An exact Turán result for tripartite 3-graphs

Adam Sanitt
Department of Mathematics
University College London
WC1E 6BT, United Kingdom
adam@sanitt.com

John Talbot
Department of Mathematics
University College London
WC1E 6BT, United Kingdom

j.talbot@ucl.ac.uk

Submitted: Apr 22, 2015; Accepted: Sep 21, 2015; Published: Oct 16, 2015

Abstract

Mantel's theorem says that among all triangle-free graphs of a given order the balanced complete bipartite graph is the unique graph of maximum size. We prove an analogue of this result for 3 -graphs. Let $K_{4}^{-}=\{123,124,134\}, F_{6}=$ $\{123,124,345,156\}$ and $\mathcal{F}=\left\{K_{4}^{-}, F_{6}\right\}$: for $n \neq 5$ the unique \mathcal{F}-free 3 -graph of order n and maximum size is the balanced complete tripartite 3 -graph $S_{3}(n)$ (for $n=5$ it is $\left.C_{5}^{(3)}=\{123,234,345,145,125\}\right)$. This extends an old result of Bollobás that $S_{3}(n)$ is the unique 3 -graph of maximum size with no copy of $K_{4}^{-}=\{123,124,134\}$ or $F_{5}=\{123,124,345\}$.

1 Introduction

If $r \geqslant 2$ then an r-graph G is a pair $G=(V(G), E(G))$, where $E(G)$ is a collection of r-sets from $V(G)$. The elements of $V(G)$ are called vertices and the r-sets in $E(G)$ are called edges. The number of vertices is the order of G, while the number of edges, denoted by $e(G)$, is the size of G.

Given a family of r-graphs \mathcal{F}, an r-graph G is \mathcal{F}-free if it does not contain a subgraph isomorphic to any member of \mathcal{F}. For an integer $n \geqslant r$ we define the Turán number of \mathcal{F} to be

$$
\operatorname{ex}(n, \mathcal{F})=\max \{e(G): G \text { an } \mathcal{F} \text {-free } r \text {-graph of order } n\}
$$

The related asymptotic Turán density is the following limit (an averaging argument due to Katona, Nemetz and Simonovits [7] shows that it always exists)

$$
\pi(\mathcal{F})=\lim _{n \rightarrow \infty} \frac{\operatorname{ex}(n, \mathcal{F})}{\binom{n}{r}}
$$

The problem of determining the Turán density is essentially solved for all 2-graphs by the Erdős-Stone-Simonovits Theorem.

Theorem 1 (Erdős and Stone [5], Erdős and Simonovits [4]) Let \mathcal{F} be a family of 2-graphs. If $t=\min \{\chi(F): F \in \mathcal{F}\} \geqslant 2$, then

$$
\pi(\mathcal{F})=\frac{t-2}{t-1}
$$

It follows that the set of all Turán densities for 2 -graphs is $\{0,1 / 2,2 / 3,3 / 4, \ldots\}$.
There is no analogous result for $r \geqslant 3$ and most progress has been made through determining the Turán densities of individual graphs or families of graphs. A central problem, originally posed by Turán, is to determine $\operatorname{ex}\left(n, K_{4}^{(3)}\right)$, where $K_{4}^{(3)}=\{123,124,134,234\}$ is the complete 3 -graph of order 4 . This is a natural extension of determining the Turán number of the triangle for 2-graphs, a question answered by Mantel's theorem [9]. Turán gave a construction that he conjectured to be optimal that has density $5 / 9$ but this question remains unanswered despite a great deal of work. The current best upper bound for $\pi\left(K_{4}^{(3)}\right)$ is 0.561666 , given by Razborov [11].

A related problem due to Katona is given by considering cancellative hypergraphs. A hypergraph H is cancellative if for any distinct edges $a, b \in H$, there is no edge $c \in H$ such that $a \triangle b \subseteq c$ (where \triangle denotes the symmetric difference). For 2-graphs, this is equivalent to forbidding all triangles. For a 3 -graph, it is equivalent to forbidding the two non-isomorphic configurations $K_{4}^{-}=\{123,124,134\}$ and $F_{5}=\{123,124,345\}$.

An r-graph G is k-partite if there is a partition of its vertices into k classes so that all edges of G contain at most one vertex from each class. It is complete k-partite if there is a partition into k classes such that all edges meeting each class at most once are present. If the partition of the vertices of a complete k-partite graph is into classes that are as equal as possible in size then we say that G is balanced.

Let $S_{3}(n)$ be the complete balanced tripartite 3 -graph of order n.
Theorem 2 (Bollobás [3]) For $n \geqslant 3, S_{3}(n)$ is the unique cancellative 3-graph of order n and maximum size.

This result was refined by Frankl and Füredi [6] and Keevash and Mubayi [8], who proved that $S_{3}(n)$ is the unique F_{5}-free 3 -graph of order n and maximum size, for n sufficiently large.

