1,509 research outputs found

    LIPIcs, Volume 251, ITCS 2023, Complete Volume

    Get PDF
    LIPIcs, Volume 251, ITCS 2023, Complete Volum

    AI-based design methodologies for hot form quench (HFQ®)

    Get PDF
    This thesis aims to develop advanced design methodologies that fully exploit the capabilities of the Hot Form Quench (HFQ®) stamping process in stamping complex geometric features in high-strength aluminium alloy structural components. While previous research has focused on material models for FE simulations, these simulations are not suitable for early-phase design due to their high computational cost and expertise requirements. This project has two main objectives: first, to develop design guidelines for the early-stage design phase; and second, to create a machine learning-based platform that can optimise 3D geometries under hot stamping constraints, for both early and late-stage design. With these methodologies, the aim is to facilitate the incorporation of HFQ capabilities into component geometry design, enabling the full realisation of its benefits. To achieve the objectives of this project, two main efforts were undertaken. Firstly, the analysis of aluminium alloys for stamping deep corners was simplified by identifying the effects of corner geometry and material characteristics on post-form thinning distribution. New equation sets were proposed to model trends and design maps were created to guide component design at early stages. Secondly, a platform was developed to optimise 3D geometries for stamping, using deep learning technologies to incorporate manufacturing capabilities. This platform combined two neural networks: a geometry generator based on Signed Distance Functions (SDFs), and an image-based manufacturability surrogate model. The platform used gradient-based techniques to update the inputs to the geometry generator based on the surrogate model's manufacturability information. The effectiveness of the platform was demonstrated on two geometry classes, Corners and Bulkheads, with five case studies conducted to optimise under post-stamped thinning constraints. Results showed that the platform allowed for free morphing of complex geometries, leading to significant improvements in component quality. The research outcomes represent a significant contribution to the field of technologically advanced manufacturing methods and offer promising avenues for future research. The developed methodologies provide practical solutions for designers to identify optimal component geometries, ensuring manufacturing feasibility and reducing design development time and costs. The potential applications of these methodologies extend to real-world industrial settings and can significantly contribute to the continued advancement of the manufacturing sector.Open Acces

    Models and algorithms for real-world optimization problems

    Get PDF
    This thesis deals with efficient solution of optimization problems of practical interest. The first part of the thesis deals with bin packing problems. The bin packing problem (BPP) is one of the oldest and most fundamental combinatorial optimiza- tion problems. The bin packing problem and its generalizations arise often in real-world ap- plications, from manufacturing industry, logistics and transportation of goods, and scheduling. After an introductory chapter, I will present two applications of two of the most natural extensions of the bin packing: Chapter 2 will be dedicated to an application of bin packing in two dimension to a problem of scheduling a set of computational tasks on a computer cluster, while Chapter 3 deals with the generalization of BPP in three dimensions that arise frequently in logistic and transportation, often com- plemented with additional constraints on the placement of items and characteristics of the solution, like, for example, guarantees on the stability of the items, to avoid potential damage to the transported goods, on the distribution of the total weight of the bins, and on compatibility with loading and unloading operations. The second part of the thesis, and in particular Chapter 4 considers the Trans- mission Expansion Problem (TEP), where an electrical transmission grid must be expanded so as to satisfy future energy demand at the minimum cost, while main- taining some guarantees of robustness to potential line failures. These problems are gaining importance in a world where a shift towards renewable energy can impose a significant geographical reallocation of generation capacities, resulting in the ne- cessity of expanding current power transmission grids

