411,015 research outputs found

    An exact Tur\'an result for tripartite 3-graphs

    Get PDF
    Mantel's theorem says that among all triangle-free graphs of a given order the balanced complete bipartite graph is the unique graph of maximum size. We prove an analogue of this result for 3-graphs. Let K4−={123,124,134}K_4^-=\{123,124,134\}, F6={123,124,345,156}F_6=\{123,124,345,156\} and F={K4−,F6}\mathcal{F}=\{K_4^-,F_6\}: for n≠5n\neq 5 the unique F\mathcal{F}-free 3-graph of order nn and maximum size is the balanced complete tripartite 3-graph S3(n)S_3(n) (for n=5n=5 it is C5(3)={123,234,345,145,125}C_5^{(3)}=\{123,234,345,145,125\}). This extends an old result of Bollob\'as that S3(n)S_3(n) is the unique 3-graph of maximum size with no copy of K4−={123,124,134}K_4^-=\{123,124,134\} or F5={123,124,345}F_5=\{123,124,345\}.Comment: 12 page

    On the Chromatic Thresholds of Hypergraphs

    Full text link
    Let F be a family of r-uniform hypergraphs. The chromatic threshold of F is the infimum of all non-negative reals c such that the subfamily of F comprising hypergraphs H with minimum degree at least c(∣V(H)∣r−1)c \binom{|V(H)|}{r-1} has bounded chromatic number. This parameter has a long history for graphs (r=2), and in this paper we begin its systematic study for hypergraphs. {\L}uczak and Thomass\'e recently proved that the chromatic threshold of the so-called near bipartite graphs is zero, and our main contribution is to generalize this result to r-uniform hypergraphs. For this class of hypergraphs, we also show that the exact Tur\'an number is achieved uniquely by the complete (r+1)-partite hypergraph with nearly equal part sizes. This is one of very few infinite families of nondegenerate hypergraphs whose Tur\'an number is determined exactly. In an attempt to generalize Thomassen's result that the chromatic threshold of triangle-free graphs is 1/3, we prove bounds for the chromatic threshold of the family of 3-uniform hypergraphs not containing {abc, abd, cde}, the so-called generalized triangle. In order to prove upper bounds we introduce the concept of fiber bundles, which can be thought of as a hypergraph analogue of directed graphs. This leads to the notion of fiber bundle dimension, a structural property of fiber bundles that is based on the idea of Vapnik-Chervonenkis dimension in hypergraphs. Our lower bounds follow from explicit constructions, many of which use a hypergraph analogue of the Kneser graph. Using methods from extremal set theory, we prove that these Kneser hypergraphs have unbounded chromatic number. This generalizes a result of Szemer\'edi for graphs and might be of independent interest. Many open problems remain.Comment: 37 pages, 4 figure

    Complexity of Anchored Crossing Number and Crossing Number of Almost Planar Graphs

    Full text link
    In this paper we deal with the problem of computing the exact crossing number of almost planar graphs and the closely related problem of computing the exact anchored crossing number of a pair of planar graphs. It was shown by [Cabello and Mohar, 2013] that both problems are NP-hard; although they required an unbounded number of high-degree vertices (in the first problem) or an unbounded number of anchors (in the second problem) to prove their result. Somehow surprisingly, only three vertices of degree greater than 3, or only three anchors, are sufficient to maintain hardness of these problems, as we prove here. The new result also improves the previous result on hardness of joint crossing number on surfaces by [Hlin\v{e}n\'y and Salazar, 2015]. Our result is best possible in the anchored case since the anchored crossing number of a pair of planar graphs with two anchors each is trivial, and close to being best possible in the almost planar case since the crossing number is efficiently computable for almost planar graphs of maximum degree 3 [Riskin 1996, Cabello and Mohar 2011]

    A decomposition theorem for binary matroids with no prism minor

    Full text link
    The prism graph is the dual of the complete graph on five vertices with an edge deleted, K5\eK_5\backslash e. In this paper we determine the class of binary matroids with no prism minor. The motivation for this problem is the 1963 result by Dirac where he identified the simple 3-connected graphs with no minor isomorphic to the prism graph. We prove that besides Dirac's infinite families of graphs and four infinite families of non-regular matroids determined by Oxley, there are only three possibilities for a matroid in this class: it is isomorphic to the dual of the generalized parallel connection of F7F_7 with itself across a triangle with an element of the triangle deleted; it's rank is bounded by 5; or it admits a non-minimal exact 3-separation induced by the 3-separation in P9P_9. Since the prism graph has rank 5, the class has to contain the binary projective geometries of rank 3 and 4, F7F_7 and PG(3,2)PG(3, 2), respectively. We show that there is just one rank 5 extremal matroid in the class. It has 17 elements and is an extension of R10R_{10}, the unique splitter for regular matroids. As a corollary, we obtain Dillon, Mayhew, and Royle's result identifying the binary internally 4-connected matroids with no prism minor [5]

    A Geometric Theory for Hypergraph Matching

    Full text link
    We develop a theory for the existence of perfect matchings in hypergraphs under quite general conditions. Informally speaking, the obstructions to perfect matchings are geometric, and are of two distinct types: 'space barriers' from convex geometry, and 'divisibility barriers' from arithmetic lattice-based constructions. To formulate precise results, we introduce the setting of simplicial complexes with minimum degree sequences, which is a generalisation of the usual minimum degree condition. We determine the essentially best possible minimum degree sequence for finding an almost perfect matching. Furthermore, our main result establishes the stability property: under the same degree assumption, if there is no perfect matching then there must be a space or divisibility barrier. This allows the use of the stability method in proving exact results. Besides recovering previous results, we apply our theory to the solution of two open problems on hypergraph packings: the minimum degree threshold for packing tetrahedra in 3-graphs, and Fischer's conjecture on a multipartite form of the Hajnal-Szemer\'edi Theorem. Here we prove the exact result for tetrahedra and the asymptotic result for Fischer's conjecture; since the exact result for the latter is technical we defer it to a subsequent paper.Comment: Accepted for publication in Memoirs of the American Mathematical Society. 101 pages. v2: minor changes including some additional diagrams and passages of expository tex
    • …
    corecore