The blow-up of an r-graph H is the r-graph $H(t)$ obtained from H by replacing each vertex $a \in V(H)$ with a set of t vertices V_{a} in $H(t)$ and inserting a complete r-partite r-graph between any r vertex classes corresponding to an edge in H. The following result is an invaluable tool in determining the Turán density of an r-graph that is contained in the blow-ups of other r-graphs:

Theorem 3 (Brown and Simonovits [1], [2]) If F is a k-graph that is contained in a blow-up of every member of a family of k-graphs \mathcal{G}, then $\pi(F)=\pi(F \cup \mathcal{G})$.

Since F_{5} is contained in $K_{4}^{-}(2)$, Theorems 2 and 3 imply that $\pi\left(F_{5}\right)=2 / 9$.
A natural question to ask is which 3 -graphs (that are not subgraphs of blow-ups of F_{5}) also have Turán density $2 / 9$? Baber and Talbot [2] considered the 3-graph $F_{6}=$ $\{123,124,345,156\}$, which is not contained in any blow-up of F_{5}. Using Razborov's flag
algebra framework [10], they gave a computational proof that $\pi\left(F_{6}\right)=2 / 9$. In this paper, we obtain a new (non-computer) proof of this result. In fact we go further and determine the exact Turán number of $\mathcal{F}=\left\{F_{6}, K_{4}^{-}\right\}$.

Theorem 4 If $n \geqslant 3$ then the unique \mathcal{F}-free 3-graph with ex (n, \mathcal{F}) edges and n vertices is $S_{3}(n)$ unless $n=5$ in which case it is $C_{5}^{(3)}=\{123,234,345,145,125\}$.

As F_{6} is contained in $K_{4}^{-}(2)$, we have the following corollary to Theorem 4.
Corollary $5 \pi\left(F_{6}\right)=2 / 9$.

2 Turán number

Proof of Theorem 4: The underlying proof structure is the same as that employed by Keevash and Mubayi [8] in their proof of Bollobás's theorem (Theorem 2).

We use induction on n. Note that the result holds trivially for $n=3,4$. For $n=$ 5 it is straightforward to check that the only \mathcal{F}-free 3 -graphs with 4 edges are $S_{3}(5)$, $\{123,124,125,345\}$ and $\{123,234,345,451\}$. Of these the first two are edge maximal while the third can be extended by a single edge to give $C_{5}^{(3)}$. Thus we may suppose that $n \geqslant 6$ and the theorem is true for $n-3$.

For $k \geqslant 2$ let $T_{k}(n)$ be the k-partite Turán graph of order n : this is the complete balanced k-partite graph. We denote the number of edges in $S_{3}(n)$ and $T_{k}(n)$ by $s_{3}(n)$ and $t_{k}(n)$ respectively. Let G be \mathcal{F}-free with $n \geqslant 6$ vertices and $\operatorname{ex}(n, \mathcal{F})$ edges. Since $S_{3}(n)$ is \mathcal{F}-free we have $e(G) \geqslant s_{3}(n)$.

The inductive step proceeds as follows: select a special edge $a b c \in E(G)$ (precisely how we choose this edge will be explained in Lemma 6 below). For $0 \leqslant i \leqslant 3$ let f_{i} be the number of edges in G meeting $a b c$ in exactly i vertices. By our inductive hypothesis we have

$$
\begin{equation*}
e(G)=f_{0}+f_{1}+f_{2}+f_{3} \leqslant \operatorname{ex}(n-3, \mathcal{F})+f_{1}+f_{2}+1 \tag{1}
\end{equation*}
$$

Note that unless $n-3=5$ our inductive hypothesis says that $\operatorname{ex}(n-3, \mathcal{F})=s_{3}(n-3)$ with equality iff $G-\{a, b, c\}=S_{3}(n-3)$. For the moment we will assume that $n \neq 8$ and so we have the following bound

$$
\begin{equation*}
e(G) \leqslant s_{3}(n-3)+f_{1}+f_{2}+1, \tag{2}
\end{equation*}
$$

with equality iff $G-\{a, b, c\}=S_{3}(n-3)$.
Let $V^{-}=V(G)-\{a, b, c\}$. For each pair $x y \in\{a b, a c, b c\}$ define $\Gamma_{x y}=\left\{z \in V^{-}\right.$: $x y z \in E(G)\}$ and let $\Gamma_{a b c}=\Gamma_{a b} \cup \Gamma_{a c} \cup \Gamma_{b c}$ be the link-neighbourhood of abc. Note that since G is K_{4}^{-}-free this is a disjoint union, so

$$
f_{2}=\left|\Gamma_{a b}\right|+\left|\Gamma_{a c}\right|+\left|\Gamma_{b c}\right|=\left|\Gamma_{a b c}\right| .
$$

For $x \in\{a, b, c\}$ define $L(x)$ to be the link-graph of x, so $V(L(x))=V^{-}$and $E(L(x))=$ $\left\{y z \subset V^{-}: x y z \in E(G)\right\}$. The link-graph of the edge abc is the edge labelled graph $L_{a b c}$
with vertex set V^{-}and edge set $L(a) \cup L(b) \cup L(c)$. The label of an edge $y z \in E\left(L_{a b c}\right)$ is $l(y z)=\{x \in\{a, b, c\}: x y z \in E(G)\}$. The weight of an edge $y z \in L_{a b c}$ is $|l(y z)|$ and the weight of $L_{a b c}$ is $w\left(L_{a b c}\right)=\sum_{y z \in L_{a b c}}|l(y z)|$. Note that $f_{1}=w\left(L_{a b c}\right)$. To ease our presentation we will express the label of an edge as, for example, $a b$ rather than $\{a, b\}$.

