6 research outputs found

    Energy Management in Wireless Sensor Networks for Internet of Things Applications

    Get PDF
    Internet of things (IoT) aims to develop a smart world based on sensing environment. The energy management of wireless sensor networks (WSNs) is a big challenge in IoT since sensor nodes have limited energy and they need to have long life for collecting data and information. The aim of this paper is to propose an efficient energy routing algorithm in WSN and infrastructure based on construction an adaptive energy map of sensor nodes. The results show improvement in overall system performance and lifetime of WSN compared to traditional scenario

    Optimized cluster head selection using krill herd algorithm for wireless sensor network

    Get PDF
    Wireless Sensor Network (WSNs) can perform transmission within themselves and examination is performed based on their range of frequency. It is quite difficult to recharge devises under adverse conditions. The main limitations are area of coverage, network’s lifetime and aggregating and scheduling. If the lifetime of a network should be prolonged, then it can become a success along with reliability of the data transferred, conservation of sensor and scalability. Through many research works, this challenge can be overcome which are being proposed and the network’s lifespan improved which can preserve the sensor’s energy. By schemes of clustering, a low overhead is provided and the resources are efficiently allocated thus increasing the ultimate consumption of energy and reducing interfaces within the sensor nodes. Challenges such as node deployment and energy-aware clustering can be considered as issues of optimization with regards to WSNs, along with data collection. An optimal solution can be gotten through evolutionary and SI algorithm, pertaining to Non-deterministic Polynomial (NP)-complete along with a number of techniques. In this work, Krill Herd Algorithm based clustering is proposed

    ACO-Inspired Energy-Aware Routing Algorithm for Wireless Sensor Networks, Journal of Telecommunications and Information Technology, 2019, nr 1

    Get PDF
    Multi-hop networks, such as WSNs, become an object of increasing attention as an emerging technology which plays an important role for practical IoT applications. These multi-hop networks generally consist of mobile and small terminals with limited resources, which makes them vulnerable to various network status changes. Moreover, the limited nature of terminal resources available, especially in terms of battery capacity, is one of the most important issues to be addressed in order to prolong their operating time. In order to ensure efficient communications in such networks, much research has already been conducted, especially in the field of routing and transmission technologies. However, conventional approaches adopted in the routing field still suffer from the so-called energy hole problem, usually caused by unbalanced communication loads existing due to difficulties in adaptive route management. To address this issue, the present paper proposes a novel routing algorithm that utilizes ACO-inspired routing based on residual energy of terminals. Operational evaluation reveals its potential to ensure balanced energy consumption and to boost network performance

    A Survey on Underwater Acoustic Sensor Network Routing Protocols

    Full text link
    Underwater acoustic sensor networks (UASNs) have become more and more important in ocean exploration applications, such as ocean monitoring, pollution detection, ocean resource management, underwater device maintenance, etc. In underwater acoustic sensor networks, since the routing protocol guarantees reliable and effective data transmission from the source node to the destination node, routing protocol design is an attractive topic for researchers. There are many routing algorithms have been proposed in recent years. To present the current state of development of UASN routing protocols, we review herein the UASN routing protocol designs reported in recent years. In this paper, all the routing protocols have been classified into different groups according to their characteristics and routing algorithms, such as the non-cross-layer design routing protocol, the traditional cross-layer design routing protocol, and the intelligent algorithm based routing protocol. This is also the first paper that introduces intelligent algorithm-based UASN routing protocols. In addition, in this paper, we investigate the development trends of UASN routing protocols, which can provide researchers with clear and direct insights for further research

    An energy-efficiency Optimized LEACH-C for wireless sensor networks

    No full text
    corecore