    Design and Real-World Evaluation of Dependable Wireless Cyber-Physical Systems

    Get PDF
    The ongoing effort for an efficient, sustainable, and automated interaction between humans, machines, and our environment will make cyber-physical systems (CPS) an integral part of the industry and our daily lives. At their core, CPS integrate computing elements, communication networks, and physical processes that are monitored and controlled through sensors and actuators. New and innovative applications become possible by extending or replacing static and expensive cable-based communication infrastructures with wireless technology. The flexibility of wireless CPS is a key enabler for many envisioned scenarios, such as intelligent factories, smart farming, personalized healthcare systems, autonomous search and rescue, and smart cities. High dependability, efficiency, and adaptivity requirements complement the demand for wireless and low-cost solutions in such applications. For instance, industrial and medical systems should work reliably and predictably with performance guarantees, even if parts of the system fail. Because emerging CPS will feature mobile and battery-driven devices that can execute various tasks, the systems must also quickly adapt to frequently changing conditions. Moreover, as applications become ever more sophisticated, featuring compact embedded devices that are deployed densely and at scale, efficient designs are indispensable to achieve desired operational lifetimes and satisfy high bandwidth demands. Meeting these partly conflicting requirements, however, is challenging due to imperfections of wireless communication and resource constraints along several dimensions, for example, computing, memory, and power constraints of the devices. More precisely, frequent and correlated message losses paired with very limited bandwidth and varying delays for the message exchange significantly complicate the control design. In addition, since communication ranges are limited, messages must be relayed over multiple hops to cover larger distances, such as an entire factory. Although the resulting mesh networks are more robust against interference, efficient communication is a major challenge as wireless imperfections get amplified, and significant coordination effort is needed, especially if the networks are dynamic. CPS combine various research disciplines, which are often investigated in isolation, ignoring their complex interaction. However, to address this interaction and build trust in the proposed solutions, evaluating CPS using real physical systems and wireless networks paired with formal guarantees of a system’s end-to-end behavior is necessary. Existing works that take this step can only satisfy a few of the abovementioned requirements. Most notably, multi-hop communication has only been used to control slow physical processes while providing no guarantees. One of the reasons is that the current communication protocols are not suited for dynamic multi-hop networks. This thesis closes the gap between existing works and the diverse needs of emerging wireless CPS. The contributions address different research directions and are split into two parts. In the first part, we specifically address the shortcomings of existing communication protocols and make the following contributions to provide a solid networking foundation: • We present Mixer, a communication primitive for the reliable many-to-all message exchange in dynamic wireless multi-hop networks. Mixer runs on resource-constrained low-power embedded devices and combines synchronous transmissions and network coding for a highly scalable and topology-agnostic message exchange. As a result, it supports mobile nodes and can serve any possible traffic patterns, for example, to efficiently realize distributed control, as required by emerging CPS applications. • We present Butler, a lightweight and distributed synchronization mechanism with formally guaranteed correctness properties to improve the dependability of synchronous transmissions-based protocols. These protocols require precise time synchronization provided by a specific node. Upon failure of this node, the entire network cannot communicate. Butler removes this single point of failure by quickly synchronizing all nodes in the network without affecting the protocols’ performance. In the second part, we focus on the challenges of integrating communication and various control concepts using classical time-triggered and modern event-based approaches. Based on the design, implementation, and evaluation of the proposed solutions using real systems and networks, we make the following contributions, which in many ways push the boundaries of previous approaches: • We are the first to demonstrate and evaluate fast feedback control over low-power wireless multi-hop networks. Essential for this achievement is a novel co-design and integration of communication and control. Our wireless embedded platform tames the imperfections impairing control, for example, message loss and varying delays, and considers the resulting key properties in the control design. Furthermore, the careful orchestration of control and communication tasks enables real-time operation and makes our system amenable to an end-to-end analysis. Due to this, we can provably guarantee closed-loop stability for physical processes with linear time-invariant dynamics. • We propose control-guided communication, a novel co-design for distributed self-triggered control over wireless multi-hop networks. Self-triggered control can save energy by transmitting data only when needed. However, there are no solutions that bring those savings to multi-hop networks and that can reallocate freed-up resources, for example, to other agents. Our control system informs the communication system of its transmission demands ahead of time so that communication resources can be allocated accordingly. Thus, we can transfer the energy savings from the control to the communication side and achieve an end-to-end benefit. • We present a novel co-design of distributed control and wireless communication that resolves overload situations in which the communication demand exceeds the available bandwidth. As systems scale up, featuring more agents and higher bandwidth demands, the available bandwidth will be quickly exceeded, resulting in overload. While event-triggered control and self-triggered control approaches reduce the communication demand on average, they cannot prevent that potentially all agents want to communicate simultaneously. We address this limitation by dynamically allocating the available bandwidth to the agents with the highest need. Thus, we can formally prove that our co-design guarantees closed-loop stability for physical systems with stochastic linear time-invariant dynamics.:Abstract Acknowledgements List of Abbreviations List of Figures List of Tables 1 Introduction 1.1 Motivation 1.2 Application Requirements 1.3 Challenges 1.4 State of the Art 1.5 Contributions and Road Map 2 Mixer: Efficient Many-to-All Broadcast in Dynamic Wireless Mesh Networks 2.1 Introduction 2.2 Overview 2.3 Design 2.4 Implementation 2.5 Evaluation 2.6 Discussion 2.7 Related Work 3 Butler: Increasing the Availability of Low-Power Wireless Communication Protocols 3.1 Introduction 3.2 Motivation and Background 3.3 Design 3.4 Analysis 3.5 Implementation 3.6 Evaluation 3.7 Related Work 4 Feedback Control Goes Wireless: Guaranteed Stability over Low-Power Multi-Hop Networks 4.1 Introduction 4.2 Related Work 4.3 Problem Setting and Approach 4.4 Wireless Embedded System Design 4.5 Control Design and Analysis 4.6 Experimental Evaluation 4.A Control Details 5 Control-Guided Communication: Efficient Resource Arbitration and Allocation in Multi-Hop Wireless Control Systems 5.1 Introduction 5.2 Problem Setting 5.3 Co-Design Approach 5.4 Wireless Communication System Design 5.5 Self-Triggered Control Design 5.6 Experimental Evaluation 6 Scaling Beyond Bandwidth Limitations: Wireless Control With Stability Guarantees Under Overload 6.1 Introduction 6.2 Problem and Related Work 6.3 Overview of Co-Design Approach 6.4 Predictive Triggering and Control System 6.5 Adaptive Communication System 6.6 Integration and Stability Analysis 6.7 Testbed Experiments 6.A Proof of Theorem 4 6.B Usage of the Network Bandwidth for Control 7 Conclusion and Outlook 7.1 Contributions 7.2 Future Directions Bibliography List of Publication