By a subgraph of $L_{a b c}$ we mean an ordinary subgraph of the underlying graph where the labels of edges are non-empty subsets of the labels of the edges in $L_{a b c}$. For example if $x y \in E\left(L_{a b c}\right)$ has $l(x y)=a b$ then in any subgraph of $L_{a b c}$ containing the edge $x y$ it must have label a, b or $a b$.

A triangle in $L_{a b c}$ is said to be rainbow iff all its edges have weight one and are labelled a, b, c. Given an edge labelled subgraph H of $L_{a b c}$ and an (unlabelled) graph G we say that H is a rainbow G if all of the edges in H have weight 1 and all the triangles in H are rainbow.

The following lemma provides our choice of edge $a b c$.
Lemma 6 If G is an \mathcal{F}-free 3-graph with $n \geqslant 6$ vertices and $\operatorname{ex}(n, \mathcal{F})$ edges then there is an edge abc $\in E(G)$ such that

$$
f_{1}+f_{2}=w\left(L_{a b c}\right)+\left|\Gamma_{a b c}\right| \leqslant t_{3}(n-3)+n-3,
$$

with equality iff $L_{a b c}$ is a rainbow $T_{3}(n-3)$ and $\Gamma_{a b c}=V^{-}$.
Underlying all our analysis are some simple facts regarding \mathcal{F}-free 3 -graphs that are contained in Lemmas 7 and 8.

Lemma 7 If G is \mathcal{F}-free and abc $\in E(G)$ then the following configurations cannot appear as subgraphs of $L_{a b c}$. Moreover any configuration that can be obtained from one described below by applying a permutation to the labels $\{a, b, c\}$ must also be absent.
$\left(F_{6}-1\right)$ The triangle $x y, x z, y z$ with $l(x y)=l(x z)=a$ and $l(y z)=b$.
$\left(F_{6}-2\right)$ The pair of edges $x y, x z$ with $l(x y)=a b$ and $l(x z)=c$.
($F_{6}-3$) A vertex $x \in \Gamma_{a b}$ and edges $x y, y z$ with labels $l(x y)=c$ and $l(y z)=a$.
$\left(F_{6}-4\right) A$ vertex $x \in \Gamma_{a b}$ and edges $x y, y z, z w$ with labels $l(x y)=l(z w)=a$ and $l(y z)=b$.
($F_{6}-5$) Vertices $x \in \Gamma_{a c}, y \in \Gamma_{b c}, z \in \Gamma_{a b}$ and the edge xy with label $l(x y)=b$.
$\left(K_{4}^{-}-1\right)$ The triangle $x y, x z, y z$ with $l(x y)=l(x z)=l(y z)=a$.
($\left.K_{4}^{-}-2\right)$ The vertex $x \in \Gamma_{a b}$ and edge $x y$ with label $l(x y)=a b$.
($\left.K_{4}^{-}-3\right)$ The vertices $x, y \in \Gamma_{a b}$ and edge $x y$ with label $l(x y)=a$.
Lemma 8 If G is \mathcal{F}-free and abc $\in E(G)$ then the link-graph and link-neighbourhood satisfy:
(i) The only triangles in $L_{a b c}$ are rainbow.
(ii) The only $K_{4} s$ in $L_{a b c}$ are rainbow.
(iii) $L_{a b c}$ is $K_{5}-$ free.
(iv) If $x y \in E\left(L_{a b c}\right)$ has $l(x y)=a b c$ then x and y meet no other edges in $L_{a b c}$ and $x, y \notin \Gamma_{a b c}$.
(v) If $V_{a b c}^{4}=\left\{x \in V^{-}\right.$: there is a K_{4} containing $\left.x\right\}$ then $\Gamma_{a b c} \cap V_{a b c}^{4}=\varnothing$.
(vi) There are no edges in $L_{a b c}$ between $\Gamma_{a b c}$ and $V_{a b c}^{4}$.
(vii) If $x \in V_{a b c}^{4}$ then $|l(x y)| \leqslant 1$ for all $y \in V^{-}$.
(viii) If $x \in \Gamma_{a c}, y \in \Gamma_{b c}$ and $l(x y)=a b$, then $\Gamma_{b c}=\varnothing$. Moreover, if $x z \in E\left(L_{a b c}\right)$ with $z \neq y$ then $z \notin \Gamma_{a b c}$ and $l(x z)=a$, while if $y z \in E\left(L_{a b c}\right)$ with $z \neq x$ then $z \notin \Gamma_{a b c}$ and $l(y z)=b$.
(ix) If $x y, x z \in E\left(L_{a b c}\right), l(x y)=a b$ and $z \in \Gamma_{a b c}$ then $|l(x z)| \leqslant 1$.

