21,752 research outputs found

    Homological Error Correction: Classical and Quantum Codes

    Get PDF
    We prove several theorems characterizing the existence of homological error correction codes both classically and quantumly. Not every classical code is homological, but we find a family of classical homological codes saturating the Hamming bound. In the quantum case, we show that for non-orientable surfaces it is impossible to construct homological codes based on qudits of dimension D>2D>2, while for orientable surfaces with boundaries it is possible to construct them for arbitrary dimension DD. We give a method to obtain planar homological codes based on the construction of quantum codes on compact surfaces without boundaries. We show how the original Shor's 9-qubit code can be visualized as a homological quantum code. We study the problem of constructing quantum codes with optimal encoding rate. In the particular case of toric codes we construct an optimal family and give an explicit proof of its optimality. For homological quantum codes on surfaces of arbitrary genus we also construct a family of codes asymptotically attaining the maximum possible encoding rate. We provide the tools of homology group theory for graphs embedded on surfaces in a self-contained manner.Comment: Revtex4 fil

    Holographic quantum error-correcting codes: Toy models for the bulk/boundary correspondence

    Get PDF
    We propose a family of exactly solvable toy models for the AdS/CFT correspondence based on a novel construction of quantum error-correcting codes with a tensor network structure. Our building block is a special type of tensor with maximal entanglement along any bipartition, which gives rise to an isometry from the bulk Hilbert space to the boundary Hilbert space. The entire tensor network is an encoder for a quantum error-correcting code, where the bulk and boundary degrees of freedom may be identified as logical and physical degrees of freedom respectively. These models capture key features of entanglement in the AdS/CFT correspondence; in particular, the Ryu-Takayanagi formula and the negativity of tripartite information are obeyed exactly in many cases. That bulk logical operators can be represented on multiple boundary regions mimics the Rindler-wedge reconstruction of boundary operators from bulk operators, realizing explicitly the quantum error-correcting features of AdS/CFT recently proposed by Almheiri et. al in arXiv:1411.7041.Comment: 40 Pages + 25 Pages of Appendices. 38 figures. Typos and bibliographic amendments and minor correction

    Golden Space-Time Trellis Coded Modulation

    Full text link
    In this paper, we present a concatenated coding scheme for a high rate 2Ă—22\times 2 multiple-input multiple-output (MIMO) system over slow fading channels. The inner code is the Golden code \cite{Golden05} and the outer code is a trellis code. Set partitioning of the Golden code is designed specifically to increase the minimum determinant. The branches of the outer trellis code are labeled with these partitions. Viterbi algorithm is applied for trellis decoding. In order to compute the branch metrics a lattice sphere decoder is used. The general framework for code optimization is given. The performance of the proposed concatenated scheme is evaluated by simulation. It is shown that the proposed scheme achieves significant performance gains over uncoded Golden code.Comment: 33 pages, 13 figure

    Constructions and Noise Threshold of Hyperbolic Surface Codes

    Full text link
    We show how to obtain concrete constructions of homological quantum codes based on tilings of 2D surfaces with constant negative curvature (hyperbolic surfaces). This construction results in two-dimensional quantum codes whose tradeoff of encoding rate versus protection is more favorable than for the surface code. These surface codes would require variable length connections between qubits, as determined by the hyperbolic geometry. We provide numerical estimates of the value of the noise threshold and logical error probability of these codes against independent X or Z noise, assuming noise-free error correction

    Catalytic quantum error correction

    Get PDF
    We develop the theory of entanglement-assisted quantum error correcting (EAQEC) codes, a generalization of the stabilizer formalism to the setting in which the sender and receiver have access to pre-shared entanglement. Conventional stabilizer codes are equivalent to dual-containing symplectic codes. In contrast, EAQEC codes do not require the dual-containing condition, which greatly simplifies their construction. We show how any quaternary classical code can be made into a EAQEC code. In particular, efficient modern codes, like LDPC codes, which attain the Shannon capacity, can be made into EAQEC codes attaining the hashing bound. In a quantum computation setting, EAQEC codes give rise to catalytic quantum codes which maintain a region of inherited noiseless qubits. We also give an alternative construction of EAQEC codes by making classical entanglement assisted codes coherent.Comment: 30 pages, 10 figures. Notation change: [[n,k;c]] instead of [[n,k-c;c]
    • …
    corecore