    Advances and Applications of DSmT for Information Fusion. Collected Works, Volume 5

    Get PDF
    This fifth volume on Advances and Applications of DSmT for Information Fusion collects theoretical and applied contributions of researchers working in different fields of applications and in mathematics, and is available in open-access. The collected contributions of this volume have either been published or presented after disseminating the fourth volume in 2015 in international conferences, seminars, workshops and journals, or they are new. The contributions of each part of this volume are chronologically ordered. First Part of this book presents some theoretical advances on DSmT, dealing mainly with modified Proportional Conflict Redistribution Rules (PCR) of combination with degree of intersection, coarsening techniques, interval calculus for PCR thanks to set inversion via interval analysis (SIVIA), rough set classifiers, canonical decomposition of dichotomous belief functions, fast PCR fusion, fast inter-criteria analysis with PCR, and improved PCR5 and PCR6 rules preserving the (quasi-)neutrality of (quasi-)vacuous belief assignment in the fusion of sources of evidence with their Matlab codes. Because more applications of DSmT have emerged in the past years since the apparition of the fourth book of DSmT in 2015, the second part of this volume is about selected applications of DSmT mainly in building change detection, object recognition, quality of data association in tracking, perception in robotics, risk assessment for torrent protection and multi-criteria decision-making, multi-modal image fusion, coarsening techniques, recommender system, levee characterization and assessment, human heading perception, trust assessment, robotics, biometrics, failure detection, GPS systems, inter-criteria analysis, group decision, human activity recognition, storm prediction, data association for autonomous vehicles, identification of maritime vessels, fusion of support vector machines (SVM), Silx-Furtif RUST code library for information fusion including PCR rules, and network for ship classification. Finally, the third part presents interesting contributions related to belief functions in general published or presented along the years since 2015. These contributions are related with decision-making under uncertainty, belief approximations, probability transformations, new distances between belief functions, non-classical multi-criteria decision-making problems with belief functions, generalization of Bayes theorem, image processing, data association, entropy and cross-entropy measures, fuzzy evidence numbers, negator of belief mass, human activity recognition, information fusion for breast cancer therapy, imbalanced data classification, and hybrid techniques mixing deep learning with belief functions as well

    Towards the reduction of greenhouse gas emissions : models and algorithms for ridesharing and carbon capture and storage