We also require the following identities, that are easy to verify.
Lemma 9 If $n \geqslant k \geqslant 3$ then
(i) $s_{3}(n)=s_{3}(n-3)+t_{3}(n-3)+n-2$.
(ii) $t_{3}(n)=t_{3}(n-3)+2 n-3$.
(iii) $t_{3}(n)=t_{3}(n-2)+n-1+\lfloor n / 3\rfloor$.
(iv) $t_{k}(n)=t_{k}(n-1)+n-\lceil n / k\rceil$.

Let $a b c \in E(G)$ be a fixed edge given by Lemma 6 .
By assumption $e(G) \geqslant s_{3}(n)$ so Lemma 9 (i) and Lemma 6 together with the bound on $e(G)$ given by (2) imply that $e(G)=s_{3}(n)$ and hence $G-\{a, b, c\}=S_{3}(n-3), L_{a b c}$ is a rainbow $T_{3}(n-3)$ and $\Gamma_{a b c}=V^{-}$. To complete the proof we need to show that $G=S_{3}(n)$. First note that since $L_{a b c}$ is a rainbow $T_{3}(n-3)$ and $\Gamma_{a b c}=V^{-}$, Lemma 8 (i) and Lemma $7\left(F_{6}-3\right)$ imply that no vertex in $\Gamma_{a b}$ is in an edge with label c and similarly for $\Gamma_{a c}, \Gamma_{b c}$. Hence $L_{a b c}$ is the complete tripartite graph with vertex classes $\Gamma_{a b}, \Gamma_{a c}$ and $\Gamma_{b c}$ and the edges between any two parts are labelled with the common label of the parts (e.g. all edges from $\Gamma_{a b}$ to $\Gamma_{a c}$ receive label a). So $L_{a b c}$ is precisely the link graph of an edge $a b c \in S_{3}(n)$.

In order to deduce that $G=S_{3}(n)$ we need to show that $G-\{a, b, c\}=S_{3}(n-3)$ has the same tripartition as $L_{a b c}$. This is straightforward: any edge $x y z \in E(G-\{a, b, c\})$ not respecting the tripartition of $L_{a b c}$ meets one of the parts at least twice. But if $x, y, z \in \Gamma_{a b}$ then $\left|\Gamma_{a c}\right| \geqslant 2$ so let $u \in \Gamma_{a c}$. Setting $a=1, b=2, x=3, y=4, z=5, u=6$ gives a copy of F_{6}. If $x, y \in \Gamma_{a b}$ and $z \in \Gamma_{a c}$ then $a=1, x=3, y=4, z=2$ gives a copy of K_{4}^{-}.

Hence $G=S_{3}(n)$ and the proof is complete in the case $n \neq 8$.

For $n=8$ we note that if $G-\{a, b, c\}$ is F_{5}-free then Theorem 2 implies that the result follows as above, so we may assume that $G-\{a, b, c\}$ contains a copy of F_{5}. In this case it is sufficent to show that $e(G) \leqslant 17<18=s_{3}(8)$.

If $V(G-\{a, b, c\})=\{s, t, u, v, w\}$ then we may suppose that $s t u, s t v, u v w, a b c \in G$. Since G is K_{4}^{-}-free it does not contain suv or tuv. Moreover it contains at most 3 edges from $\{u, v, w\}^{(2)} \times\{a, b, c\}$ and at most 5 edges from $\{s, t, u, v, w\} \times\{a, b, c\}^{(2)}$. Since G is F_{6}-free it contains no edges from $\{s, t\} \times\{w\} \times\{a, b, c\}$.

The only potential edges we have yet to consider are those in $\{s t, s u, t u, s v, t v\} \times$ $\{w, a, b, c\}$. Since G is K_{4}^{-}-free it contains at most 2 edges from $s t d, s u d, t u d, s v d, t v d$, for any $d \in\{w, a, b, c\}$. Moreover, since G is F_{6}-free, if it contains 2 such edges for a fixed d then it can contain at most 3 such edges in total for the other choices of d. Hence at most 5 such edges are present.

Thus in total $e(G) \leqslant 4+3+5+5=17$, as required.
In order to prove Lemma 6 we first need an edge with large link-neighbourhood.
Lemma 10 If G is K_{4}^{-}-free 3-graph of order n with $s_{3}(n)$ edges, then there is an edge $a b c \in E(G)$ with $\left|\Gamma_{a b c}\right| \geqslant n-\lfloor n / 3\rfloor-3$.

