14,948 research outputs found

    Design Solutions For Modular Satellite Architectures

    Get PDF
    The cost-effective access to space envisaged by ESA would open a wide range of new opportunities and markets, but is still many years ahead. There is still a lack of devices, circuits, systems which make possible to develop satellites, ground stations and related services at costs compatible with the budget of academic institutions and small and medium enterprises (SMEs). As soon as the development time and cost of small satellites will fall below a certain threshold (e.g. 100,000 to 500,000 €), appropriate business models will likely develop to ensure a cost-effective and pervasive access to space, and related infrastructures and services. These considerations spurred the activity described in this paper, which is aimed at: - proving the feasibility of low-cost satellites using COTS (Commercial Off The Shelf) devices. This is a new trend in the space industry, which is not yet fully exploited due to the belief that COTS devices are not reliable enough for this kind of applications; - developing a flight model of a flexible and reliable nano-satellite with less than 25,000€; - training students in the field of avionics space systems: the design here described is developed by a team including undergraduate students working towards their graduation work. The educational aspects include the development of specific new university courses; - developing expertise in the field of low-cost avionic systems, both internally (university staff) and externally (graduated students will bring their expertise in their future work activity); - gather and cluster expertise and resources available inside the university around a common high-tech project; - creating a working group composed of both University and SMEs devoted to the application of commercially available technology to space environment. The first step in this direction was the development of a small low cost nano-satellite, started in the year 2004: the name of this project was PiCPoT (Piccolo Cubo del Politecnico di Torino, Small Cube of Politecnico di Torino). The project was carried out by some departments of the Politecnico, in particular Electronics and Aerospace. The main goal of the project was to evaluate the feasibility of using COTS components in a space project in order to greatly reduce costs; the design exploited internal subsystems modularity to allow reuse and further cost reduction for future missions. Starting from the PiCPoT experience, in 2006 we began a new project called ARaMiS (Speretta et al., 2007) which is the Italian acronym for Modular Architecture for Satellites. This work describes how the architecture of the ARaMiS satellite has been obtained from the lesson learned from our former experience. Moreover we describe satellite operations, giving some details of the major subsystems. This work is composed of two parts. The first one describes the design methodology, solutions and techniques that we used to develop the PiCPoT satellite; it gives an overview of its operations, with some details of the major subsystems. Details on the specifications can also be found in (Del Corso et al., 2007; Passerone et al, 2008). The second part, indeed exploits the experience achieved during the PiCPoT development and describes a proposal for a low-cost modular architecture for satellite

    DeSyRe: on-Demand System Reliability

    No full text
    The DeSyRe project builds on-demand adaptive and reliable Systems-on-Chips (SoCs). As fabrication technology scales down, chips are becoming less reliable, thereby incurring increased power and performance costs for fault tolerance. To make matters worse, power density is becoming a significant limiting factor in SoC design, in general. In the face of such changes in the technological landscape, current solutions for fault tolerance are expected to introduce excessive overheads in future systems. Moreover, attempting to design and manufacture a totally defect and fault-free system, would impact heavily, even prohibitively, the design, manufacturing, and testing costs, as well as the system performance and power consumption. In this context, DeSyRe delivers a new generation of systems that are reliable by design at well-balanced power, performance, and design costs. In our attempt to reduce the overheads of fault-tolerance, only a small fraction of the chip is built to be fault-free. This fault-free part is then employed to manage the remaining fault-prone resources of the SoC. The DeSyRe framework is applied to two medical systems with high safety requirements (measured using the IEC 61508 functional safety standard) and tight power and performance constraints

    Single-Event Upset Analysis and Protection in High Speed Circuits

    Get PDF
    The effect of single-event transients (SETs) (at a combinational node of a design) on the system reliability is becoming a big concern for ICs manufactured using advanced technologies. An SET at a node of combinational part may cause a transient pulse at the input of a flip-flop and consequently is latched in the flip-flop and generates a soft-error. When an SET conjoined with a transition at a node along a critical path of the combinational part of a design, a transient delay fault may occur at the input of a flip-flop. On the other hand, increasing pipeline depth and using low power techniques such as multi-level power supply, and multi-threshold transistor convert almost all paths in a circuit to critical ones. Thus, studying the behavior of the SET in these kinds of circuits needs special attention. This paper studies the dynamic behavior of a circuit with massive critical paths in the presence of an SET. We also propose a novel flip-flop architecture to mitigate the effects of such SETs in combinational circuits. Furthermore, the proposed architecture can tolerant a single event upset (SEU) caused by particle strike on the internal nodes of a flip-flo

    Comparison and Design Optimization of a Five-Phase Flux-Switching PM Machine for In-Wheel Traction Applications

    Get PDF
    A comparative study of five-phase outer-rotor flux-switching permanent magnet (FSPM) machines with different topologies for in-wheel traction applications is presented in this paper. Those topologies include double-layer winding, single-layer winding, C-core, and E-core configurations. The electromagnetic performance in the low-speed region, the flux-weakening capability in the high-speed region, and the fault-tolerance capability are all investigated in detail. The results indicate that the E-core FSPM machine has performance advantages. Furthermore, two kinds of E-core FSPM machines with different stator and rotor pole combinations are optimized, respectively. In order to reduce the computational burden during the large-scale optimization process, a mathematical technique is developed based on the concept of computationally efficient finite-element analysis. While a differential evolution algorithm serves as a global search engine to target optimized designs. Subsequently, multiobjective tradeoffs are presented based on a Pareto-set for 20 000 candidate designs. Finally, an optimal design is prototyped, and some experimental results are given to confirm the validity of the simulation results in this paper

