1,174 research outputs found

    Extending the DEVS Formalism with Initialization Information

    Full text link
    DEVS is a popular formalism to model system behaviour using a discrete-event abstraction. The main advantages of DEVS are its rigourous and precise specification, as well as its support for modular, hierarchical construction of models. DEVS frequently serves as a simulation "assembly language" to which models in other formalisms are translated, either giving meaning to new (domain-specific) languages, or reproducing semantics of existing languages. Despite this rigourous definition of its syntax and semantics, initialization of DEVS models is left unspecified in both the Classic and Parallel DEVS formalism definition. In this paper, we extend the DEVS formalism by including an initial total state. Extensions to syntax as well as denotational (closure under coupling) and operational semantics (abstract simulator) are presented. The extension is applicable to both main variants of the DEVS formalism. Our extension is such that it adds to, but does not alter the original specification. All changes are illustrated by means of a traffic light example

    Virtual Communication Stack: Towards Building Integrated Simulator of Mobile Ad Hoc Network-based Infrastructure for Disaster Response Scenarios

    Full text link
    Responses to disastrous events are a challenging problem, because of possible damages on communication infrastructures. For instance, after a natural disaster, infrastructures might be entirely destroyed. Different network paradigms were proposed in the literature in order to deploy adhoc network, and allow dealing with the lack of communications. However, all these solutions focus only on the performance of the network itself, without taking into account the specificities and heterogeneity of the components which use it. This comes from the difficulty to integrate models with different levels of abstraction. Consequently, verification and validation of adhoc protocols cannot guarantee that the different systems will work as expected in operational conditions. However, the DEVS theory provides some mechanisms to allow integration of models with different natures. This paper proposes an integrated simulation architecture based on DEVS which improves the accuracy of ad hoc infrastructure simulators in the case of disaster response scenarios.Comment: Preprint. Unpublishe

    Multi-level agent-based modeling - A literature survey

    Full text link
    During last decade, multi-level agent-based modeling has received significant and dramatically increasing interest. In this article we present a comprehensive and structured review of literature on the subject. We present the main theoretical contributions and application domains of this concept, with an emphasis on social, flow, biological and biomedical models.Comment: v2. Ref 102 added. v3-4 Many refs and text added v5-6 bibliographic statistics updated. v7 Change of the name of the paper to reflect what it became, many refs and text added, bibliographic statistics update

    The Effect of Modeling Simultaneous Events on Simulation Results

    Get PDF
    This thesis explores the method that governs the prioritizing process for simultaneous events in relation to simulation results for discrete-event simulations. Specifically, it contrasts typical discrete-event simulation (DES) execution algorithms with how events are selected and ordered by the discrete-event system specification (DEVS) formalism. The motivation for this research stems from a desire to understand how the selection of events affects simulation output (i.e., response). As a particular use case, we briefly investigate the processing of simultaneous events by the Advanced Framework for Simulation, Integration and Modeling (AFSIM), a military discrete-event combat modeling and simulation package. To facilitate the building of classic DEVS-based models, the python software package PythonPDEVS is used. Initial results indicate that the explicit modeling of how simultaneous events are selected as promoted by the DEVS formalism plays a significant role on simulation results

    Hybrid Multiresolution Simulation & Model Checking: Network-On-Chip Systems

    Get PDF
    abstract: Designers employ a variety of modeling theories and methodologies to create functional models of discrete network systems. These dynamical models are evaluated using verification and validation techniques throughout incremental design stages. Models created for these systems should directly represent their growing complexity with respect to composition and heterogeneity. Similar to software engineering practices, incremental model design is required for complex system design. As a result, models at early increments are significantly simpler relative to real systems. While experimenting (verification or validation) on models at early increments are computationally less demanding, the results of these experiments are less trustworthy and less rewarding. At any increment of design, a set of tools and technique are required for controlling the complexity of models and experimentation. A complex system such as Network-on-Chip (NoC) may benefit from incremental design stages. Current design methods for NoC rely on multiple models developed using various modeling frameworks. It is useful to develop frameworks that can formalize the relationships among these models. Fine-grain models are derived using their coarse-grain counterparts. Moreover, validation and verification capability at various design stages enabled through disciplined model conversion is very beneficial. In this research, Multiresolution Modeling (MRM) is used for system level design of NoC. MRM aids in creating a family of models at different levels of scale and complexity with well-formed relationships. In addition, a variant of the Discrete Event System Specification (DEVS) formalism is proposed which supports model checking. Hierarchical models of Network-on-Chip components may be created at different resolutions while each model can be validated using discrete-event simulation and verified via state exploration. System property expressions are defined in the DEVS language and developed as Transducers which can be applied seamlessly for model checking and simulation purposes. Multiresolution Modeling with verification and validation capabilities of this framework complement one another. MRM manages the scale and complexity of models which in turn can reduces V&V time and effort and conversely the V&V helps ensure correctness of models at multiple resolutions. This framework is realized through extending the DEVS-Suite simulator and its applicability demonstrated for exemplar NoC models.Dissertation/ThesisDoctoral Dissertation Computer Science 201

    Simulation of a Clustering Scheme for Vehicular Ad Hoc Networks Using a DEVS-based Virtual Laboratory Environment

    Get PDF
    ANT 2018, The 9th International Conference on Ambient Systems, Networks and Technologies, Porto, PORTUGAL, 08-/05/2018 - 11/05/2018Protocol design is usually based on the functional models developed according to the needs of the system. In Intelligent Transport Systems (ITS), the features studied regarding Vehicular Ad hoc Networks (VANET) include self-organizing, routing, reliability, quality of service, and security. Simulation studies on ITS-dedicated routing protocols usually focus on their performance in specific scenarios. However, the evolution of transportation systems towards autonomous vehicles requires robust protocols with proven or at least guaranteed properties. Though formal approaches provide powerful tools for system design, they cannot be used for every types of ITS components. Our goal is to develop new tools combining formal tools such as Event-B with DEVS-based (Discrete Event System Specification) virtual laboratories in order to design the models of ITS components which simulation would allow proving and verifying their properties in large-scale scenarios. This paper presents the models of the different components of a VANET realized with the Virtual Laboratory Environment (VLE). We point out the component models fitting to formal modeling, and proceed to the validation of all designed models through a simulation scenario based on real-world road traffic data
    • …
    corecore