Proof of Lemma 10: Let G be K_{4}^{-}-free with n vertices and $s_{3}(n)$ edges. For $x, y \in V(G)$ let $d_{x y}=\mid\{x: x y z \in E(G)\}$. If $u v w \in E(G)$ then $\Gamma_{u v w}=\Gamma_{u v} \cup \Gamma_{u w} \cup \Gamma_{v w}$ is a union of pairwise disjoint sets and $\left|\Gamma_{u v w}\right|=d_{u v}+d_{u w}+d_{v w}-3$. Thus if the lemma fails to hold then for every edge $u v w \in E(G)$ we have $d_{u v}+d_{u w}+d_{v w} \leqslant n-\lfloor n / 3\rfloor-1$. Note that since $\sum_{x y \in\binom{V}{2}} d_{x y}=3 e(G)$, convexity implies that

$$
e(G)\left(n-\left\lfloor\frac{n}{3}\right\rfloor-1\right) \geqslant \sum_{u v w \in E(G)} d_{u v}+d_{u w}+d_{v w}=\sum_{x y \in\binom{V}{2}} d_{x y}^{2} \geqslant \frac{9 e^{2}(G)}{\binom{n}{2}} .
$$

Thus

$$
e(G) \leqslant \frac{1}{18} n(n-1)(n-\lfloor n / 3\rfloor-1) .
$$

But it is easy to check that this is less than $s_{3}(n)$.
Our next objective is to describe various properties of the link-graph $L_{a b c}$ and linkneighbourhood $\Gamma_{a b c}$.

Lemma 8 (v) allows us to partition the vertices of $L_{a b c}$ as $V^{-}=\Gamma_{a b c} \cup V_{a b c}^{4} \cup R_{a b c}$, where $V_{a b c}^{4}=\left\{x \in V^{-}\right.$: there is a K_{4} containing $\left.x\right\}$ and $R_{a b c}=V^{-}-\left(\Gamma_{a b c} \cup V_{a b c}^{4}\right)$. To prove Lemma 6 we require the following result to deal with the part of $L_{a b c}$ not meeting any copies of K_{4}.

Lemma 11 Let H be a subgraph of $L_{a b c}$ with $s \geqslant 3$ vertices satisfying $V(H) \cap V_{a b c}^{4}=\varnothing$. If $H_{\Gamma}=V(H) \cap \Gamma_{a b c}$ and $\left|H_{\Gamma}\right| \geqslant s-\lfloor s / 3\rfloor-1$ then

$$
w(H)+\left|H_{\Gamma}\right| \leqslant t_{3}(s)+s
$$

with equality iff $H_{\Gamma}=V(H)$ and H is a rainbow $T_{3}(s)$.

Proof of Lemma 6: Let G be \mathcal{F}-free with $n \geqslant 6$ vertices and $\operatorname{ex}(n, \mathcal{F})$ edges. By Lemma 10 we can choose an edge $a b c \in E(G)$ such that $\left|\Gamma_{a b c}\right| \geqslant n-\lfloor n / 3\rfloor-3$. Let $V^{-}=\Gamma_{a b c} \cup$ $R_{a b c} \cup V_{a b c}^{4}$ be the partition of V^{-}given by Lemma $8(\mathrm{v})$. If $s=\left|V^{-}\right|, j=\left|\Gamma_{a b c}\right|, k=\left|R_{a b c}\right|$ and $l=\left|V_{a b c}^{4}\right|$ then $n-3=s=j+k+l$ and $j \geqslant s-\lfloor s / 3\rfloor-1 \geqslant j+k-\lfloor(j+k) / 3\rfloor-1$. We can apply Lemma 11 to $H=L_{a b c}\left[\Gamma_{a b c} \cup R_{a b c}\right]$, to deduce that

$$
w\left(L_{a b c}\left[\Gamma_{a b c} \cup R_{a b c}\right]\right)+\left|\Gamma_{a b c}\right| \leqslant t_{3}(j+k)+j+k,
$$

with equality iff $R_{a b c}=\varnothing$ and $L_{a b c}\left[\Gamma_{a b c}\right]$ is a rainbow $T_{3}(j+k)$. Now if $L_{a b c}$ is K_{4}-free then $V_{a b c}^{4}=\varnothing$ and the proof is complete, so suppose there is a K_{4} in $L_{a b c}$. In this case $4 \leqslant\left|V_{a b c}^{4}\right| \leqslant n-3-\left|\Gamma_{a b c}\right| \leqslant\lfloor n / 3\rfloor$, so $n \geqslant 12$.

We now need to consider the edges in $L_{a b c}$ meeting $V_{a b c}^{4}$. By Lemma 8 (iii) we know that $L_{a b c}$ is K_{5}-free, while Lemma 8 (vii) says that $V_{a b c}^{4}$ meets no edges of weight 2 or 3, so by Turán's theorem $w\left(L_{a b c}\left[V_{a b c}^{4}\right]\right) \leqslant t_{4}(l)$.

