6,788 research outputs found

    A packet error recovery scheme for vertical handovers mobility management protocols

    Get PDF
    Mobile devices are connecting to the Internet through an increasingly heterogeneous network environment. This connectivity via multiple types of wireless networks allows the mobile devices to take advantage of the high speed and the low cost of wireless local area networks and the large coverage of wireless wide area networks. In this context, we propose a new handoff framework for switching seamlessly between the different network technologies by taking advantage of the temporary availability of both the old and the new network technology through the use of an "on the fly" erasure coding method. The goal is to demonstrate that our framework, based on a real implementation of such coding scheme, 1) allows the application to achieve higher goodput rate compared to existing bicasting proposals and other erasure coding schemes; 2) is easy to configure and as a result 3) is a perfect candidate to ensure the reliability of vertical handovers mobility management protocols. In this paper, we present the implementation of such framework and show that our proposal allows to maintain the TCP goodput(with a negligible transmission overhead) while providing in a timely manner a full reliability in challenged conditions

    Beyond multimedia adaptation: Quality of experience-aware multi-sensorial media delivery

    Get PDF
    Multiple sensorial media (mulsemedia) combines multiple media elements which engage three or more of human senses, and as most other media content, requires support for delivery over the existing networks. This paper proposes an adaptive mulsemedia framework (ADAMS) for delivering scalable video and sensorial data to users. Unlike existing two-dimensional joint source-channel adaptation solutions for video streaming, the ADAMS framework includes three joint adaptation dimensions: video source, sensorial source, and network optimization. Using an MPEG-7 description scheme, ADAMS recommends the integration of multiple sensorial effects (i.e., haptic, olfaction, air motion, etc.) as metadata into multimedia streams. ADAMS design includes both coarse- and fine-grained adaptation modules on the server side: mulsemedia flow adaptation and packet priority scheduling. Feedback from subjective quality evaluation and network conditions is used to develop the two modules. Subjective evaluation investigated users' enjoyment levels when exposed to mulsemedia and multimedia sequences, respectively and to study users' preference levels of some sensorial effects in the context of mulsemedia sequences with video components at different quality levels. Results of the subjective study inform guidelines for an adaptive strategy that selects the optimal combination for video segments and sensorial data for a given bandwidth constraint and user requirement. User perceptual tests show how ADAMS outperforms existing multimedia delivery solutions in terms of both user perceived quality and user enjoyment during adaptive streaming of various mulsemedia content. In doing so, it highlights the case for tailored, adaptive mulsemedia delivery over traditional multimedia adaptive transport mechanisms

    User quality of experience of mulsemedia applications

    Get PDF
    User Quality of Experience (QoE) is of fundamental importance in multimedia applications and has been extensively studied for decades. However, user QoE in the context of the emerging multiple-sensorial media (mulsemedia) services, which involve different media components than the traditional multimedia applications, have not been comprehensively studied. This article presents the results of subjective tests which have investigated user perception of mulsemedia content. In particular, the impact of intensity of certain mulsemedia components including haptic and airflow on user-perceived experience are studied. Results demonstrate that by making use of mulsemedia the overall user enjoyment levels increased by up to 77%

    Perceived synchronization of mulsemedia services

    Get PDF
    Multimedia synchronization involves a temporal relationship between audio and visual media components. The presentation of "in-sync" data streams is essential to achieve a natural impression, as "out-of-sync" effects are often associated with user quality of experience (QoE) decrease. Recently, multi-sensory media (mulsemedia) has been demonstrated to provide a highly immersive experience for its users. Unlike traditional multimedia, mulsemedia consists of other media types (i.e., haptic, olfaction, taste, etc.) in addition to audio and visual content. Therefore, the goal of achieving high quality mulsemedia transmission is to present no or little synchronization errors between the multiple media components. In order to achieve this ideal synchronization, there is a need for comprehensive knowledge of the synchronization requirements at the user interface. This paper presents the results of a subjective study carried out to explore the temporal boundaries within which haptic and air-flow media objects can be successfully synchronized with video media. Results show that skews between sensorial media and multimedia might still give the effect that the mulsemedia sequence is "in-sync" and provide certain constraints under which synchronization errors might be tolerated. The outcomes of the paper are used to provide recommendations for mulsemedia service providers in order for their services to be associated with acceptable user experience levels, e.g. haptic media could be presented with a delay of up to 1 s behind video content, while air-flow media could be released either 5 s ahead of or 3 s behind video content