    Full text link
    Avec la ratification de l'Accord de Paris, les pays se sont engagés à limiter le réchauffement climatique bien en dessous de 2, de préférence à 1,5 degrés Celsius, par rapport aux niveaux préindustriels. À cette fin, les émissions anthropiques de gaz à effet de serre (GES, tels que CO2) doivent être réduites pour atteindre des émissions nettes de carbone nulles d'ici 2050. Cet objectif ambitieux peut être atteint grâce à différentes stratégies d'atténuation des GES, telles que l'électrification, les changements de comportement des consommateurs, l'amélioration de l'efficacité énergétique des procédés, l'utilisation de substituts aux combustibles fossiles (tels que la bioénergie ou l'hydrogène), le captage et le stockage du carbone (CSC), entre autres. Cette thèse vise à contribuer à deux de ces stratégies : le covoiturage (qui appartient à la catégorie des changements de comportement du consommateur) et la capture et le stockage du carbone. Cette thèse fournit des modèles mathématiques et d'optimisation et des algorithmes pour la planification opérationnelle et tactique des systèmes de covoiturage, et des heuristiques pour la planification stratégique d'un réseau de captage et de stockage du carbone. Dans le covoiturage, les émissions sont réduites lorsque les individus voyagent ensemble au lieu de conduire seuls. Dans ce contexte, cette thèse fournit de nouveaux modèles mathématiques pour représenter les systèmes de covoiturage, allant des problèmes d'affectation stochastique à deux étapes aux problèmes d'empaquetage d'ensembles stochastiques à deux étapes qui peuvent représenter un large éventail de systèmes de covoiturage. Ces modèles aident les décideurs dans leur planification opérationnelle des covoiturages, où les conducteurs et les passagers doivent être jumelés pour le covoiturage à court terme. De plus, cette thèse explore la planification tactique des systèmes de covoiturage en comparant différents modes de fonctionnement du covoiturage et les paramètres de la plateforme (par exemple, le partage des revenus et les pénalités). De nouvelles caractéristiques de problèmes sont étudiées, telles que l'incertitude du conducteur et du passager, la flexibilité de réappariement et la réservation de l'offre de conducteur via les frais de réservation et les pénalités. En particulier, la flexibilité de réappariement peut augmenter l'efficacité d'une plateforme de covoiturage, et la réservation de l'offre de conducteurs via les frais de réservation et les pénalités peut augmenter la satisfaction des utilisateurs grâce à une compensation garantie si un covoiturage n'est pas fourni. Des expériences computationnelles détaillées sont menées et des informations managériales sont fournies. Malgré la possibilité de réduction des émissions grâce au covoiturage et à d'autres stratégies d'atténuation, des études macroéconomiques mondiales montrent que même si plusieurs stratégies d'atténuation des GES sont utilisées simultanément, il ne sera probablement pas possible d'atteindre des émissions nettes nulles d'ici 2050 sans le CSC. Ici, le CO2 est capturé à partir des sites émetteurs et transporté vers des réservoirs géologiques, où il est injecté pour un stockage à long terme. Cette thèse considère un problème de planification stratégique multipériode pour l'optimisation d'une chaîne de valeur CSC. Ce problème est un problème combiné de localisation des installations et de conception du réseau où une infrastructure CSC est prévue pour les prochaines décennies. En raison des défis informatiques associés à ce problème, une heuristique est introduite, qui est capable de trouver de meilleures solutions qu'un solveur commercial de programmation mathématique, pour une fraction du temps de calcul. Cette heuristique comporte des phases d'intensification et de diversification, une génération améliorée de solutions réalisables par programmation dynamique, et une étape finale de raffinement basée sur un modèle restreint. Dans l'ensemble, les contributions de cette thèse sur le covoiturage et le CSC fournissent des modèles de programmation mathématique, des algorithmes et des informations managériales qui peuvent aider les praticiens et les parties prenantes à planifier des émissions nettes nulles.With the ratification of the Paris Agreement, countries committed to limiting global warming to well below 2, preferably to 1.5 degrees Celsius, compared to pre-industrial levels. To this end, anthropogenic greenhouse gas (GHG) emissions (such as CO2) must be reduced to reach net-zero carbon emissions by 2050. This ambitious target may be met by means of different GHG mitigation strategies, such as electrification, changes in consumer behavior, improving the energy efficiency of processes, using substitutes for fossil fuels (such as bioenergy or hydrogen), and carbon capture and storage (CCS). This thesis aims at contributing to two of these strategies: ridesharing (which belongs to the category of changes in consumer behavior) and carbon capture and storage. This thesis provides mathematical and optimization models and algorithms for the operational and tactical planning of ridesharing systems, and heuristics for the strategic planning of a carbon capture and storage network. In ridesharing, emissions are reduced when individuals travel together instead of driving alone. In this context, this thesis provides novel mathematical models to represent ridesharing systems, ranging from two-stage stochastic assignment problems to two-stage stochastic set packing problems that can represent a wide variety of ridesharing systems. These models aid decision makers in their operational planning of rideshares, where drivers and riders have to be matched for ridesharing on the short-term. Additionally, this thesis explores the tactical planning of ridesharing systems by comparing different modes of ridesharing operation and platform parameters (e.g., revenue share and penalties). Novel problem characteristics are studied, such as driver and rider uncertainty, rematching flexibility, and reservation of driver supply through booking fees and penalties. In particular, rematching flexibility may increase the efficiency of a ridesharing platform, and the reservation of driver supply through booking fees and penalties may increase user satisfaction through guaranteed compensation if a rideshare is not provided. Extensive computational experiments are conducted and managerial insights are given. Despite the opportunity to reduce emissions through ridesharing and other mitigation strategies, global macroeconomic studies show that even if several GHG mitigation strategies are used simultaneously, achieving net-zero emissions by 2050 will likely not be possible without CCS. Here, CO2 is captured from emitter sites and transported to geological reservoirs, where it is injected for long-term storage. This thesis considers a multiperiod strategic planning problem for the optimization of a CCS value chain. This problem is a combined facility location and network design problem where a CCS infrastructure is planned for the next decades. Due to the computational challenges associated with that problem, a slope scaling heuristic is introduced, which is capable of finding better solutions than a state-of-the-art general-purpose mathematical programming solver, at a fraction of the computational time. This heuristic has intensification and diversification phases, improved generation of feasible solutions through dynamic programming, and a final refining step based on a restricted model. Overall, the contributions of this thesis on ridesharing and CCS provide mathematical programming models, algorithms, and managerial insights that may help practitioners and stakeholders plan for net-zero emissions

