5 research outputs found

    Performance of Opportunistic Epidemic Routing on Edge-Markovian Dynamic Graphs

    Full text link
    Connectivity patterns in intermittently-connected mobile networks (ICMN) can be modeled as edge-Markovian dynamic graphs. We propose a new model for epidemic propagation on such graphs and calculate a closed-form expression that links the best achievable delivery ratio to common ICMN parameters such as message size, maximum tolerated delay, and link lifetime. These theoretical results are compared to those obtained by replaying a real-life contact trace.Comment: 5 pages, 4 figures. Accepted for publication in IEEE Transactions on Communication

    The effect of group mobility on the efficacy of routing in next generation mobile networks

    Get PDF
    © 2016 IEEE.A key challenge in next generation mobile networks is ensuring effective routing that efficiently adapts to the special characteristics of the various mobility schemes. The purpose of this paper is to study and illustrate how group mobility affects the network performance of a wireless ad hoc network depending on the type of movement, in a space with or without obstacles. In the scope of this paper, we created a simulator of a MANET that uses AODV routing protocol, while the entities of the network move according to the chosen group mobility model. Despite the fact that the routing protocol supports mobility in general, the results greatly vary depending on the specific mobility scenario. The strong connection between mobility properties and network performance is revealed

    The impact of mobility patterns on the efficiency of data forwarding in MANETs

    Get PDF
    One of the most challenging requirements in cutting-edge Mobile Ad hoc Networks is the need for adaptive and efficient routing. Networks capable of adapting their behavior based on current conditions are often characterized as self-organizing networks, which are lately considered very promising for future applications. This work examines the impact of the different mobility properties on the performance of self-organizing networks. For that purpose, a simulator was developed to model different mobility patterns and study the way they affect the effectiveness of the well-known AODV routing protocol. Particularly, this paper focuses on the effect of the different mobility schemes on network topology and consequently to the overall network performance. The results reveal the tight correlations between node mobility characteristics and network metrics
    corecore