Lemma 8 (vi) implies that there are no edges from $\Gamma_{a b c}$ to $V_{a b c}^{4}$ so the total weight of edges between $\Gamma_{a b c} \cup R_{a b c}$ and $V_{a b c}^{4}$ is at most $k l$. Thus

$$
w\left(L_{a b c}\right)+\left|\Gamma_{a b c}\right| \leqslant t_{3}(j+k)+j+k+t_{4}(l)+k l .
$$

Finally Lemma 12 with $s=n-3$ implies that

$$
w\left(L_{a b c}\right)+\left|\Gamma_{a b c}\right| \leqslant t_{3}(n-3)+n-3,
$$

with equality iff $R_{a b c}=V_{a b c}^{4}=\varnothing$ and $L_{a b c}$ is a rainbow $T_{3}(n-3)$ as required.
Lemma 12 If $j, k, l \geqslant 0$ are integers satisfying $j+k+l=s \geqslant 5$ and $j \geqslant s-\lfloor s / 3\rfloor-1$ then

$$
\begin{equation*}
t_{3}(j+k)+t_{4}(l)+j+k+k l \leqslant t_{3}(s)+s \tag{3}
\end{equation*}
$$

with equality iff $l=0$.
Proof of Lemma 12: If $l=0$ then the result clearly holds, so suppose that $l \geqslant 1$, $j+k+l=s \geqslant 5$ and $j \geqslant s-\lfloor s / 3\rfloor-1$. Let $f(j, k, l)$ be the LHS of (3). We need to check that $\Delta(j, k, l)=f(j, k+1, l-1)-f(j, k, l)>0$. Since if this holds then we have

$$
f(j, k, l)<f(j, k+1, l-1)<\cdots<f(j, k+l, 0)=t_{3}(s)+s .
$$

Using Lemma 9 (iv) we have

$$
\begin{aligned}
\Delta(j, k, l) & =j-\lceil(j+k+1) / 3\rceil+\lceil l / 4\rceil+1 \\
& =j+\lceil l / 4\rceil-\lfloor(j+k) / 3\rfloor .
\end{aligned}
$$

So it is sufficient to check that $j+l / 4>(j+k) / 3$. This follows easily from $j \geqslant s-\lfloor s / 3\rfloor-1$, $k \leqslant\lfloor s / 3\rfloor+1, l \geqslant 1$ and $s \geqslant 5$.

Proof of Lemma 11: We prove this by induction on $s \geqslant 3$. The result holds for $s=3,4$ (see the end of this proof for the tedious details) so suppose that $s \geqslant 5$ and the result holds for $s-2$.

Let H be a subgraph of $L_{a b c}$ with $s \geqslant 5$ vertices satisfying $V(H) \cap V_{a b c}^{4}=\varnothing$. Let $H_{\Gamma}=V(H) \cap \Gamma_{a b c}$ and suppose that $\left|H_{\Gamma}\right| \geqslant s-\lfloor s / 3\rfloor-1$.

Note that if H contains no edges of weight 2 or 3 then the result follows directly from Turán's theorem and Lemma 8 (i), so we may suppose there are edges of weight 2 or 3 . With this assumption it is sufficient to show that

$$
w(H)+\left|H_{\Gamma}\right| \leqslant t_{3}(s)+s-1
$$

By Lemma 9 (iii) this is equivalent to showing that the following inequality holds:

$$
\begin{equation*}
w(H)+\left|H_{\Gamma}\right| \leqslant t_{3}(s-2)+2 s-2+\lfloor s / 3\rfloor \tag{4}
\end{equation*}
$$

Case (i): There exists an edge of weight $3, l(x y)=a b c$.
Lemma 8 (iv) implies that $x, y \notin H_{\Gamma}$ and x, y meet no other edges in H, so we can apply the inductive hypothesis to $H^{\prime}=H-\{x, y\}$ to obtain

$$
w(H)+\left|H_{\Gamma}\right| \leqslant w\left(H^{\prime}\right)+\left|H_{\Gamma}^{\prime}\right|+3 \leqslant t_{3}(s-2)+s-2+3 .
$$

Hence (4) holds as required. So we may suppose that H contains no edges of weight 3 .
Case (ii): The only edges of weight 2 are contained in H_{Γ}
Let $x y \in E(H)$ have weight 2 , say $l(x y)=a b$. Now Lemma $7\left(K_{4}^{-}-2\right)$ implies that $x, y \notin \Gamma_{a b}$, while Lemma $7\left(K_{4}^{-}-3\right)$ implies that x, y cannot both belong to $\Gamma_{a c}$ or $\Gamma_{b c}$ so we may suppose that $x \in \Gamma_{a c}$ and $y \in \Gamma_{b c}$. Lemma 8 (viii) implies that x, y have no more neighbours in H_{Γ}. If $H_{\Gamma}=V(H)$ then we can apply the inductive hypothesis to $H^{\prime}=H-\{x, y\}$ to obtain

$$
w(H)+\left|H_{\Gamma}\right| \leqslant t_{3}(s-2)+s-2+2+2,
$$

in which case (4) holds, so suppose $V(H) \neq H_{\Gamma}$.
Let $z \in V(H)-H_{\Gamma}$ be a neighbour of x in H if one exists otherwise let z be any vertex in $V(H)-H_{\Gamma}$. By our assumption that all edges of weight 2 are contained in H_{Γ}, z meets no edges of weight 2 . Moreover, by Lemma 8 (viii), all edges containing x (except $x y$) have label b, so x is not in any triangles in H. Hence x and z have no common neighbours in H and so the total weight of edges meeting $\{x, z\}$ is at most $2+1+s-3$ (if $x z$ is an edge) and at most $2+s-2$ otherwise. Applying our inductive hypothesis to $H^{\prime}=H-\{x, z\}$ we have