    A study of Radiation-Tolerant Voltage-Controlled Oscillators designs in 65 nm bulk and 28 nm FDSOI CMOS technologies

    Get PDF
    Phase-locked loop (PLL) systems are widely employed in integrated circuits for space analog devices and communications systems that operate in radiation environments, where significant perturbations, especially in terms of phase noise, can be generated due to radiation particles. Among all the blocks that form a PLL system, previous research suggests the voltage-controlled oscillator (VCO) is one of the most critical components in terms of radiation tolerance and electric performance. Ring oscillators (ROs) and LC-tank VCOs have been commonly employed in high-performance PLLs. Nevertheless, both structures have drawbacks including a limited tuning range, high sensitivity to phase noise, limited radiation tolerance, and large design areas. In order to fulfill these high-performance requirements, a current-model logic (CML) based RO-VCO is presented as a possible solution capable of reducing the limitations of the commonly used structures and exploiting their advantages. The proposed hybrid VCO model includes passive components in its design which are the key parameters that define oscillation frequency of this structure. This tunable oscillator has been designed and tested in 65nm Bulk and 28 nm Fully depleted silicon-on-insulator (FDSOI) CMOS technologies The 65nm testchip was designed to compare the behavior of the proposed CML VCO with a current-starved RO and a radiation hardened by design (RHBD) LC-tank VCO in terms of tuning range, phase noise, Single event effect (SEE) sensitivity and design area. Simulations were carried out by applying a double exponential current pulse into different sensitive nodes of the three VCOs. In addition, SEE tests were conducted using pulsed laser experiments. Simulation and test results show that a CML VCO can effectively overcome the limitations presented by a RO-VCO and LC-tank VCO, achieving a wide range of tuning, and low sensitivity to noise and SEEs without the need for a large cross-section. Further studies of the proposed CML VCO were done on 28nm FDSOI in order to reduce the leakage current and increase the switching speed. the same current-starved VCO and CML VCO were implemented on this testchip, and simulations were performed by injecting a double exponential current pulse energy into the previously defined sensitive nodes. The results show SEE sensitivity improvement without narrowing the tuning range or affecting the phase noise response

    Improved Fault Tolerant SRAM Cell Design & Layout in 130nm Technology

    Get PDF
    Technology scaling of CMOS devices has made the integrated circuits vulnerable to single event radiation effects. Scaling of CMOS Static RAM (SRAM) has led to denser packing architectures by reducing the size and spacing of diffusion nodes. However, this trend has led to the increase in charge collection and sharing effects between devices during an ion strike, making the circuit even more vulnerable to a specific single event effect called the single event multiple-node upset (SEMU). In nanometer technologies, SEMU can easily disrupt the data stored in the memory and can be more hazardous than a single event single-node upset. During the last decade, most of the research efforts were mainly focused on improving the single event single-node upset tolerance of SRAM cells by using novel circuit techniques, but recent studies relating to angular radiation sensitivity has revealed the importance of SEMU and Multi Bit Upset (MBU) tolerance for SRAM cells. The research focuses on improving SEMU tolerance of CMOS SRAM cells by using novel circuit and layout level techniques. A novel SRAM cell circuit & layout technique is proposed to improve the SEMU tolerance of 6T SRAM cells with decreasing feature size, making it an ideal candidate for future technologies. The layout is based on strategically positioning diffusion nodes in such a way as to provide charge cancellation among nodes during SEMU radiation strikes, instead of charge build-up. The new design & layout technique can improve the SEMU tolerance levels by up to 20 times without sacrificing on area overhead and hence is suitable for high density SRAM designs in commercial applications. Finally, laser testing of SRAM based configuration memory of a Xilinx Virtex-5 FPGA is performed to analyze the behavior of SRAM based systems towards radiation strikes

    Deep Level Transient Spectroscopy (DLTS) System And Method

    Get PDF
    A computer-based deep level transient spectroscopy (DLTS) system (10) efficiently digitizes and analyzes capacitance and conductance transients acquired from a test material (13) by conventional DLTS methods as well as by several transient methods, including a covariance method of linear predictive modeling. A unique pseudo-logarithmic data storage scheme allows each transient to be tested at more than eleven different rates, permitting three to five decades of time constants τ to be observed during each thermal scan, thereby allowing high resolution of closely spaced defect energy levels. The system (10) comprises a sensor (12) for detecting capacitance and/or conductance transients, a digitizing mechanism (14) for digitizing the capacitance and/or conductance transients, preamplifiers (16a, 16b) for filtering, amplifying, and for forwarding the transients to the digitizing mechanism (14), a pulse generator (18) for supplying a filling pulse to the test material (13) in a cryostat (24), a trigger conditioner for coordinating the timing between the digitizing mechanism (14) and the pulse generator (18), and a temperature controller (26) for changing the temperature of the cryostat (24).Georgia Tech Research Corporatio
    • 

    corecore