    HeteroSketch: coordinating network-wide monitoring in heterogeneous and dynamic networks

    Full text link
    CNS-2107086 - National Science Foundation; CNS-2106946 - National Science FoundationPublished versio

    Mathematical Modelling of Spread of Vector Borne Disease In Germany

    Get PDF
    Ziel dieser Doktorarbeit ist ein mathematisches Modell zu entwickeln, um eine mögliche Ausbreitung des West-Nil-Virus (WNV) in Deutschland zu simulieren und zu bewerten. Das entwickelte Werkzeug soll auch auf eine weitere, durch Zecken übertragene Krankheit, dem Krim-Kongo-Hämorrhagischen Fieber (CCHFV) angewendet werden. Die durch den Klimawandel verursachte globalen Erwärmung unterstützt auch die Verbreitung und Entwicklung verschiedener Vektorpopulationen. Dabei hat eine Temperaturerhöhung einen positiven Einfluss auf den Lebenszyklus des Vektors und die Zunahme der Vektoraktivität. In dieser Arbeit haben wir ein Differentialgleichungsmodell (ODE) entwickelt, um den Einfluss eines regelmäßigen Eintrags von Infektionserregern auf die empfängliche Population unter Berücksichtigung des Temperatureinflusses zu verstehen. Als Ergebnis haben wir einen analytischen Ausdruck der Basisreproduktionszahl und deren Wechselwirkung mit der Temperatur gefunden. Eine Sensitivitätsanalyse zeigt, wie wichtig das Verhältnis der anfälligen Mücken zur lokalen Wirtspopulation ist. Als ein zentrales Ergebnis haben wir den zukünftigen Temperaturverlauf auf Basis der Modellergebnisse des IPCC in unser Modell integriert und Bedingungen gefunden, unter denen es zu einer dauerhaften Etablierung des West-Nil-Virus in Deutschland kommt. Darüber hinaus haben wir die entwickelten mathematischen Modelle verwendet, um verschiedene Szenarien zu untersuchen, unter denen sich CCHFV möglicherweise in einer naiven Population etablieren kann, und wir haben verschiedene Kontrollszenarien mathematisch abgeleitet, um die Belastung von einer Infektion durch Zecken zu bewältigen.The objective of this thesis is to develop the necessary mathematical model to assess the potential spread of West Nile Virus (WNV) in Germany and employ the developed tool to analyse another tick-borne disease Crimean- Congo Hemorrhagic Fever (CCHFV). Given the backdrop of global warming and the climate change, increasing temperature has benefitted the vector population. The increase in the temperature has a positive influence in the life cycle of the vector and the increase in its activities. In this thesis, we have developed an Ordinary Differential Equation (ODE) model system to understand the influence of the periodic introduction of infectious agents into the local susceptible population while taking account of influence of temperature. As results, we have found an analytic expression of the basic reproduction number and its interplay with the temperature. The sensitivity analysis shows us the importance of the ratio between the susceptible mosquitoes to the local host population. As a central result we have extrapolated the temperature trend under different IPCC conditions and found the condition under which the circulation of West Nile Virus will be permanent in Germany. Furthermore, we have utilised the developed mathematical models to examine different scenarios under which CCHFV can potentially establish in a naive population along with we mathematically derived different control scenarios to manage the burden of tick infection

