1,980 research outputs found

    Cross-platform verification framework for embedded systems

    Get PDF
    Many innovations in the automotive sector involve complex electronics and embedded software systems. Testing techniques are one of the key methodologies for detecting faults in such embedded systems.In this paper, a novel cross-platform verification framework including automated test-case generation by model checking is introduced. Comparing the execution behavior of a program instance running on a certain platform to the execution behavior of the same program running on a different platform we denote cross-platform verification. The framework supports various types of coverage criteria. It turned out that end-to-end testing is of high importance due to defects occurring on the actual target platform for the first time.Additionally, formal verification can be applied for checking requirements resulting from the specification using the same model generation mechanism that is used for test data generation. Due to a novel self-assessment mechanism, the confidence into the formal models is increased significantly.We provide a case study for the Motorola embedded controller HCS12 that is heavily used by the automotive industry. We perform structural tests on industrial code patterns using a wide-spread industrial compiler. Using our technique, we found two severe compiler defects that have been corrected in subsequent releases

    Cyber-security for embedded systems: methodologies, techniques and tools

    Get PDF
    L'abstract è presente nell'allegato / the abstract is in the attachmen

    Automatic Generation of Schedulings for Improving the Test Coverage of Systems-on-a-Chip

    Get PDF
    International audienceSystemC is becoming a de-facto standard for the early simulation of Systems-on-a-chip (SoCs). It is a parallel language with a scheduler. Testing a SoC written in SystemC implies that we execute it, for some well chosen data. We are bound to use a particular deterministic implementation of the scheduler, whose specification is non-deterministic. Consequently, we may fail to discover bugs that would have appeared using another valid implementation of the scheduler. Current methods for testings SoCs concentrate on the generation of the inputs, and do not address this problem at all. We assume that the selection of relevant data is already done, and we generate several schedulings allowed by the scheduler specification. We use dynamic partial-order reduction techniques to avoid the generation of two schedulings that have the same effect on the system's behavior. Exploring alternative schedulings during testing is a way of guaranteeing that the SoC description, and in particular the embedded software, is scheduler-independent, hence more robust. The technique extends to the exploration of other non-fully specified aspects of SoC descriptions, like timing

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial
    • …
    corecore