detect the clones, as well as the number of required token-comparisons needed to judge a potential clone. We evaluate the scalability, execution time, recall and precision of SourcererCC, and compare it to four publicly available and state-of-the-art tools. To measure recall, we use two recent benchmarks, (1) a large benchmark of real clones, BigCloneBench, and (2) a Mutation/Injection-based framework of thousands of fine-grained artificial clones. We find SourcererCC has both high recall and precision, and is able to scale to a large inter-project repository (250MLOC) using a standard workstation.Comment: Accepted for publication at ICSE'16 (preprint, unrevised

    Towards cloud based big data analytics for smart future cities

    Get PDF
    © 2015, Khan et al.; licensee Springer. A large amount of land-use, environment, socio-economic, energy and transport data is generated in cities. An integrated perspective of managing and analysing such big data can answer a number of science, policy, planning, governance and business questions and support decision making in enabling a smarter environment. This paper presents a theoretical and experimental perspective on the smart cities focused big data management and analysis by proposing a cloud-based analytics service. A prototype has been designed and developed to demonstrate the effectiveness of the analytics service for big data analysis. The prototype has been implemented using Hadoop and Spark and the results are compared. The service analyses the Bristol Open data by identifying correlations between selected urban environment indicators. Experiments are performed using Hadoop and Spark and results are presented in this paper. The data pertaining to quality of life mainly crime and safety & economy and employment was analysed from the data catalogue to measure the indicators spread over years to assess positive and negative trends

    Towards Next Generation Business Process Model Repositories – A Technical Perspective on Loading and Processing of Process Models

    Get PDF
    Business process management repositories manage large collections of process models ranging in the thousands. Additionally, they provide management functions like e.g. mining, querying, merging and variants management for process models. However, most current business process management repositories are built on top of relation database management systems (RDBMS) although this leads to performance issues. These issues result from the relational algebra, the mismatch between relational tables and object oriented programming (impedance mismatch) as well as new technological developments in the last 30 years as e.g. more and cheap disk and memory space, clusters and clouds. The goal of this paper is to present current paradigms to overcome the performance problems inherent in RDBMS. Therefore, we have to fuse research about data modeling along database technologies as well as algorithm design and parallelization for the technology paradigms occurring nowadays. Based on these research streams we have shown how the performance of business process management repositories could be improved in terms of loading performance of processes (from e.g. a disk) and the computation of management techniques resulting in even faster application of such a technique. Exemplarily, applications of the compiled paradigms are presented to show their applicability
    • …
    corecore