2,336 research outputs found

    The effectiveness of refactoring, based on a compatibility testing taxonomy and a dependency graph

    Get PDF
    In this paper, we describe and then appraise a testing taxonomy proposed by van Deursen and Moonen (VD&M) based on the post-refactoring repeatability of tests. Four categories of refactoring are identified by VD&M ranging from semantic-preserving to incompatible, where, for the former, no new tests are required and for the latter, a completely new test set has to be developed. In our appraisal of the taxonomy, we heavily stress the need for the inter-dependence of the refactoring categories to be considered when making refactoring decisions and we base that need on a refactoring dependency graph developed as part of the research. We demonstrate that while incompatible refactorings may be harmful and time-consuming from a testing perspective, semantic-preserving refactorings can have equally unpleasant hidden ramifications despite their advantages. In fact, refactorings which fall into neither category have the most interesting properties. We support our results with empirical refactoring data drawn from seven Java open-source systems (OSS) and from the same analysis form a tentative categorization of code smells

    Collaborative Verification-Driven Engineering of Hybrid Systems

    Full text link
    Hybrid systems with both discrete and continuous dynamics are an important model for real-world cyber-physical systems. The key challenge is to ensure their correct functioning w.r.t. safety requirements. Promising techniques to ensure safety seem to be model-driven engineering to develop hybrid systems in a well-defined and traceable manner, and formal verification to prove their correctness. Their combination forms the vision of verification-driven engineering. Often, hybrid systems are rather complex in that they require expertise from many domains (e.g., robotics, control systems, computer science, software engineering, and mechanical engineering). Moreover, despite the remarkable progress in automating formal verification of hybrid systems, the construction of proofs of complex systems often requires nontrivial human guidance, since hybrid systems verification tools solve undecidable problems. It is, thus, not uncommon for development and verification teams to consist of many players with diverse expertise. This paper introduces a verification-driven engineering toolset that extends our previous work on hybrid and arithmetic verification with tools for (i) graphical (UML) and textual modeling of hybrid systems, (ii) exchanging and comparing models and proofs, and (iii) managing verification tasks. This toolset makes it easier to tackle large-scale verification tasks

    Search based software engineering: Trends, techniques and applications

    Get PDF
    © ACM, 2012. This is the author's version of the work. It is posted here by permission of ACM for your personal use. Not for redistribution. The definitive version is available from the link below.In the past five years there has been a dramatic increase in work on Search-Based Software Engineering (SBSE), an approach to Software Engineering (SE) in which Search-Based Optimization (SBO) algorithms are used to address problems in SE. SBSE has been applied to problems throughout the SE lifecycle, from requirements and project planning to maintenance and reengineering. The approach is attractive because it offers a suite of adaptive automated and semiautomated solutions in situations typified by large complex problem spaces with multiple competing and conflicting objectives. This article provides a review and classification of literature on SBSE. The work identifies research trends and relationships between the techniques applied and the applications to which they have been applied and highlights gaps in the literature and avenues for further research.EPSRC and E

    Technical Debt: An empirical investigation of its harmfulness and on management strategies in industry

    Get PDF
    Background: In order to survive in today\u27s fast-growing and ever fast-changing business environment, software companies need to continuously deliver customer value, both from a short- and long-term perspective. However, the consequences of potential long-term and far-reaching negative effects of shortcuts and quick fixes made during the software development lifecycle, described as Technical Debt (TD), can impede the software development process.Objective: The overarching goal of this Ph.D. thesis is twofold. The first goal is to empirically study and understand in what way and to what extent, TD influences today’s software development work, specifically with the intention to provide more quantitative insight into the field. Second, to understand which different initiatives can reduce the negative effects of TD and also which factors are important to consider when implementing such initiatives.Method: To achieve the objectives, a combination of both quantitative and qualitative research methodologies are used, including interviews, surveys, a systematic literature review, a longitudinal study, analysis of documents, correlation analysis, and statistical tests. In seven of the eleven studies included in this Ph.D. thesis, a combination of multiple research methods are used to achieve high validity.Results: We present results showing that software suffering from TD will cause various negative effects on both the software and the developing process. These negative effects are illustrated from a technical, financial, and a developer’s working situational perspective. These studies also identify several initiatives that can be undertaken in order to reduce the negative effects of TD.Conclusion: The results show that software developers report that they waste 23% of their working time due to experiencing TD and that TD required them to perform additional time-consuming work activities. This study also shows that, compared to all types of TD, architectural TD has the greatest negative impact on daily software development work and that TD has negative effects on several different software quality attributes. Further, the results show that TD reduces developer morale. Moreover, the findings show that intentionally introducing TD in startup companies can allow the startups to cut development time, enabling faster feedback and increased revenue, preserve resources, and decrease risk and thereby contribute to beneficial\ua0effects. This study also identifies several initiatives that can be undertaken in order to reduce the negative effects of TD, such as the introduction of a tracking process where the TD items are introduced in an official backlog. The finding also indicates that there is an unfulfilled potential regarding how managers can influence the manner in which software practitioners address TD

    A make/buy/reuse feature development framework for product line evolution

    Get PDF
    corecore