$$
w(H)+\left|H_{\Gamma}\right| \leqslant t_{3}(s-2)+s-2+1+s
$$

and (4) holds.
Case (iii): There is an edge of weight 2 meeting $V(H)-H_{\Gamma}$.
So suppose that $x y \in E(H), l(x y)=a b$ and $y \notin H_{\Gamma}$. Lemma 8 (ix) implies that for any $z \in H_{\Gamma}$ we have $|l(x z)|,|l(y z)| \leqslant 1$. Let $\gamma_{x y}=\left|\{x, y\} \cap H_{\Gamma}\right| \leqslant 1$. Thus, since $x y$ is not in any triangles, the total weight of edges meeting $\{x, y\}$ is at most

$$
2+s-2+\left|V(H)-H_{\Gamma}\right|-\left(2-\gamma_{x y}\right)
$$

Applying the inductive hypothesis to $H^{\prime}=H-\{x, y\}$ we have

$$
w(H)+\left|H_{\Gamma}\right| \leqslant t_{3}(s-2)+s-2+s+s-\left|H_{\Gamma}\right|-2+2 \gamma_{x y}
$$

with equality holding only if $\left|H_{\Gamma}^{\prime}\right|=s-2$. Now $\left|H_{\Gamma}\right| \geqslant s-\lfloor s / 3\rfloor-1$ implies that

$$
\begin{equation*}
w(H)+\left|H_{\Gamma}\right| \leqslant t_{3}(s-2)+2 s-3+\lfloor s / 3\rfloor+2 \gamma_{x y} \tag{5}
\end{equation*}
$$

with equality only if $\left|H_{\Gamma}^{\prime}\right|=s-2$ and $\left|H_{\Gamma}\right|=s-\lfloor s / 3\rfloor-1$. If $\gamma_{x y}=0$ then (4) holds as required, so suppose $\gamma_{x y}=1$. In this case (4) holds, unless (5) holds with equality. But if (5) is an equality then $\left|H_{\Gamma}\right|=\left|H_{\Gamma}^{\prime}\right|+1=s-1$, while $\left|H_{\Gamma}\right|=s-\lfloor s / 3\rfloor-1$, which is impossible for $s \geqslant 3$.

We finally need to verify the cases $s=3,4$. It is again sufficient to prove that if H contains edges of weight 2 or 3 then $w(H)+\left|H_{\Gamma}\right| \leqslant t_{3}(s)+s-1$, thus we need to show that $w(H)+\left|H_{\Gamma}\right|$ is at most 5 if $s=3$ and at most 8 if $s=4$.

We note that argument in Case (i) above implies that if H contains an edge of weight 3 then $\left|H_{\Gamma}\right| \leqslant s-2$ and $w(H) \leqslant 3+3\binom{s-2}{2}$, so if $s=3$ then $w(H)+\left|H_{\Gamma}\right| \leqslant 4$ and if $s=4$ then $w(H)+\left|H_{\Gamma}\right| \leqslant 8$ so the result holds. So we may suppose there are no edges of weight 3 .

Now let $x y$ be an edge of weight 2. Using the fact that $x y$ is not in any triangles and Lemma 8 (viii) and (ix) we find that for $s=3$ we have $w(H)+\left|H_{\Gamma}\right| \leqslant 2+3-\left|H_{\Gamma}\right|$, while for $s=4$ we have $w(H)+\left|H_{\Gamma}\right| \leqslant 2+6-\left|H_{\Gamma}\right|$, so the result holds.

Finally we need to establish our two stuctural lemmas.
Proof of Lemma 7: In each case we describe a labelling of the vertices of the given configuration to show that if it is present then G is not \mathcal{F}-free.

$$
\left.\begin{array}{l}
\left(F_{6}-1\right) a=1, b=5, c=6, x=2, y=3, z=4 . \\
\left(F_{6}-2\right) a=3, b=4, c=5, x=1, y=2, z=6 \\
\left(F_{6}-3\right) a=1, b=2, c=3, x=4, y=5, z=6 \\
\left(F_{6}-4\right) a=1, b=3, x=2, y=4, z=5, w=6 \\
\left(F_{6}-5\right) a=5, b=1, c=3, x=4, y=2, z=6 \\
\left(K_{4}^{-}-1\right) a=1, x=2, y=3, z=4 . \\
\left(K_{4}^{-}-2\right) a=3, b=4, x=1, y=2 \\
\left(K_{4}^{-}-3\right) a
\end{array}\right) .
$$