    Geometric Data Analysis: Advancements of the Statistical Methodology and Applications

    Get PDF
    Data analysis has become fundamental to our society and comes in multiple facets and approaches. Nevertheless, in research and applications, the focus was primarily on data from Euclidean vector spaces. Consequently, the majority of methods that are applied today are not suited for more general data types. Driven by needs from fields like image processing, (medical) shape analysis, and network analysis, more and more attention has recently been given to data from non-Euclidean spaces–particularly (curved) manifolds. It has led to the field of geometric data analysis whose methods explicitly take the structure (for example, the topology and geometry) of the underlying space into account. This thesis contributes to the methodology of geometric data analysis by generalizing several fundamental notions from multivariate statistics to manifolds. We thereby focus on two different viewpoints. First, we use Riemannian structures to derive a novel regression scheme for general manifolds that relies on splines of generalized Bézier curves. It can accurately model non-geodesic relationships, for example, time-dependent trends with saturation effects or cyclic trends. Since Bézier curves can be evaluated with the constructive de Casteljau algorithm, working with data from manifolds of high dimensions (for example, a hundred thousand or more) is feasible. Relying on the regression, we further develop a hierarchical statistical model for an adequate analysis of longitudinal data in manifolds, and a method to control for confounding variables. We secondly focus on data that is not only manifold- but even Lie group-valued, which is frequently the case in applications. We can only achieve this by endowing the group with an affine connection structure that is generally not Riemannian. Utilizing it, we derive generalizations of several well-known dissimilarity measures between data distributions that can be used for various tasks, including hypothesis testing. Invariance under data translations is proven, and a connection to continuous distributions is given for one measure. A further central contribution of this thesis is that it shows use cases for all notions in real-world applications, particularly in problems from shape analysis in medical imaging and archaeology. We can replicate or further quantify several known findings for shape changes of the femur and the right hippocampus under osteoarthritis and Alzheimer's, respectively. Furthermore, in an archaeological application, we obtain new insights into the construction principles of ancient sundials. Last but not least, we use the geometric structure underlying human brain connectomes to predict cognitive scores. Utilizing a sample selection procedure, we obtain state-of-the-art results

    Set-based state estimation and fault diagnosis using constrained zonotopes and applications

    Full text link
    This doctoral thesis develops new methods for set-based state estimation and active fault diagnosis (AFD) of (i) nonlinear discrete-time systems, (ii) discrete-time nonlinear systems whose trajectories satisfy nonlinear equality constraints (called invariants), (iii) linear descriptor systems, and (iv) joint state and parameter estimation of nonlinear descriptor systems. Set-based estimation aims to compute tight enclosures of the possible system states in each time step subject to unknown-but-bounded uncertainties. To address this issue, the present doctoral thesis proposes new methods for efficiently propagating constrained zonotopes (CZs) through nonlinear mappings. Besides, this thesis improves the standard prediction-update framework for systems with invariants using new algorithms for refining CZs based on nonlinear constraints. In addition, this thesis introduces a new approach for set-based AFD of a class of nonlinear discrete-time systems. An affine parametrization of the reachable sets is obtained for the design of an optimal input for set-based AFD. In addition, this thesis presents new methods based on CZs for set-valued state estimation and AFD of linear descriptor systems. Linear static constraints on the state variables can be directly incorporated into CZs. Moreover, this thesis proposes a new representation for unbounded sets based on zonotopes, which allows to develop methods for state estimation and AFD also of unstable linear descriptor systems, without the knowledge of an enclosure of all the trajectories of the system. This thesis also develops a new method for set-based joint state and parameter estimation of nonlinear descriptor systems using CZs in a unified framework. Lastly, this manuscript applies the proposed set-based state estimation and AFD methods using CZs to unmanned aerial vehicles, water distribution networks, and a lithium-ion cell.Comment: My PhD Thesis from Federal University of Minas Gerais, Brazil. Most of the research work has already been published in DOIs 10.1109/CDC.2018.8618678, 10.23919/ECC.2018.8550353, 10.1016/j.automatica.2019.108614, 10.1016/j.ifacol.2020.12.2484, 10.1016/j.ifacol.2021.08.308, 10.1016/j.automatica.2021.109638, 10.1109/TCST.2021.3130534, 10.1016/j.automatica.2022.11042
    corecore