1,936 research outputs found

    A Low-Cost Tele-Presence Wheelchair System

    Full text link
    This paper presents the architecture and implementation of a tele-presence wheelchair system based on tele-presence robot, intelligent wheelchair, and touch screen technologies. The tele-presence wheelchair system consists of a commercial electric wheelchair, an add-on tele-presence interaction module, and a touchable live video image based user interface (called TIUI). The tele-presence interaction module is used to provide video-chatting for an elderly or disabled person with the family members or caregivers, and also captures the live video of an environment for tele-operation and semi-autonomous navigation. The user interface developed in our lab allows an operator to access the system anywhere and directly touch the live video image of the wheelchair to push it as if he/she did it in the presence. This paper also discusses the evaluation of the user experience

    Overcoming barriers and increasing independence: service robots for elderly and disabled people

    Get PDF
    This paper discusses the potential for service robots to overcome barriers and increase independence of elderly and disabled people. It includes a brief overview of the existing uses of service robots by disabled and elderly people and advances in technology which will make new uses possible and provides suggestions for some of these new applications. The paper also considers the design and other conditions to be met for user acceptance. It also discusses the complementarity of assistive service robots and personal assistance and considers the types of applications and users for which service robots are and are not suitable

    Implementation of target tracking in Smart Wheelchair Component System

    Get PDF
    Independent mobility is critical to individuals of any age. While the needs of many individuals with disabilities can be satisfied with power wheelchairs, some members of the disabled community find it difficult or impossible to operate a standard power wheelchair. This population includes, but is not limited to, individuals with low vision, visual field neglect, spasticity, tremors, or cognitive deficits. To meet the needs of this population, our group is involved in developing cost effective modularly designed Smart Wheelchairs. Our objective is to develop an assistive navigation system which will seamlessly integrate into the lifestyle of individual with disabilities and provide safe and independent mobility and navigation without imposing an excessive physical or cognitive load. The Smart Wheelchair Component System (SWCS) can be added to a variety of commercial power wheelchairs with minimal modification to provide navigation assistance. Previous versions of the SWCS used acoustic and infrared rangefinders to identify and avoid obstacles, but these sensors do not lend themselves to many desirable higher-level behaviors. To achieve these higher level behaviors we integrated a Continuously Adapted Mean Shift (CAMSHIFT) target tracking algorithm into the SWCS, along with the Minimal Vector Field Histogram (MVFH) obstacle avoidance algorithm. The target tracking algorithm provides the basis for two distinct operating modes: (1) a "follow-the-leader" mode, and (2) a "move to stationary target" mode.The ability to track a stationary or moving target will make smart wheelchairs more useful as a mobility aid, and is also expected to be useful for wheeled mobility training and evaluation. In addition to wheelchair users, the caregivers, clinicians, and transporters who provide assistance to wheelchair users will also realize beneficial effects of providing safe and independent mobility to wheelchair users which will reduce the level of assistance needed by wheelchair users

    Towards Early Mobility Independence: An Intelligent Paediatric Wheelchair with Case Studies

    No full text
    Standard powered wheelchairs are still heavily dependent on the cognitive capabilities of users. Unfortunately, this excludes disabled users who lack the required problem-solving and spatial skills, particularly young children. For these children to be denied powered mobility is a crucial set-back; exploration is important for their cognitive, emotional and psychosocial development. In this paper, we present a safer paediatric wheelchair: the Assistive Robot Transport for Youngsters (ARTY). The fundamental goal of this research is to provide a key-enabling technology to young children who would otherwise be unable to navigate independently in their environment. In addition to the technical details of our smart wheelchair, we present user-trials with able-bodied individuals as well as one 5-year-old child with special needs. ARTY promises to provide young children with early access to the path towards mobility independence

    Learning Motion Predictors for Smart Wheelchair using Autoregressive Sparse Gaussian Process

    Full text link
    Constructing a smart wheelchair on a commercially available powered wheelchair (PWC) platform avoids a host of seating, mechanical design and reliability issues but requires methods of predicting and controlling the motion of a device never intended for robotics. Analog joystick inputs are subject to black-box transformations which may produce intuitive and adaptable motion control for human operators, but complicate robotic control approaches; furthermore, installation of standard axle mounted odometers on a commercial PWC is difficult. In this work, we present an integrated hardware and software system for predicting the motion of a commercial PWC platform that does not require any physical or electronic modification of the chair beyond plugging into an industry standard auxiliary input port. This system uses an RGB-D camera and an Arduino interface board to capture motion data, including visual odometry and joystick signals, via ROS communication. Future motion is predicted using an autoregressive sparse Gaussian process model. We evaluate the proposed system on real-world short-term path prediction experiments. Experimental results demonstrate the system's efficacy when compared to a baseline neural network model.Comment: The paper has been accepted to the International Conference on Robotics and Automation (ICRA2018

    CES-514 Market Evaluation for Colchester Catalyst on the use of Robotic Wheelchairs

    Get PDF
    1.2 What is a Robotic Wheelchair?........................... 1 1.3 Type of Marketing Research used and sources of data...............

    A short curriculum of the robotics and technology of computer lab

    Get PDF
    Our research Lab is directed by Prof. Anton Civit. It is an interdisciplinary group of 23 researchers that carry out their teaching and researching labor at the Escuela Politécnica Superior (Higher Polytechnic School) and the Escuela de Ingeniería Informática (Computer Engineering School). The main research fields are: a) Industrial and mobile Robotics, b) Neuro-inspired processing using electronic spikes, c) Embedded and real-time systems, d) Parallel and massive processing computer architecture, d) Information Technologies for rehabilitation, handicapped and elder people, e) Web accessibility and usability In this paper, the Lab history is presented and its main publications and research projects over the last few years are summarized.Nuestro grupo de investigación está liderado por el profesor Civit. Somos un grupo multidisciplinar de 23 investigadores que realizan su labor docente e investigadora en la Escuela Politécnica Superior y en Escuela de Ingeniería Informática. Las principales líneas de investigaciones son: a) Robótica industrial y móvil. b) Procesamiento neuro-inspirado basado en pulsos electrónicos. c) Sistemas empotrados y de tiempo real. d) Arquitecturas paralelas y de procesamiento masivo. e) Tecnología de la información aplicada a la discapacidad, rehabilitación y a las personas mayores. f) Usabilidad y accesibilidad Web. En este artículo se reseña la historia del grupo y se resumen las principales publicaciones y proyectos que ha conseguido en los últimos años

    Collaborative Control for a Robotic Wheelchair: Evaluation of Performance, Attention, and Workload

    Get PDF
    Powered wheelchair users often struggle to drive safely and effectively and in more critical cases can only get around when accompanied by an assistant. To address these issues, we propose a collaborative control mechanism that assists the user as and when they require help. The system uses a multiple–hypotheses method to predict the driver’s intentions and if necessary, adjusts the control signals to achieve the desired goal safely. The main emphasis of this paper is on a comprehensive evaluation, where we not only look at the system performance, but, perhaps more importantly, we characterise the user performance, in an experiment that combines eye–tracking with a secondary task. Without assistance, participants experienced multiple collisions whilst driving around the predefined route. Conversely, when they were assisted by the collaborative controller, not only did they drive more safely, but they were able to pay less attention to their driving, resulting in a reduced cognitive workload. We discuss the importance of these results and their implications for other applications of shared control, such as brain–machine interfaces, where it could be used to compensate for both the low frequency and the low resolution of the user input
    corecore