Proof of Lemma 8: We will make repeated use of Lemma 7.
(i) This follows immediately from $\left(F_{6}-1\right)$ and $\left(K_{4}^{-}-1\right)$.
(ii) This follows immediately from (i): if $u v w x$ is a copy of K_{4} then we may suppose $l(u v)=a, l(u w)=b, l(v w)=c$, thus $l(u x)=c$ (otherwise (i) would be violated) continuing we see that $u v w x$ must be rainbow.
(iii) This follows immediately from (ii): if $x y z u v$ is a copy of K_{5} then by (ii) we may suppose that $l(x y), l(x z), l(x u), l(x v)$ are all distinct single labels from $\{a, b, c\}$ but this is impossible since there are only 3 labels in total.
(iv) This follows immediately from $\left(F_{6}-2\right)$ and $\left(K_{4}^{-}-2\right)$.
(v) If x is in a K_{4} then by (ii) it lies in edges with labels a, b, c, so $\left(F_{6}-3\right)$ implies that $x \notin \Gamma_{a b c}$.
(vi) If $x \in \Gamma_{a b c}$, say $x \in \Gamma_{a b}$, and $y \in V_{a b c}^{4}$ with $x y \in E\left(L_{a b c}\right)$ then $\left(F_{6}-3\right)$ implies that $l(x y) \neq c$, while $\left(F_{6}-4\right)$ implies that $l(x y) \neq a, b$ (since there are t, u, v, w such that $l(y t)=b, l(t u)=a$ and $l(y v)=a, l(v w)=b)$.
(vii) This follows immediately from the fact that all $v \in V_{a b c}^{4}$ meet edges with labels a, b, c and $\left(F_{6}-2\right)$.
(viii) $\left(F_{6}-5\right)$ implies that $\Gamma_{b c}=\varnothing$. If $x z \in E\left(L_{a b c}\right)$ then $\left(F_{6}-3\right)$ implies that $l(x z)=a$. Now ($K_{4}-3$) implies that $z \notin \Gamma_{a c}$ while $\left(F_{6}-3\right)$ implies that $z \notin \Gamma_{b c}$. Hence $z \notin \Gamma_{a b c}$. Similarly if $y z \in E\left(L_{a b c}\right)$ then $l(y z)=b$ and $z \notin \Gamma_{a b c}$.
(ix) If $x \in \Gamma_{a b c}$ or $y \in \Gamma_{a b c}$ then this follows directly from (viii) so suppose that $x, y \notin \Gamma_{a b c}, l(x y)=a b$ and $|l(x z)|=2$. In this case, $\left(F_{6}-2\right)$ implies that $l(x z)=a b$ so $\left(K_{4}-2\right)$ implies that $z \in \Gamma_{a c} \cup \Gamma_{b c}$. But then $\left(F_{6}-3\right)$ is violated. Hence $|l(x z)| \leqslant 1$.

3 Conclusion

Many Turán-type results have associated "stability" versions, and we were able to obtain such a result. For reasons of length we state it without proof.

Theorem 13 For any $\epsilon>0$ there exist $\delta>0$ and n_{0} such that the following holds: if H is an \mathcal{F}-free 3 -graph of order $n \geqslant n_{0}$ with at least $(1-\delta) s_{3}(n)$ edges, then there is a partition of the vertex set of H as $V(H)=U_{1} \cup U_{2} \cup U_{3}$ so that all but at most ϵn^{3} edges of H have one vertex in each U_{i}.

Acknowledgements

We wish to thank a referee for their careful reading of this paper and their helpful comments.

References

[1] W. G. Brown and M. Simonovits, Digraph extremal problems, hypergraph extremal functions, and the densities of graph structures, Discrete Math. 48, 147-162 (1984).
[2] R. Baber and J. Talbot, New Turán densities for 3-graphs, Electron. J. Combin. 19 (2), \#P22 (2012).
[3] B. Bollobás, Three-graphs without two triples whose symmetric difference is contained in a third, Discrete Math. 8, 21-24, (1974).
[4] P. Erdős and M. Simonovits, A limit theorem in graph theory, Studia Sci. Math. Hung. Acad. 1, 51-57, (1966).
[5] P. Erdős and A.H. Stone, On the structure of linear graphs, Bull. Amer. Math. Soc. 52, 1087-1091, (1946).
[6] P. Frankl and Z. Füredi, A new generalization of the Erdős-Ko-Rado theorem, Combinatorica 3, 341-349, (1983).
[7] G. Katona, T. Nemetz and M. Simonovits, On a problem of Turán in the theory of graphs, Mat. Lapok 15, 228-238, (1964).
[8] P. Keevash and D. Mubayi, Stability theorems for cancellative hypergraphs, J. Combin. Theory Ser. B 92, 163-175 (2004).
[9] V. W. Mantel, Problem 28, Wiskundige Opgaven 10, 60-61 (1907).
[10] A. A. Razborov, Flag Algebras, J. Symb. Logic, 72, (4) 1239-1282, (2007).
[11] A. A. Razborov, On 3-hypergraphs with forbidden 4-vertex configurations, SIAM J. Disc. Math. 24, (3) 946-963 (2010).
[12] P. Turán, On an extremal problem in graph theory, Mat. Fiz. Lapok 48, 436-452 (1941) [in Hungarian].