    VoIP Packet Delay Techniques: A Survey

    Get PDF
    The continuous development in the field of communication have paved the way for Voice over Internet Protocol (VoIP). VoIP is a group of hardware and software that facilitates people to utilize the Internet as the transmission medium for telephone calls by transmitting voice data in packets using IP instead of using conventional circuit transmissions of the Public Switched Telephone Network (PSTN). At present, VoIP is becoming an important tool for quick communication across the world. There are several Internet telephony applications existing at present. The major disadvantage in VoIP is that the packet delay. In VoIP, the terminology jitter is used to refer the type of packet delay where the delay has a huge setback in the quality of the voice conversation. Several packet delay techniques were proposed in recent years. Some of the important packet delay techniques are discussed in the literature. This survey would definitely help the researchers to carry out their research for providing better communication in VoIP without any delay

    D2D-Based Grouped Random Access to Mitigate Mobile Access Congestion in 5G Sensor Networks

    Full text link
    The Fifth Generation (5G) wireless service of sensor networks involves significant challenges when dealing with the coordination of ever-increasing number of devices accessing shared resources. This has drawn major interest from the research community as many existing works focus on the radio access network congestion control to efficiently manage resources in the context of device-to-device (D2D) interaction in huge sensor networks. In this context, this paper pioneers a study on the impact of D2D link reliability in group-assisted random access protocols, by shedding the light on beneficial performance and potential limitations of approaches of this kind against tunable parameters such as group size, number of sensors and reliability of D2D links. Additionally, we leverage on the association with a Geolocation Database (GDB) capability to assist the grouping decisions by drawing parallels with recent regulatory-driven initiatives around GDBs and arguing benefits of the suggested proposal. Finally, the proposed method is approved to significantly reduce the delay over random access channels, by means of an exhaustive simulation campaign.Comment: First submission to IEEE Communications Magazine on Oct.28.2017. Accepted on Aug.18.2019. This is the camera-ready versio

    Overlay networks for smart grids

    Get PDF

    A cross-layer approach to enhance QoS for multimedia applications over satellite

    Get PDF
    The need for on-demand QoS support for communications over satellite is of primary importance for distributed multimedia applications. This is particularly true for the return link which is often a bottleneck due to the large set of end-users accessing a very limited uplink resource. Facing this need, Demand Assignment Multiple Access (DAMA) is a classical technique that allows satellite operators to offer various types of services, while managing the resources of the satellite system efficiently. Tackling the quality degradation and delay accumulation issues that can result from the use of these techniques, this paper proposes an instantiation of the Application Layer Framing (ALF) approach, using a cross-layer interpreter(xQoS-Interpreter). The information provided by this interpreter is used to manage the resource provided to a terminal by the satellite system in order to improve the quality of multimedia presentations from the end users point of view. Several experiments are carried out for different loads on the return link. Their impact on QoS is measured through different application as well as network level metrics

    vSkyConf: Cloud-assisted Multi-party Mobile Video Conferencing

    Get PDF
    As an important application in the busy world today, mobile video conferencing facilitates virtual face-to-face communication with friends, families and colleagues, via their mobile devices on the move. However, how to provision high-quality, multi-party video conferencing experiences over mobile devices is still an open challenge. The fundamental reason behind is the lack of computation and communication capacities on the mobile devices, to scale to large conferencing sessions. In this paper, we present vSkyConf, a cloud-assisted mobile video conferencing system to fundamentally improve the quality and scale of multi-party mobile video conferencing. By novelly employing a surrogate virtual machine in the cloud for each mobile user, we allow fully scalable communication among the conference participants via their surrogates, rather than directly. The surrogates exchange conferencing streams among each other, transcode the streams to the most appropriate bit rates, and buffer the streams for the most efficient delivery to the mobile recipients. A fully decentralized, optimal algorithm is designed to decide the best paths of streams and the most suitable surrogates for video transcoding along the paths, such that the limited bandwidth is fully utilized to deliver streams of the highest possible quality to the mobile recipients. We also carefully tailor a buffering mechanism on each surrogate to cooperate with optimal stream distribution. We have implemented vSkyConf based on Amazon EC2 and verified the excellent performance of our design, as compared to the widely adopted unicast solutions.Comment: 10 page
    corecore